
A Flexible Class of Regenerating Codes for
Distributed Storage

Nihar B. Shah, K. V. Rashmi, P. Vijay Kumar

Dept. of ECE, Indian Institute Of Science, Bangalore.

{nihar, rashmikv, vijay}@ece.iisc.ernet.in

Abstract—In the distributed storage setting introduced by
Dimakis et al., B units of data are stored across n nodes in
the network in such a way that the data can be recovered by
connecting to any k nodes. Additionally one can repair a failed
node by connecting to any d nodes while downloading at most
β units of data from each node.

In this paper, we introduce a flexible framework in which the
data can be recovered by connecting to any number of nodes
as long as the total amount of data downloaded is at least B.
Similarly, regeneration of a failed node is possible if the new node
connects to the network using links whose individual capacity
is bounded above by βmax and whose sum capacity equals or
exceeds a predetermined parameter γ. In this flexible setting, we
obtain the cut-set lower bound on the repair bandwidth along
with a constructive proof for the existence of codes meeting
this bound for all values of the parameters. An explicit code
construction is provided which is optimal in certain parameter
regimes.

I. INTRODUCTION

Erasure codes like Reed Solomon (RS) codes can be used

in distributed storage systems to provide resilience towards in-

dividual node failures while minimizing the storage overhead.

Let the total data to be stored be of size B symbols over a

finite field Fq of size q. Let n be the total number of nodes

in the system each having a capacity to store α symbols. It is

required that an end-user i.e a data collector (DC) be able to

recover all the data by connecting to a subset of the nodes. This

operation is termed reconstruction. Upon failure of a node, a

self-sustaining data storage system must posses the ability to

repair the failed node by downloading data from other existing

nodes. This operation is termed regeneration and the amount

of data download is termed repair bandwidth. RS codes require

the entire data to be downloaded to repair a failed node. Since

each node stores only a part of the total data, downloading

B symbols to repair a failed node is wasteful and raises the

question as to whether there is a better option. Such an option

is provided by regenerating codes introduced by Dimakis et al.

[1], [2]. The authors consider a setting where a DC can connect

to any k nodes and download the α data symbols stored in

each of them for reconstruction. On failure of a node, the

new node connects to any d nodes and downloads exactly β
symbols from each of them. The authors move on to obtain a

cut-set based lower bound for the repair bandwidth. The work

in this paper draws inspiration from the tools used in [1], [2].

Other works in the past, including [5]–[7], [9] obtain schemes

and explicit codes for such a system setup.

Fig. 1. An example of flexible regeneration where the DC connects to
different storage nodes via different types of networks, and hence would like
to download the amount of data from a node that is proportional to its link
speed μi to that node.

In a practical scenario, the storage nodes may be spread

out geographically, say over the internet, and may have routes

of different capacities between them. The assumption in the

original setup, of the DC connecting to only k nodes and a

new node connecting to only d nodes with downloading β
symbols from each is very restrictive in nature. It is desirable

to enable the DC or the new node to make use of parallel

downloads according to the availability of other storage nodes

in its vicinity and this can greatly reduce the total download

time [3], [4]. Also, the links from the DC or the new node to

other nodes may not be symmetric in general; some links may

have higher capacities (or lower RTTs) than the other links at

a given instant depending on the topology of the network and

the prevailing traffic in different parts of the network. This is

illustrated in Figure 1. Hence, freedom to download different

amounts of data from the different nodes helps in reducing the

net download time and traffic congestion. Such a system will

also be highly conducive for load-balancing across the nodes

in the network.

In this paper, we introduce a framework for flexible dis-

tributed storage systems and obtain a lower bound on the

repair bandwidth for such systems. We call codes achieving

this lower bound as Flexible Regenerating Codes. We also

provide an explicit code construction of flexible regenerating

codes for certain parameter regimes.

The rest of the paper is organized a follows. A formal

description of flexible regenerating codes is given in Section

II. A lower bound on the total amount of download required

to regenerate a failed node is derived in Section III. A

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

1943978-1-4244-7892-7/10/$26.00 ©2010 IEEE ISIT 2010

constructive proof for existence of linear codes which achieve

the lower bound for all values of the system parameters is

provided in Section IV. In Section V explicit code construction

is described with the help of an example.

