2014 |IEEE International Symposium on Information Theory

One Extra Bit of Download Ensures
Perfectly Private Information Retrieval

Nihar B. Shah, K. V. Rashmi, Kannan Ramchandran, Fellow, I[EEE

Abstract—Private information retrieval (PIR) systems allow a
user to retrieve a record from a public database without revealing
to the server which record is being retrieved. The literature
on PIR considers only replication-based systems, wherein each
storage node stores a copy of the entire data. However, systems
based on erasure codes are gaining increasing popularity due
to a variety of reasons. This paper initiates an investigation
into PIR in erasure-coded systems by establishing its capacity
and designing explicit codes and algorithms. The notion of
privacy considered here is information-theoretic, and the metric
optimized is the amount of data downloaded by the user during
PIR.

In this paper, we present four main results. First, we design
an explicit erasure code and PIR algorithm that requires only
one extra bit of download to provide perfect privacy. In contrast,
all existing PIR algorithms require a download of at least twice
the size of the requisite data. Second, we derive lower bounds
proving the necessity of downloading at least one additional
bit. This establishes the precise capacity of PIR with respect
to the metric of download. These results are also applicable
to PIR in replication-based systems, which are a special case
of erasure codes. Our third contribution is a negative result
showing that capacity-achieving codes necessitate super-linear
storage overheads. This motivates the fourth contribution of this
paper: an erasure code and PIR algorithm that requires a linear
storage overhead, provides high reliability to the data, and is a
small factor away from the capacity.

I. INTRODUCTION

Private information retrieval (PIR) systems allow a user to
retrieve a record from a public database without revealing
to the server (or the storage “node”) which record is being
retrieved. PIR finds application when users want to retrieve
privacy-sensitive information like medical data, stock data,
patent data, etc. [1]-[3] (see [4] for an excellent survey).

In this paper, we consider the information-theoretic (and
not the computational) notion of PIR, where the node must
not obtain any information about the record being retrieved
even if the node possesses an infinite computational ability. A
trivial means of performing PIR is for the user to download
the whole database. This solution is clearly impractical due
to the massive amount of download required, but is the only
feasible solution if there is only a single storage node storing
the data [5]. The amount of communication can however be
reduced if there are multiple (non-colluding) nodes [4]-[9].

Existing algorithms for private information retrieval
(e.g., [4]-[9]) assume the storage system to be replication-
based, i.e., they assume the system to comprise multiple
storage nodes, each of which stores a copy of the entire
database. However, an alternative means of storing the data

The authors are with the Dept. of EECS, UC Berkeley. Email:
{nihar, rashmikv kannanr} @eecs.berkeley.edu. N. B. Shah was supported in
part by a Berkeley fellowship and K. V. Rashmi by a Facebook fellowship
and an MSR fellowship. This work was also supported in part by NSF CCF-
0964018, NSF CCF-1116404, and MURI CHASE grant no. 556016.

978-1-4799-5186-4/14/$31.00 ©2014 |[EEE

is gaining significant popularity today: that of using erasure
codes [10]-[12].

Erasure codes encode and store data across multiple nodes,
with each node requiring to store data that is only a frac-
tion of the size of the original data. Erasure codes increase
the reliability and availability of the data while significantly
reducing the total storage requirements. As a result, erasure
codes have become increasingly popular in distributed storage
systems [10]-[12], which motivates us to investigate PIR
under erasure codes. Another motivator for erasure-coded PIR
systems is in providing provable privacy primitives in large-
scale scenarios where nodes are distributed and have limited
storage capacities, for example, to empower dissidents in the
face of oppressive governments where no single node should
store the data in its entirety [13].

To the best of our knowledge, the problem of PIR under
erasure-coded nodes has not been investigated previously in
the literature. This is what this paper initiates by providing
capacity results as well as explicit algorithms for erasure-
coded PIR systems. Replication is a special case of erasure
codes, and hence our results also carry over to replication-
based systems. In this paper, we focus on optimizing the
metric of the amount of download that the user is required to
perform when privately retrieving the data. We assume that the
nodes are non-colluding, i.e., they cannot cooperate with each
other to recover information about the query. Fig. 1 shows
an example of our capacity-achieving erasure code and PIR
algorithm.

