Secret Sharing Across a Network with Low Communication Cost: Distributed Algorithm and Bounds

Nihar B Shah, K V Rashmi, Kannan Ramchandran

University of California, Berkeley

Secret Sharing

- A dealer and n participants
- The dealer has a secret s
- Distribute shares (functions of s) to participants such that
 - any k can recover s
 - any (k-1) get no information about s

Example: n = 6, k = 2

- alphabet is **F**₇
- r is chosen uniformly at random from the field

Applications

Several cryptographic protocols use Shamir's secret sharing:

- Secure multiparty function computation
- Key distribution
- Archival storage

e.g., Ben-Or–Goldwasser–Wigderson (BGW) protocol for secure n-party function computation: 2n secret sharings initially, n more for each multiplication

Most protocols assume dealer can communicate directly with all participants

not allowed: participant 1 can obtain secret

Secret sharing across networks

Outline

• Literature

New "SNEAK" algorithm

Information-theoretic lower bounds

Summary & open problems

D. Dolev, C. Dwork, O. Waarts, and M. Yung, "Perfectly secure message transmission," *Journal of the ACM*, vol. 40, no. 1, pp. 17–47, 1993.

For every participant i:

- 1. Dealer finds k node disjoint paths to i
- 2. Computes secret shares of this i's share
- 3. Transmits these new shares on these k paths

- Communication inefficient
- High amount of randomness
- Significant coordination in the network

Literature: Secure Network Coding

- Every set of k participants has a sink
- Eavesdropping of any (k-1) nodes should leak no information

Nodal-eavesdropping: Very little known

Our "SNEAK" algorithm

SNEAK = Secret-sharing over a Network with Efficient communication And distributed Knowledge-of-topology

	SNEAK	Pairwise-agreement
Communication	12	24

	SNEAK	Pairwise-agreement
Communication	12	24
Knowledge of topology	know only one-hop neighbours	node disjoint paths on entire graph

	SNEAK	Pairwise-agreement
Communication	12	24
Knowledge of topology	know only one-hop neighbours	node disjoint paths on entire graph
Randomness	2	5

General SNEAK algorithm

Details in ISIT paper/arXiv

- ✓ communication-efficient
- ✓ randomness-efficient
- ✓ distributed
- ✓ deterministic

General SNEAK algorithm

Details in ISIT paper/arXiv

- ✓ communication-efficient
- ✓ randomness-efficient
- ✓ distributed
- ✓ deterministic

Needs graph to satisfy a certain condition

Conditions on the graph

- Necessary for any algorithm: "k-connected-dealer"
 - Exist k node-disjoint paths from dealer to every participant

Conditions on the graph

- Required for our algorithm: "k-propagating-dealer"
 - — ∃ ordering of participants such that each participant has edges coming in from either (a) the dealer or (b) from k participants preceding it in the ordering

Conditions on the graph

Many graphs satisfying k-propagating-dealer

Any DAG:

k-connected-dealer

⇒ k-propagating-dealer

ordering = increasing distance from dealer

ordering = layers next to dealer, rest increasing distance from dealer

SNEAK algorithm is oblivious to ordering

Need not know anything about the network

Nodes only know one hop neighbours

What if 'k-propagating-dealer' not satisfied?

- No leak of information
 - No (k-1) nodes get any information about s
- Extensions of SNEAK (heuristic) in paper

Theorem: Lower Bound

Any node $\ell \in [n]$ with incoming degree $\deg(\ell)$ must download at least

$$\begin{cases} 1 & \text{if } \ell \in \mathcal{N}(D) \\ \infty & \text{if } \ell \notin \mathcal{N}(D) \text{ and } \deg(\ell) < k \\ \frac{\deg(\ell)}{\deg(\ell) - k + 1} & \text{if } \ell \notin \mathcal{N}(D) \text{ and } \deg(\ell) \ge k \end{cases}.$$

Furthermore, this bound is the best possible, given only the identities of the neighbours of node ℓ .

Theorem: Lower Bound

Any node $\ell \in [n]$ with incoming degree $\deg(\ell)$ must download at least

$$\begin{cases} 1 & \text{if } \ell \in \mathcal{N}(D) \\ \infty & \text{if } \ell \notin \mathcal{N}(D) \text{ and } \deg(\ell) < k \\ \frac{\deg(\ell)}{\deg(\ell) - k + 1} & \text{if } \ell \notin \mathcal{N}(D) \text{ and } \deg(\ell) \ge k \end{cases}.$$

Furthermore, this bound is the best possible, given only the identities of the neighbours of node ℓ .