II. FLEXIBLE REGENERATING CODES

In this section, we introduce a flexible framework for

distributed storage systems. Data is stored in a distributed

manner across n storage nodes, each having a capacity to store

α symbols. A DC downloads μ1, . . . , μn symbols from nodes

1, . . . , n respectively. The DC should be able to recover back

the entire data for any choice of μi, i = 1, . . . , n satisfying

n∑
i=1

μi ≥ B, 0 ≤ μi ≤ α . (1)

We call this Flexible Reconstruction.

Compared to the original setup of regenerating codes, where

the DC is restricted to connect to k nodes, this framework

provides a great deal of flexibility to the DC to choose the

link capacities with which it wants to connect to each of the

nodes. This choice could be based on the network conditions

at that instant, and the DC can even possibly connect to all

the n nodes.

When a storage node � fails, it is replaced by a new

node which downloads βi symbols from node i, ∀ i =
1, . . . , n, i �= � as long as

n∑
i=1 (i �=�)

βi ≥ γ, 0 ≤ βi ≤ βmax (2)

for some value γ, the repair bandwidth. Here βmax is a

constant satisfying

0 ≤ βmax ≤ α . (3)

The new node along with the existing nodes should satisfy

the flexible reconstruction property and should be able to

participate in the regeneration of any other failed node in the

future.

The parameter βmax puts a cap on the maximum amount of

data that the new node can download from an existing node.

The most general setting would be to allow the new node to

download any amount of data from the existing nodes, i.e.,

choosing βmax = α. However, as it will be shown in Section

III-C, this is not a wise choice and it results in new node

having to download the entire file.

Again, in this flexible framework, the new node has the

freedom to choose the link capacities to each node. Unlike

in the original regenerating code setup, the new node is not

constrained to download equal amounts of data from each node

it connects to, and can download non-uniformly depending

on the prevailing network conditions. We term this Flexible
Regeneration.

Any code satisfying the flexible reconstruction and flexible

regeneration properties is called a Flexible Regenerating Code.

Note that for any storage system to be feasible, we need

α ≥ B
n . We assume throughout that this condition is satisfied.

We also assume that all system parameters are non-negative

integers.

III. LOWER BOUND ON THE REPAIR BANDWIDTH

A. Information Flow Network

In this section we provide a lower bound on the repair

bandwidth required to maintain a flexible distributed storage

system. As in [1], we model the distributed storage system as

an information flow network. In such a network, each storage

node is modeled in the form of two nodes - an in node and

an out node and a link of capacity α connecting the two.

This captures the constraint that each node can store only α
symbols. Figure 2 gives an example of such a network where

S is the source producing data at the rate of B symbols per

unit time (the data file). The source connects to the n nodes

with links having capacities of α symbols each.

On failure of a storage node, say node �, it is replaced by a

new node by connecting nodes out(j), j ∈ {1, . . . , n}, j �= �,

to in(�), with links of capacities βj , satisfying equation (2).

Thus the network evolves through an infinite chain of failures

and regenerations. For every instantiation of the network, there

can be a different sequence of failures and regenerations with

different sets of {βj} for each regeneration, and all these

instantiations have to be satisfied by a flexible regenerating

code.

For reconstruction, at any stage of the network evolution,

a DC (sink) can connect to the n existing nodes. This is

represented by links of capacities μj from the out nodes

j (= 1, . . . , n) to the sink, satisfying equation (1). Each DC

can connect to the storage nodes with a different set of {μj}.

A lower bound on the repair bandwidth is obtained by

bounding the maximum flow in this network.

B. Set of Cuts

We now demonstrate a set of cuts which give an upper

bound on the flow B, and equivalently a lower bound on the

total repair bandwidth γ. Any cut C partitions the set of nodes

V in the network into VC and V c
C where S ∈ VC and DC ∈

V c
C .

Consider the set of cuts where V c
C contains only the DC

along with the out parts of some r of the n existing storage

nodes. Since the network considered is a directed acyclic

graph, nodes in the network can be topologically ordered, as

illustrated in Figure 2.

Consider the first storage node in V c
C in the topological

ordering. Call it node Λ1. Since out(Λ1) ∈ V c
C , the cut crosses

either the α capacity link between in(Λ1) and out(Λ1) or the

set of links with total capacity γ entering in(Λ1). We take the

cut across the minimum of the two contributing min (α, γ) to

the value of the cut.

