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Secret Sharing

* A dealer and n participants

* The dealer has a secret s

 Distribute shares (functions of s) to participants such that
- any k can recover s
- any (k-1) get no information about s

*Le

@/ dealer

n==6



Example:n =6, k=2
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Applications

Several cryptographic protocols use Shamir’s secret sharing:
* Secure multiparty function computation
 Key distribution

* Archival storage

e.g., Ben-Or—Goldwasser—Wigderson (BGW) protocol for secure
n-party function computation: 2n secret sharings initially,
n more for each multiplication



Most protocols assume dealer can
communicate directly with all participants
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Secret sharing across networks
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Literature: Pairwise agreement protocols

D. Dolev, C. Dwork, O. Waarts, and M. Yung, “Perfectly secure message transmission,”
Journal of the ACM, vol. 40, no. 1, pp. 17-47, 1993.
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Literature: Pairwise agreement protocols

s+r s+ 3r

S+ 4r +ry /3\
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For every participant i :

1. Dealer finds k node disjoint paths to i
2. Computes secret shares of this i’s share

3. Transmits these new shares on these k paths



Literature: Pairwise agreement protocols

 Communication inefficient
* High amount of randomness

* Significant coordination in the network



Literature: Secure Network Coding

* Every set of k participants has a sink

 Eavesdropping of any (k-1) nodes should leak no information



Nodal-eavesdropping: Very little known
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Our “SNEAK” algorithm
WHATIELTOLDYOU

WE CAN DO MUCH BETTER

SNEAK = Secret-sharing over a Network with Efficient communication
And distributed Knowledge-of-topology
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General SNEAK algorithm
Details in ISIT paper/arXiv

v communication-efficient
v’ randomness-efficient
v distributed

v deterministic

SNEAK = Secret-sharing over a Network with Efficient communication
And distributed Knowledge-of-topology



General SNEAK algorithm
Details in ISIT paper/arXiv

v communication-efficient
v’ randomness-efficient
v distributed

v deterministic

Needs graph to satisfy
a certain condition



Conditions on the graph

* Necessary for any algorithm: “k-connected-dealer”
— Exist k node-disjoint paths from dealer to every participant
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Conditions on the graph

* Required for our algorithm: “k-propagating-dealer”

— ordering of participants such that each participant has edges
coming in from either (a) the dealer or (b) from k participants
preceding it in the ordering

ordering =1,2,3,4,5,6



Conditions on the graph

* Many graphs satisfying k-propagating-dealer

1 L Any DAG:
k-connected-dealer
= k-propagating-dealer

2 \4_1/ 6

ordering = 1,2,3,4,5,6 backbone

networks

Layered networks

O

1-D geometric networks
k-connected-dealer = k-propagating-dealer

Yo
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ordering = layers next to dealer, rest increasing distance from dealer

ordering = increasing distance from dealer



SNEAK algorithm is oblivious to ordering

* Need not know anything about the network

* Nodes only know one hop neighbours



What if ‘k-propagating-dealer’ not satisfied ?

* No leak of information

— No (k-1) nodes get any information about s

* Extensions of SNEAK (heuristic) in paper



Information-theoretic Lower Bounds
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Information-theoretic Lower Bounds

Theorem: Lower Bound

Any node ¢ € [n| with incoming degree deg(¢) must download at least

1 if £ € N (D)

00 if £ ¢ N (D) and deg(¢) < k
deg(e .

deg(6e§£11+1 if £ ¢ N(D) and deg(¢) > k .

Furthermore, this bound is the best possible, given only the identities of the
neighbours of node /.
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Information-theoretic Lower Bounds

Theorem: Lower Bound

Any node ¢ € [n| with incoming degree deg(¢) must download at least
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Communication Complexity

Suppose graph satisfies “d-propagating-dealer” for some d > k
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e any algorithm = n

d

n
d-k+1

e SNEAK = (linear in n)



Communication Complexity

Suppose graph satisfies “d-propagating-dealer” for some d > k
e any algorithm = n
d

d-k+1

e SNEAK = n (linear in n)

. . . . 2
* pairwise-agreement: ‘typically’ super-linear, worst case = n

dealer

(satisfies 2-propagating-dealer condition)



Further, in the paper

* Analysis of randomness requirements

e Additional analysis of communication complexity



Summary & Future Work

* SNEAK algorithm
— efficient, distributed

* Information-theoretic lower bounds
— download for any node

— tight for the case when knowledge of only one-hop
neighbours is available
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Summary & Future Work

e SNEAK algorithm — — Heuristic e>.<ten5|on when N
k-propagating-dealer condition
— efficient, distributed is not met. Guaragtees ?

Other classes of graphs satisfying
k-propagating-dealer condition?

* Information-theoretic lower bounds«___

— download for any node Tighter bounds for
secret sharing in a network

— tight for the case when knowledge of only one-hop
neighbours is available

What carries over to general secure network coding ?



CAMETO ISTANBUL

SHARED MY SECGRETS

Thanks! Questions?