The rest of this paper is organized as follows. Section II
describes the problem setting and summarizes our results.
Section III proves the necessity of downloading at least one
additional bit for PIR in the worst case. This section also
shows that achieving this lower bound necessitates super-linear
storage overheads. Section IV then presents a simple explicit
code that achieves this lower bound, thereby establishing the
capacity of PIR with respect to the metric of download.
Section V presents an erasure code and PIR algorithm with
a linear storage overhead that is a small factor away from
capacity. Finally, Section VI presents concluding remarks.

II. PROBLEM SETTING & SUMMARY OF RESULTS

Consider a database comprising k records, each of which is
of size R bits. There are n storage nodes in the network across
which this database is to be (encoded and) stored. Each node
can store upto « bits of data. A user may wish to recover any
record z € [k] (for any positive integer A, [A] denotes the set
{1,...,A}). A private information retrieval (PIR) algorithm
is one which allows the user to retrieve the desired record
by downloading data from (a subset of) the m nodes in a
manner that no node can obtain any information regarding
which record z is being retrieved. The goal is to design erasure

856

2014 |IEEE International Symposium on Information Theory

node 1 Xq+Y1 Xo+Yo

CF
node 2| X;+Yo Xo+Yqi+Y,
node 3| X;+Y1+Y> XptY,

Fig. 1: An example of our capacity-achieving PIR algorithm and erasure code. Two records x = [z

If X needed:

41,92, 43 =
[01],[10],[11]

If y needed:

d1, 92, 93 =
[0 1],[0 1], [0 1]

9 A or or
ds [10],[11],[01] [10],[10],[10]

or or
[11],[01],[10] [11],[11],[11]

zo)and y = [y1 y2l,

each of size R = 2 bits, are stored across three (non-colluding) storage nodes. The code operates in the binary field, i.e.,
addition operations are XORs. One can verify that the code ensures no loss of data even if any one of the three nodes fail (and
the code is Maximum-Distance-Separable). Now, the user may wish to recover either of the two records x or y, but without
revealing which of these is being recovered. For each ¢ € {1,2, 3}, the user sends the 2-bit query g, to node ¢. The choice of
(a1, d2,qs3) depends on the identity of the record to be retrieved, and the choice among the multiple options (denoted as “or”
in the figure) is made uniformly at random. Each node ¢ returns an inner-product of its data with the received query q; (for

instance, if q; = [1

1] then node 1 returns (z1 + y1 + 2 + y2)). One can verify that the user can obtain the desired record

from the downloaded data. On the other hand, from the perspective of any node ¢, the likelihood of observing any value of q;
is identical across the two records, which prevents it from obtaining any information about the identity of the desired record.
The total amount of data downloaded in the PIR operation is (R 4+ 1) = 3 bits which is the minimum possible.

codes and PIR algorithms that minimize the amount of data
that the user has to download when performing PIR.

In this paper, we consider the information-theoretic notion
of PIR. We assume that the nodes do not collude. We also
assume that nodes are passive eavesdroppers, i.e., they do
not corrupt any data but may store and utilize any available
information. The queries for any PIR operation are allowed to
be static or adaptive, deterministic or random.

We define the storage overhead of the system as the ratio
of the total storage used in the system to the total size of all
the records: no

t head = —
storage overhea R

We say that the storage overhead is super-linear
if limp_,o storage overhead — oo, and linear if
limpg_, o storage overhead — ¢ for some finite constant
c. (Note that n and « may vary with R; k is fixed and
independent of R.)

The problem of PIR in erasure codes has several metrics of
possible interest such as the amount of download, query-size
and connectivity required for PIR, the storage-space occupied
and the reliability offered by the erasure code. While a grander
goal would be to establish the tradeoffs and relationships
among all of these metrics, this paper focuses on the metric
of amount of download required for PIR. With the goal of
establishing the capacity of PIR in terms of the download, we
ask the following question: if no constraints are imposed, then
what is the minimum possible worst-case download for PIR?
The answer is proved to be (R + 1) bits in this paper.

We show that any algorithm achieving the capacity must
incur a storage that is super-linear in R and a connectivity
(and hence number of nodes in the system) that is linear in
R. Moreover, the underlying erasure code may not have good
reliability properties. We then ask the question: if the storage
capacity is constrained to be linear in R, the number of nodes

to be independent of R, and if the erasure code must have
a ‘high’ reliability, then what can be achieved? To this end,
we design an explicit erasure code and PIR algorithm that
satisfies these constraints, with each node storing an amount
less than twice the size of a record and all the k records
being recoverable from any k nodes (ensuring reliability in
the presence of (n — k) arbitrary node-failures), and the PIR
algorithm entailing a download that is away from capacity by
a factor less than 4.