Consider the next storage node in V c
C in the topological

ordering and call it node Λ2. To decrease the value of the cut,

we assume that there is a link of value βmax from out(Λ1) to

in(Λ2) which will not be a part of the cut. Again, the cut will

cross either the α capacity link between in(Λ2) and out(Λ2)
or the set of links with total capacity (γ − βmax)+ entering

in(Λ2) from nodes in VC . Again, we take the cut across the

minimum of the two contributing min (α, (γ − βmax)+) to the

value of the cut.

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

1944

Fig. 2. An information flow network. The cut separates the source from a particular DC. The edges marked in red are the edges crossing the cut.

In general, node Λj , 1 ≤ j ≤ r in V c
C has links with

capacities βmax each from out(Λi), i = 1, . . . , j − 1 which

will not be a part of the cut. Hence we take the cut across α
or (γ − (j − 1)βmax)+, whichever is less. The DC connects

to these r nodes and downloads α symbols each. The rest

(B − rα)+ needs to come from nodes in VC , and hence will

be a part of the cut. Thus the value of the cut is

r−1∑
j=0

min (α, (γ − jβmax)+) + (B − rα)+ (4)

The file size B has to be smaller than any cut and hence

B ≤ min
0≤r≤n

⎧⎨
⎩

r−1∑
j=0

min (α, (γ − jβmax)+) + (B − rα)+

⎫⎬
⎭ (5)

Lemma 1: A cut-set lower bound on the repair bandwidth

γ is given by

γ ≥ max(α − βmax, B mod α) + sβmax (6)

Proof:
Define s = �B/α�. (7)

For r = s, the equation (5) reduces to

B ≤
s−1∑
j=0

min (α, (γ − jβmax)+) + (B − sα) (8)

sα ≤
s−1∑
j=0

min (α, (γ − jβmax)+) (9)

≤ sα (10)

Thus, (γ − jβmax)+ ≥ α ∀ j ∈ {0, . . . , s − 1} (11)

which gives a lower bound on the repair bandwidth as

γ ≥ α + (s − 1)βmax (12)

For r = s + 1, equation (5) gives

B ≤
s∑

j=0

min (α, (γ − jβmax)+) (13)

= sα + min (α, (γ − sβmax)+) (14)

where (14) is due to (12). This evaluates to

γ ≥ B − sα + sβmax (15)

Combining (12) and (15) we get

γ ≥ max(α − βmax, B mod α) + sβmax. (16)

C. Complete Flexibility (βmax = α) ?

An obvious question in the flexible framework is, how much

can we optimize the repair bandwidth if we give complete

freedom to the new node replacing a failed node, i.e. allowing

βmax = α. The answer to this is obtained by substituting

βmax = α in equation (16). This gives γ ≥ B, i.e., the repair

bandwidth is equal to the size of the entire file.

IV. ACHIEVABILITY

In this section, we prove the existence of a linear flexible

regenerating code which meets the lower bound on the repair

bandwidth given by Lemma 1. We prove the existence of a

linear code where any DC connecting to node i with a link of

capacity μi, ∀i = 1, . . . , n with

n∑
i=1

μi = B, 0 ≤ μi ≤ α (17)

can recover the data, and any failed node � can be regenerated

by downloading βi symbols from node i (i = 1, . . . , n, i �= �)
with

n∑
i=1 (i �=�)

βi = γ, 0 ≤ βi ≤ βmax (18)

where γ meets the lower bound on the repair bandwidth given

by Lemma 1. Then, it is clear that any DC with
∑n

i=1 μi > B
can recover the data, and any failed node with

∑n
i=1 (i �=�) βi >

γ can be regenerated.

Define a vector f of length B, consisting of the source

symbols. Each source symbol can independently take values

from Fq, a finite field of size q. Any stored symbol is written

as utf for some B-length vector u which corresponds to the

global kernel of this stored symbol. These global kernels for

the stored symbols define the code, and the actual symbols

stored depend on the instantiation of f . Since a node stores

α symbols, it can be considered as storing α vectors of the

code, and hence can be represented by a α × B matrix. We

will say that the node stores this matrix.