Theorem: Lower Bound

Any node $\ell \in [n]$ with incoming degree $\deg(\ell)$ must download at least

$$\begin{cases} 1 & \text{if } \ell \in \mathcal{N}(D) \\ \infty & \text{if } \ell \notin \mathcal{N}(D) \text{ and } \deg(\ell) < k \end{cases}$$
$$\frac{\deg(\ell)}{\deg(\ell) - k + 1} & \text{if } \ell \notin \mathcal{N}(D) \text{ and } \deg(\ell) \ge k .$$

Furthermore, this bound is the best possible, given only the identities of the neighbours of node ℓ .

not possible

Theorem: Lower Bound

Any node $\ell \in [n]$ with incoming degree $\deg(\ell)$ must download at least

$$\begin{cases} 1 & \text{if } \ell \in \mathcal{N}(D) \\ \infty & \text{if } \ell \notin \mathcal{N}(D) \text{ and } \deg(\ell) < k \end{cases}$$
$$\frac{\deg(\ell)}{\deg(\ell) - k + 1} & \text{if } \ell \notin \mathcal{N}(D) \text{ and } \deg(\ell) \ge k .$$

Furthermore, this bound is the best possible, given only the identities of the neighbours of node ℓ .

deg < k

not possible

 $\frac{\text{deg} \ge k}{\text{deg} - k + 1}$

Theorem: Lower Bound

Any node $\ell \in [n]$ with incoming degree $\deg(\ell)$ must download at least

$$\begin{cases} 1 & \text{if } \ell \in \mathcal{N}(D) \\ \infty & \text{if } \ell \notin \mathcal{N}(D) \text{ and } \deg(\ell) < k \end{cases}$$
$$\frac{\deg(\ell)}{\deg(\ell) - k + 1} & \text{if } \ell \notin \mathcal{N}(D) \text{ and } \deg(\ell) \ge k .$$

Furthermore, this bound is the best possible, given only the identities of the neighbours of node ℓ .

 $\frac{\text{deg} \ge k}{\text{deg} - k + 1}$

Corollary: communication ≥ n

Suppose graph satisfies "d-propagating-dealer" for some d ≥ k

Suppose graph satisfies "d-propagating-dealer" for some d ≥ k

• any algorithm ≥ n

Suppose graph satisfies "d-propagating-dealer" for some d ≥ k

• any algorithm ≥ n

• SNEAK =
$$n \frac{d}{d-k+1}$$
 (linear in n)

Suppose graph satisfies "d-propagating-dealer" for some d ≥ k

any algorithm ≥ n

• SNEAK =
$$n \frac{d}{d-k+1}$$
 (linear in n)

• pairwise-agreement: 'typically' super-linear, worst case $\approx n^2$

Further, in the paper

- Analysis of randomness requirements
- Additional analysis of communication complexity

- SNEAK algorithm
 - efficient, distributed

- Information-theoretic lower bounds
 - download for any node
 - tight for the case when knowledge of only one-hop neighbours is available

- SNEAK algorithm
 - efficient, distributed

Heuristic extension when k-propagating-dealer condition is not met. Guarantees?

- Information-theoretic lower bounds
 - download for any node
 - tight for the case when knowledge of only one-hop neighbours is available

- SNEAK algorithm
 - efficient, distributed

Heuristic extension when k-propagating-dealer condition is not met. Guarantees?

Other classes of graphs satisfying k-propagating-dealer condition?

- Information-theoretic lower bounds
 - download for any node
 - tight for the case when knowledge of only one-hop neighbours is available

- SNEAK algorithm
 - efficient, distributed

Heuristic extension when k-propagating-dealer condition is not met. Guarantees?

Other classes of graphs satisfying k-propagating-dealer condition?

- Information-theoretic lower bounds
 - download for any node

Tighter bounds for secret sharing in a network

 tight for the case when knowledge of only one-hop neighbours is available

- SNEAK algorithm
 - efficient, distributed

Heuristic extension when k-propagating-dealer condition is not met. Guarantees?

Other classes of graphs satisfying k-propagating-dealer condition?

- Information-theoretic lower bounds
 - download for any node

Tighter bounds for secret sharing in a network

 tight for the case when knowledge of only one-hop neighbours is available

What carries over to general secure network coding?

Thanks! Questions?