The extended version [14] of this paper on arXiv contains
additional results such as (a) capacity-characterization when
storage nodes can collude, (b) PIR algorithms for Maximum-
Distance-Separable (MDS) codes, (c) proof that achieving the
capacity necessitates a super-linear storage, and (d) implica-
tions of these results on locally decodable codes.

III. LOWER BOUNDS ON DOWNLOAD FOR PIR

Theorem 1: Suppose there are k > 3 records, each of size
R bits, stored using any arbitrary erasure code (including
replication). Then (a) any PIR algorithm must download at
least (R + 1) bits in the worst case. Any PIR algorithm that
downloads at most (R + 1) bits in the worst case must also
satisfy, for almost every PIR operation: (b) (R + 1) bits must
be downloaded, (c) the user must connect to at least (R + 1)
nodes. Furthermore, (d) the total amount of storage must be
super-linear in R.

Proof: For any function f, let us denote the cardinality
of its range as p(f) (€ {1,2,...}). For any collection of func-
tions f1, ..., fr, denote their Cartesian product as f1 X - - X fp.

We first prove part (a). To this end, consider any PIR
algorithm that downloads at most (R + 1) bits during PIR in
the worst case. Consider any one record, and for convenience,
term it the ‘first’ record. Now suppose the user contacts some
storage node (let us call it the ‘first’ node) in a PIR operation
for retrieving the first record. Suppose the PIR algorithm

857

2014 |IEEE International Symposium on Information Theory

asks the first node to pass some function f of its data.
Without loss of generality, assume that function f is not a
constant function, i.e., p(f) > 2. Further, let g; denote the
Cartesian product of the functions asked from all other nodes
in this instance of PIR. Upon receiving the values of these
functions, the user must be able to recover the first record.
Since each record is of R bits, these functions must satisfy

28 < p(f x g1) < p(f)p(g1).

Since the download of function f from the first node and
function g; from the remaining nodes cannot comprise more
than (R+1) bits in total, it must be that p(f)p(g1) < 25+1. In
order to ensure that the first node does not identify the record
being recovered, there must also be instances of retrieval of
records z € {2,...,k} in which function f is queried from
the first node. Let g, be the Cartesian product of the functions
downloaded from other nodes in such an instance of PIR of
record z € {2,...,k}. From arguments similar to those made
above for the first record, we get

2 > p(f)p(ge) > 27 vz e (K] .

Multiplying the left hand sides of this equation across all z €
[k], we get

2R > (p(f)p(g1) - plg) - (1

Now, since the functions f,¢g1,...,gr together suffice to
reconstruct all the k records, it must be that

25 < p(f x g1 x - x g2) < p(f)p(gr) -~ plgs) -
Along with (1) and our assumption of k > 3, this gives

p(f) <277 <2% <283 .

Thus, p(f) € {1, 2}, and since the function f is not a constant
function, it must be that p(f) = 2. Since the choice of the
“first’ node and the ‘first’ record was arbitrary, it follows that
any (non-constant) function queried from any node for PIR
must have a range with a cardinality exactly equal to 2. Note
that so far in the proof, we have allowed a download of upto
(R+ 1) bits for any instance of PIR.

Now consider retrieval of the first record, and suppose
the user queries some A nodes. Let (non-constant) functions

f1,-.-, fa be these respective queries. From the arguments
above, we must have that p(f;) =2 V ¢ € [A]. Thus we have
p(f1)p(f2) - p(fa) =25 . (2)

If A < R then p(f1)p(f2)---p(fa) < 2%, making it
impossible to guarantee retrieval of the record of R bits
from these functions. Suppose A = R. Then the amount of
download is precisely equal to the size of the required record,
and hence each of the functions f; must be functions of only
the first record (and must be independent of the values of all
other records). If such an event has a high likelihood under
the (possibly randomized) PIR algorithm, then it provides the
nodes non-zero information about the identity of the required
record: in this situation, if the nodes adopt a protocol of
identification as “if the function queried is a function of only
one record, then output that record as the required record, else
output a random record as the desired record,” then the nodes

will identify the required record correctly strictly more than %
of the time, i.e., strictly better than random guessing. It follows
that almost always we must have A > (R + 1), i.e., the user
must connect to (R+ 1) or more nodes and download at least
one bit from each of them. This amounts to a total download
of (R+ 1) or higher. This last argument also proves parts (b)
and (c).