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

1945

Lemma 2: For any set of μi, i = 1, . . . , n and βi, i =
2, . . . , n satisfying the conditions in equations (17) and (18)

with � = 1,
n∑

i=2

min(α, μi + βi) ≥ B (19)

Proof (Sketch): It can be shown that the given term at-

tains its minimum when μi(i = 1, . . . , n) and βi(i = 2, . . . , n)
have the most skewed distribution, i.e. μi = α for i = 1, . . . , s,

μs+1 = B mod α and μi = 0 elsewhere; βi = βmax for

i = 2, . . . ,
⌊

γ
βmax

⌋
, βi = γ mod βmax for i =

⌊
γ

βmax

⌋
+1,

and zeros elsewhere. For these values of μi and βi, using the

conditions given by equations (17) and (18), it can be shown

that, this term is lower bounded by B.

The following Lemmas show that given a system which can

achieve flexible reconstruction at a particular stage, then upon

failure of a node, it can be regenerated such that the system

retains the flexible reconstruction property.

Lemma 3: Suppose flexible reconstruction is satisfied for

all DCs in the present stage. Suppose node � fails and is

replaced by a new node. Given a particular DC, in the next

stage, i.e. after � is regenerated, connecting to node i with

a link of capacity μi, ∀i = 1, . . . , n, satisfying constraints

given in equation (17), the new node can download βi symbols

from node i (i = 1, . . . , n, i �= �) satisfying the constraints

given in (18) and store α symbols such that this DC is satisfied.

Proof: The main idea is to show that the given DC (after

regeneration of node �) is equivalent to some DC connecting

to the nodes in the present stage (before failure of node �),

satisfying (17). As flexible reconstruction is satisfied for all

DCs in the present stage, this would imply that the given DC

will also be satisfied. Without loss of generality assume that

the first node fails and is regenerated i.e. � = 1.

Since μi and βi satisfy the conditions of Lemma 2,

n∑
i=2

min(α, μi + βi) ≥ B . (20)

Now, reduce the values of βi to β′
i, ∀i = 2, . . . , n such that

equality is attained above, i.e.

n∑
i=2

min(α, μi + β′
i) = B (21)

Thus we have β′
i point-wise lesser than βi

0 ≤ β′
i ≤ βi ∀i = 2, . . . , n (22)

Consider a virtual DC in the present stage connecting to node

i with links of capacity μ̃i, ∀i = 2, . . . , n given by

μ̃i =
{

0 i = 1
min(α, μi + β′

i) i = 2, . . . , n
(23)

This is a valid DC since 0 ≤ μ̃i ≤ α ∀i and

n∑
i=1

μ̃i =
n∑

i=2

min(α, μi + β′
i) = B (24)

Consider each node passing μi out of the μ̃i symbols

directly to the DC and the remaining (μ̃i−μi) symbols via the

new node. In the real scenario, this means that the new node

downloads the (μ̃i − μi) symbols which are flowing through

the new node in the virtual case, from each existing node i.
This is a valid regeneration process since for all i = 2, . . . , n,

(μ̃i − μi) = min(α, μi + β′
i) − μi (25)

≤ β′
i (26)

≤ βi (27)

Also, the number of symbols downloaded by the virtual DC

through the new node is

n∑
i=2

(μ̃i − μi) =
n∑

i=2

μ̃i −
n∑

i=2

μi (28)

= B − (B − μ1) (29)

= μ1 (30)

Thus the given DC becomes equivalent to the virtual DC. Since

flexible reconstruction is satisfied for any DC in the present

stage, the virtual DC can recover all the data. This implies

that the given DC can also recover all the data.

Lemma 4: Suppose flexible reconstruction is satisfied for

all DCs at the present stage. Suppose node � fails and is

replaced by a new node. The new node can download βi

symbols from node i (i = 1, . . . , n, i �= �) satisfying the

constraints given in (18) and store α symbols such that all

DCs satisfying (17) are simultaneously satisfied, provided the

field size is large enough.

Proof: Without loss of generality assume � = 1. Let

G(1), · · · ,G(n) be the node matrices at the present stage

where flexible reconstruction is satisfied for all DCs. Let G̃(1)

be the matrix stored in the new node replacing node 1.

The new node downloads βi symbols from node i (i =
2, . . . , n) and stores α linear combinations of the symbols

downloaded. Thus,

G̃(1) = Z

⎡
⎢⎢⎢⎣
V(2)G(2)

V(3)G(3)

...

V(n)G(n)

⎤
⎥⎥⎥⎦ (31)

where V(i) is βi × α matrix representing the linear combina-

tions used by node i to compute the βi symbols that it passes

to the new node. Z is α × γ matrix representing the linear

transformation that the new node performs on the downloaded

symbols to compute the α symbols that it stores.

Consider a DC Δ connecting to the nodes (after regenera-

tion of node 1) with link capacities satisfying equation (17).

Every node i uses a μi ×B matrix U(i)
Δ to compute the linear

combinations to be passed to this DC. Thus, for the DC to be

able to recover the data, we need

PΔ = det

⎡
⎢⎢⎢⎢⎣

U(1)
Δ G̃(1)

U(2)
Δ G(2)

...

U(n)
Δ G(n)

⎤
⎥⎥⎥⎥⎦ �= 0 (32)

The above determinant can also be viewed as a polynomial

PΔ in Fq with entries of the matrices U(i)
Δ (i = 1, . . . , n),

V(i)(i = 2, . . . , n) and Z as variables. By Lemma 3 we know

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

1946

that the DC Δ can be satisfied, i.e. there exist values of the

variables such that the above determinant is non-zero. Thus

the polynomial in (32) is a non-zero polynomial.

For all DCs to be satisfied simultaneously, we need∏
Δ:over all DCs

PΔ �= 0 (33)

This product is itself a polynomial with variables being entries

of the matrices U(i)
Δ (i = 1, . . . , n, all DCs Δ), V(i) (i =

2, . . . , n) and Z. Since each polynomial in this product is

non-zero, the product polynomial is also non-zero. Hence, the

Schwartz-Zippel Lemma implies that there is an assignment

to variables such that equation (33) is satisfied, provided the

field size is large enough.

Theorem 5 (Existence of Flexible Regenerating Codes):
Given any set of system parameters (n, B, α, βmax), there

exists a linear flexible regenerating code satisfying the lower

bound on the repair bandwidth γ provided that the size of the

finite field is large enough.

Proof: The proof is by induction. Initialize the nα sym-

bols in the nodes with an [nα,B]-MDS code. This clearly

satisfies the flexible reconstruction property. Lemma 4 implies

that when a node fails, it can be regenerated such that flexible

reconstruction property is retained. Hence the code maintains

flexible reconstruction property after any number of node

regenerations if the field size is large enough.

Comparison of the bound with the original regenerating
codes setup: For the parameters corresponding to the MSR

point in the original setup, the repair bandwidths required are

identical. Otherwise, the repair bandwidth for the flexible case

is higher, since a system performing flexible reconstruction

(regeneration) can also perform the original reconstruction

(regeneration). Details are omitted due to lack of space.

V. AN EXPLICIT CODE

In this section, we provide an explicit construction for flex-

ible regenerating codes, which draws ideas from our previous

work in [8]. Due to lack of space, only an example is provided

which illustrates all the key features of the explicit code.

Consider the parameters n = 6, α = 4, βmax = 2, B = 12.

This gives s = 3 and a lower bound on the repair bandwidth

as γ ≥ 8. Divide the B = 12 data symbols into α = 4 sets,

represented by the vectors f
1
, g

1
, f

2
and g

2
, each of length 3.

Let v(i) (i = 1, . . . , 6) be 6 vectors of length s = 3, forming

an 3-dimensional MDS code over Fq. Also, for i = 1, . . . , 6
let z

(i)
1 and z

(i)
2 be arbitrary vectors of length 3.

Code: Node i, (i = 1, . . . , 6) stores the following 4
symbols, one symbol corresponding to each of the 4 sets:

Vector (set) Symbol stored

f
1

f t

1
v(i)

g
1

gt
1
v(i) + f t

1
z
(i)
1

f
2

f t

2
v(i)

g
2

gt
2
v(i) + f t

2
z
(i)
2

Flexible Reconstruction: Suppose a DC connects to the 6
nodes with link capacities μ = [3, 1, 1, 1, 2, 4]. DC needs 3
symbols from each of the 4 sets. Consider node i passing μi

symbols corresponding to the sets

⎛
⎝i−1∑

j=1

μj + 1 to

i−1∑
j=1

μj + μi

⎞
⎠ mod B .