The proof of (d) is available in the extended version [14]
of this paper on arXiv. []
Note that while Theorem 1 considers k£ > 3, the lower bound
of (R+1) bits also holds for k¥ = 2, R = 2 considered in
Fig. 1.

IV. CAPACITY ACHIEVING CODE AND PIR ALGORITHM

In this section, we present a simple explicit code and PIR
algorithm that achieves the lower bound of (R + 1) bits on
the download, thus establishing the capacity of PIR as (R+1)
with respect to the download. Fig. 1 depicts an example of
our capacity-achieving construction.

Theorem 1 mandates any capacity-achieving PIR algorithm
to have a storage that is super-linear in R; the storage
required by the code presented here is polynomial in R. The
code is linear and operates over the binary field (additions
and subtractions are XOR operations). The description below
assumes R to be an even number (the case when it is odd
requires a small modification and is described subsequently).

Encoding: We first introduce some notation. Let 1 denote
the all-ones column of length (R + 1). For i € [R], let u;
denote the ™ unit vector of length R. All vectors are column

vectors by default. Let ugy1 := Zf’zl u; = 1. Define an
((R+1) x R) matrix U as
U .= [111 uR+1]T.

Let P denote the set of the (R+1) cyclic permutation matrices
of size ((R+1) x (R+1)). Let P*~! denote the (k — 1)-fold
Cartesian product of P with itself. Observe that the set P*~!
has (R + 1)*~! elements. Denote these (R + 1)*~! elements
as (PQ(”, e ,P,E,l)) fori € [(R+1)*1], where each Pj(l) eP
is a cyclic permutation matrix of size ((R+ 1) x (R+1)).

Consider a system with n = (R4 1)¥~! nodes, each having
a storage space of o = R bits. For i € [k], define m; to be a
R-length binary vector comprising the i record. Let m be a
binary vector of length kR comprising all the records m” =
[mT m}]. Algorithm 1 now describes the encoding
procedure.

Algorithm 1 Encoding
For i€ [(R+1)k~1], define an (R+1)-length vector ¢V as

Oi=[v AU PPU POV m

Node i stores the first R bits of this vector ¢(?,

Observe that 17U is an all-zero vector. As a result,

R LA 1"PU| m
= [1"u 1"U 17U m (3)
=0 “)

858

2014 |IEEE International Symposium on Information Theory

where (3) is because the sum of all the rows of a cyclic
permutation matrix is an all ones vector. Now, (4) implies
that the (R + 1)™ bit of ¢c(*) is simply an XOR of the first R
bits. Thus, for the purposes of the PIR algorithm for retrieving
data, we can assume that each node ¢ equivalently “stores” the
entire vector ¢(¥),
The example of Fig. 1 has n = 3, R = 2, k = 2,
= 2, m = [x; 2 Y1 yQJT, U = [1001;1 1],
P“) [100:010;001], P =[010;001;100],
<3> =[001;100;010).
PIR Algorithm: Algorithm 2 describes our capacity-
achieving PIR algorithm. Note that the notation of Algorithm 2

Algorithm 2 Capacity-achieving PIR Algorithm

Query construction:

Let z€[k] denote the desired record.

Let {uy,...,up;;}*! denote the (k—1)-fold Cartesian
product of the set {uy, ..., ugs+1} with itself.

Choose the set of vectors {vi,...,V,_1,V.41,...,Vg} uni-
formly at random from {uy,...,ug1}*~* (each v; is of

length R).
Connect to (R+1) of the nodes that respectively store the
(R41) bits [v{ --- vI_jul vl --- v{]mfor je[R+1].

(By construction, such (R+1) nodes exist and are distinct.)
From each of these (R+1) nodes, ask for the respective bit

vi - vl u] vE, o vi]m for je[R+1].
Response of any node to whom user connects:
Upon receipt of a query for any data:

If the node possesses that data, then return it.

Decoding algorithm:
For j€[R+1], download the bits
Wij::[vlT R uf vl o viim.

For /€[R], compute (W? m_Zerll Wi m)

differs from Fig. 1 in that Algorithm 2 directly asks for a
specific bit, whereas Fig. 1 depicts an equivalent method of
asking a linear combination.

Theorem 2: The user can recover the desired record z € [k]
of R bits by downloading the (R + 1) bits as described in
Algorithm 2, and none of the nodes can obtain any information
about z from the queries.

Proof: Recall that ugy; = Zf;ﬂli and that R is
assumed to be an even number. As a result,

R+1
wam:[vf v 0 Vi, o vim .
i=1
It follows that for every ¢ € [R],
R+1
(w{m— Zw?m) =[0--0u/0 - 0)m=ulm, .
i=1

This gives the desired data.
To see privacy, consider any node who receives a query from

T T T T T
the user, say a query for [vy -+ v;_; uj v,y -+ vipm.

One can see that in Algorithm 2, for any value of z, the
probability of the node receiving this query is W. This
probability is independent of z. The probability of the node not
being queried is (1 — W , which is also independent
of z. Thus the node cannot obtain any information about the
value of z. []

When R is odd: Define ugy; := 25;2 u;. Apply the
same encoding and PIR query construction. In the decoding
algorithm, compute the bits wéTm - Zjﬂ; W m) which
will give the desired data.

Replicated storage: If all the records are stored in each of

= (R + 1) nodes, then Algorithm 2 can perform PIR by
downloading just (R + 1) bits by sending the (R + 1) queries
to these (R + 1) replicated nodes.

V. CODE AND PIR ALGORITHM WITH LINEAR STORAGE

As dictated by Theorem 1, the storage space used by the
capacity-achieving construction of Section IV is super-linear
in R and requires a connectivity (and hence the total query
size) to be linear or higher in R. This section presents an
explicit erasure code and PIR algorithm which has a linear
storage overhead, a high reliability, and are a small factor away
from capacity with respect to the download. The algorithm
is associated with an additional parameter A: the user can
perform PIR of any record by connecting to any arbitrary A
of the n nodes. We assume that A is even and A > 2k.

A. Data Encoding and Storage

The encoding is performed using the product-matrix frame-
work of [15]. First, choose p to be any number such that
p > ﬂog2 n]. Each record is split into chunks of w
bits each.! Each chunk is operated upon 1ndependently and
identically by the encoding and PIR algorithms. In what
follows, we thus consider only a single chunk of each record.

Each individual chunk of wp bits is represented as

w symbols in the finite field Fy».

Let ¥ be any (n X é) matrix? that satisfies (a) any % rows
are linearly independent, and (b) when restricted to the first k&
columns, every k rows are linearly independent. For instance,
one can choose ¥ to be a Vandermonde matrix. Denote the
it" row of W by 1)) . Now, construct a (5 x £) symmetric
matrix M, whose elements comprise all the symbols of all the
records, arranged in a specific manner as in [15, Section IV].

For i € [n], the £ symbols stored in node i are
Pi M .

This completes the encoding procedure.

The code ensures that the first £ nodes are systematic, i.e.,
the data stored in node i € [k] includes the i™ record in an
uncoded form [15, Section IV-B].

B. PIR Algorithm

Algorithm 3 describes the PIR protocol. This protocol
amalgamates the two-server PIR scheme of [5] with erasure
codes.

' Assume that (A — (k — 1)) is even. The case of (A — (k — 1)) being
odd can be handled easily via space sharing across two stripes.
ZRecall that A is even.

859

2014 |IEEE International Symposium on Information Theory

Algorithm 3 PIR under Codes with Linear Storage Overhead
Query construction:

Let z€[k] denote the desired record.

Choose an %-length vector r uniformly at random from F@/ 2,
Connect to some A arbitrary nodes.

Pass the vector r to any % of these nodes.

Pass the vector (r+1).) to the £ remaining nodes.

Response of any node h to whom user connects:

Receive a vector q from the user.

Return the inner product of the stored data ¢ZM with q, i.e.,
return @be q.

Decoding algorithm:

Download {wle'r,...,w{A/zMr} from the first set of

% nodes connected to, where hq,..

identities of these nodes.
Using the property that any % rows of the (nx %) matrix ¥
are linearly independent, obtain M.
T T
Download {#y,, ,. M(xr+.),...), M(r+i,)} from

., hay2 denote the

the remaining % nodes connected to, where
Rhn,sprs--->ha denote the identities of these nodes.

Using the property that any % rows of the (nx4) matrix ¥

are linearly independent, obtain M (r+1,). ’

Subtract the results of the previous steps to obtain M1p,.

The matrix M is symmetric, and hence this is the same as
having ’(/)ZM .

By construction, for any z€[k], the data ” M contains the
2™ record.

Theorem 3: For any z € [n], Algorithm 3 allows the user
can recover '(bZM , and none of the nodes can obtain any
information about the value of z.