In the e.g., the symbols passed by the nodes to the DC are
Node Symbols passed

1 f t

1
v(1), gt

1
v(1) + f t

1
z
(1)
1 , f t

2
v(1)

2 gt
2
v(2) + f t

2
z
(2)
2

3 f t

1
v(3)

4 gt
1
v(4) + f t

1
z
(4)
1

5 f t

2
v(5), gt

2
v(5) + f t

2
z
(5)
2

6 f t

1
v(6), gt

1
v(6) + f t

1
z
(6)
1 , f t

2
v(6), gt

2
v(6) + f t

2
z
(6)
2

The DC can use these symbols to decode f
1

and f
2
, subtract

out the terms f t

j
z
(i)
j from the other symbols, and then decode

g
1

and g
2
.

Flexible Regeneration: Suppose node 1 fails. The new node

replacing it can download at most βmax = 2 symbols from

any existing node, while downloading γ = 8 symbols in total.

Hence, it can obtain 4 symbols which are linear combinations

of f
1

and g
1
, and the remaining 4 as linear combinations of f

2
and g

2
. The existing nodes can pass these linear combinations

in such a way that the first 4 symbols can be combined to

obtain f t

1
v(1) and gt

1
v(1)+f t

1
z̃
(1)
1 , and the remaining 4 symbols

can be combined to obtain f t

2
v(1) and gt

2
v(1) + f t

2
z̃
(1)
2 . Here

z̃
(1)
1 and z̃

(1)
2 are not constrained to be equal to z

(1)
2 and z

(1)
2

since flexible reconstruction and regeneration operations are

carried out irrespective of the values of these vectors.
Repair Bandwidth: The general form of this code can

perform flexible reconstruction and flexible regeneration for

any set of parameters (n, B, α, βmax) provided βmax ≤ 	α/2
.

The repair bandwidth for this code is given by

γ = (s + 1)
⌊α

2

⌋
+ s(αmod 2) (34)

This meets the cut-set bound for the repair bandwidth when

we allow maximum flexibility for regeneration, i.e. the code is

optimal for any (n, B, α, βmax = 	α
2
) when B is a multiple

of α.
REFERENCES

[1] A. G. Dimakis, P. B. Godfrey, M. J. Wainwright and K. Ramchandran,
“Network Coding for Distributed Storage Systems,” in Proc. INFOCOM,
Anchorage, Alaska, May 2007.

[2] Y. Wu, A. G. Dimakis and K. Ramchandran, “Deterministic Regener-
ating codes for distributed storage,” in Proc. Allerton Conf., Urbana-
Champaign, September 2007.

[3] P. Rodriguez and E. W. Biersack, “Dynamic parallel access to replicated
content in the internet,” IEEE/ACM Transactions on Networking, v. 10,
p. 455-465, Aug 2002.

[4] Z. Xu, L. Xianliang, H. Mengshu and Z. Chuan, “A speed-based adap-
tive dynamic parallel downloading technique,” ACM SIGOPS Operating
Systems Review, v. 10, p. 63-69, Jan. 2005.

[5] Y. Wu and A. Dimakis, Reducing repair traffic for erasure coding-based
storage via interference alignment, in Proc. ISIT, Seoul, Korea, July 2009.

[6] K. V. Rashmi, N. B. Shah, P. V. Kumar and K. Ramchandran, “Explicit
construction of optimal exact regenerating codes for distributed storage,”
in Proc. Allerton Conf., Urbana-Champaign, Sep. 2009.

[7] —–,“Explicit codes minimizing repair bandwidth for distributed storage,”
in Proc. Information Theory Workshop,, Cairo, January 2010.

[8] —–, “Explicit Codes Uniformly Reducing Repair Bandwidth in Dis-
tributed Storage,” in Proc. NCC, Chennai, India, Jan. 2010.

[9] D. Cullina, A. G. Dimakis and T. Ho, “Searching for Minimum Storage
Regenerating Codes,” in Proc. Allerton Conf., Urbana-Champaign, Sep.
2009.

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

1947