Proof: As shown in the algorithm, the user recovers the
desired record at the end of the decoding procedure. We
now prove privacy. Any node contacted by the user receives
either the vector r or the vector (r + ¢,). Since r is chosen
independent of z, no information about z is revealed in the
former case. In case of the latter, since r is also chosen
uniformly at random from]F@D/ 2, no information about z or
1, can be obtained from (r -+,). Finally, since the choice of
the A nodes is arbitrary, this choice also does not reveal any
information. |

C. Analysis

Storage overhead: The code partitions each record of size
R bits into % chunks of Wp bits each. For
each chunk, each node stores %p bits, and hence each node
stores a total of o = Rﬁ bits. The only constraint on
the total number of nodes n is that n > 2A. Thus the number
of nodes required is independent of R and is linear in k. For
a fixed value of k, we can thus assume n to also be fixed. The
code thus has a linear storage overhead:

A n
A-(k-1)k

In particular, when n = A = 2k, storage overhead is < 4.

storage overhead =

&)

Download during PIR: PIR entails a download of pA bits
per chunk, and hence a total download of

download = 2R <4R (6)

A
A—(k—-1)
bits. This is a factor at most 4 away from capacity.

Reliability of the erasure code: Under this erasure code,
the entire database can be recovered from any k of the n
nodes [15, Theorem 3]. This gives the storage system an ability
to tolerate the failure of any (n — k) storage nodes without
losing any data, thereby guaranteeing a high level of reliability.

VI. CONCLUSIONS AND OPEN PROBLEMS

The topic of private information retrieval (PIR) has been
fairly well explored in the literature on theoretical com-
puter science and cryptography. However, to the best of our
knowledge, all the previous works assume a replication-based
setting. This paper considers PIR when data is stored using
erasure codes (replication is a special case), establishing ca-
pacity with respect to the metric of download and constructing
explicit codes and PIR algorithms. Optimizing other metrics
remain open for PIR in the erasure-coded setting. For instance,
the capacity-achieving example of Fig. 1 has maximum reli-
ability (it is maximum-distance-separable) whereas the code
of Section IV does not provide any reliability guarantees. It
remains open as to what is the best possible reliability that a
capacity-achieving erasure code can provide. Furthermore, it
is still unclear whether erasure codes are better or worse for
PIR than replication-based storage systems, and deriving an
apples-to-apples comparison remains open.

REFERENCES

[1] R. Henry, F. Olumofin, and I. Goldberg, “Practical PIR for electronic
commerce,” in ACM conf. on Computer and comm. security, 2011.

[2] G. Fanti, M. Finiasz, and K. Ramchandran, “One-way private media
search on public databases: The role of signal processing,” IEEE Signal
Processing Magazine, 2013.

[3] “Stealth Software Inc. http://www.stealthsoftwareinc.com/.”

[4] S. Yekhanin, “Private information retrieval,” Comm. of the ACM, 2010.

[5] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-
tion retrieval,” Journal of the ACM, 1998.

[6] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private informa-
tion retrieval,” in Proc. FOCS, 1995.

[7]1 A. Ambainis, “Upper bound on the communication complexity of private
information retrieval,” Automata, Languages and Programming, 1997.

[8] Y. Gertner, S. Goldwasser, and T. Malkin, “A random server model for
private information retrieval,” Rand. and Approx. Tech. in CS, 1998.

[9]1 A. Beimel, Y. Ishai, E. Kushilevitz, and J. Raymond, “Breaking the

O(n'/(2k=1)) barrier for information-theoretic private information

retrieval,” in FOCS, 2002.

D. Ford et al., “Availability in globally distributed storage systems,” in

USENIX OSDI, 2010.

“HDFS-RAID. http://wiki.apache.org/hadoop/HDFS-RAID.”

K. V. Rashmi et al., “A solution to the network challenges of data

recovery in erasure-coded distributed storage systems: A study on the

Facebook warehouse cluster,” in Proc. USENIX HotStorage, Jun. 2013.

S. Hasan, Y. Ben-David, G. Fanti, E. Brewer, and S. Shenker, “Building

dissent networks: Towards effective countermeasures against large-scale

communications blackouts,” in FOCI, 2013.

N. B. Shah, K. V. Rashmi, and K. Ramchandran, “One extra bit

of download ensures perfectly private information retrieval,” 2014.

[Online]. Available: arXiv

K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating

codes for the MSR and MBR points via a product-matrix construction,”

IEEE Trans. Inf. Th., Aug. 2011.

[10]
[11]
[12]
[13]

[14]

[15]

860

