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Plan for Part 4
Big ideas for bigger, structured neural models

a. Convolutional models

b. Recurrent models

c. Gated and residual connections

d. Attention

e. Final thoughts



4a. Vision: Convolutional models

• For computer vision, a key property that we 
usually wish to capture is translation 
invariance

• We would like to have visual “feature 
detectors” that find something in an image 
regardless of precisely where it is located

• We do this with a convolutional layer

[Slides from Karpathy/Johnson/Yeung/Fei-Fei, cs231n.stanford.edu]



Motivating a Convolution Layer
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Could stretch to 3072 x 1 and use an FC layer



Convolution Layer
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5x5x3 filter

32x32x3 image

Convolve a filter with the image
i.e. “slide over the image 
spatially, computing dot 
products”

Filters always extend the 
full depth of the input 
volume

[Slides from Karpathy/Johnson/Yeung/Fei-Fei, cs231n.stanford.edu



Convolution Layer
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1 number: 
the result of taking a dot product between 
the filter and a small 5x5x3 chunk of the 
image
(i.e. 5*5*3 = 75-dimensional dot product + 
bias)



Convolution Layer
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Do it for multiple filters

We now have a new 28x28x4 “image”



Pooling layer
• Allows convolutional features with a broader view 

without a lot of parameters
• Can make representations more manageable
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Pooling layer
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A (Very Simple) Modern ConvNet
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ConvNet Representation Learning
• At the beginning of the 

ConvNet, features are edge
and color/texture detectors

• High in the ConvNet, 
features detect parts and 
object types



4b. Language: Recurrent models

• Until now, we’ve dealt with 
classifying/generating fixed-size objects.
• We just resized images to our procrustean bed!

• How can we deal with variable-size inputs, such
as the word sequences in human language text 
or bioinformatic gene sequences?

• We do this with a recurrent layer



Recurrent Neural Networks (RNN)

hidden states 

input 
sequence (any 

length)

…

…

…

Core idea: Apply 
the same weights

repeatedly
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outputs 
(optional)

Read, update, predict



Inputs
i. Current word 
ii. Previous state

Parameters
i. Input weight matrix
ii. Transition weight matrix
iii. Bias vector

Example: a Recurrent “Language 
Model” that generates sentences
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Transition Function

ht�1 2 Rd

W 2 R|V |⇥d

U 2 Rd⇥d

b 2 Rd

ht = f(ht�1, xt)

xt 2 {1, 2, . . . , |V |}



Naïve Transition Function

Building a Recurrent Language Model
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Transition Function

Trainable word vector

Element-wise nonlinear 
transformation Linear transformation of

previous state

ht = f(ht�1, xt)

f(ht�1, xt) = tanh(W [xt] + Uht�1 + b)



Inputs
i. Current state

Parameters
i. Softmax matrix
ii. Bias vector

Building a Recurrent Language Model
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ht 2 Rd

R 2 R|V |⇥d

c 2 R|V |

Prediction Function p(xt+1 = w|xt) = gw(ht)



p(xt+1 = w|xt) = gw(ht) =
exp(R [w]> ht + cw)

P|V |
i=1 exp(R [i]> ht + ci)

Building a Recurrent Language Model
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Exponentiate

Compatibility between 
trainable word vector 
and hidden state

Normalize

Prediction Function p(xt+1 = w|xt) = gw(ht)

This gives a probability 
distribution over next words. 
To generate text we take max. 
prob. word (or sample a word), 
and then use what we generated 
as the input at the next time
step



Learned word representations show 
words’ semantic similarity
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Die       Proteste    waren am  Wochenende eskaliert <EOS>     The      protests   escalated   over        the     weekend
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The      protests  escalated    over         the      weekend   <EOS>

Neural Machine Translation
Source sentence is mapped to vector, then output sentence 
generated [Sutskever et al. 2014, Bahdanau et al. 2014, 
Luong and Manning 2016]

Encoder:
Builds up 
sentence 
meaning 

Source 
sentence

Translation 
generated

Feeding in 
last word

Decoder

2017+: Almost every company is now using Neural 
MT in production, at least for many language pairs



@ log p(xt+n|x<t+n)

@ht
=

@ log p(xt+n|x<t+n)

@g

@g

@ht+n

@ht+n

@ht+n�1
· · · @ht+1

@ht

2018-07-2820

Intuitively, what happens with RNNs?

1. Measure the influence of the past on the future

2. How does the perturbation at   affect                     ?

xt

p(xt+n|x<t+n)

✏

?
t

4c. Gated Units
Fixing Backpropagation through Time



2018-07-2921

Problem: Often get a vanishing gradient which is super-problematic

• With the naïve transition function

• The temporal derivative is 

• When we only observe

• We cannot tell whether there is
1. No dependency between t and t+N in data, or
2. Small weights (leading eigenvalue < 1) → gradient vanishes

����
@ht+N

@ht

���� =

�����

NY

n=1

U>diag

✓
@ tanh(at+n)

@at+n

◆����� ! 0

Backpropagation through Time

f(ht�1, xt) = tanh(W [xt] + Uht�1 + b)

@ht+1

@ht
= U> @ tanh(a)

@a



2018-07-2822

• With a simple recurrent model, the error must 
backpropagate through all the intermediate nodes:

• Perhaps we can create shortcut connections

Gated Recurrent Unit



• Perhaps we can create adaptive shortcut connections

• Candidate Update 
• Update gate 

23

Gated Recurrent Unit

ut = �(Wu [xt] + Uuht�1 + bu)
h̃t = tanh(W [xt] + Uht�1 + b)

�: element-wise multiplication



2018-07-2824

• Let the net prune unnecessary connections adaptively

• Candidate Update 
• Reset gate
• Update gate  

Gated Recurrent Unit

h̃t = tanh(W [xt] + U(rt � ht�1) + b)

rt = �(Wr [xt] + Urht�1 + br)
ut = �(Wu [xt] + Uuht�1 + bu)



2018-07-2825

tanh-RNN ….

Execution
Registers

1. Read the whole register

h

2. Update the whole register 

h

h tanh(W [x] + Uh+ b)

Gated Recurrent Unit



2018-07-2826

GRU …

Execution
Registers

1. Select a readable subset

h

r
r � h2. Read the subset

3. Select a writable subset u
4. Update the subset

h u� h̃+ (1� ut)� h

Gated recurrent units are much more realistic!

Gated Recurrent Unit



Gated Recurrent Unit
[Cho et al., EMNLP2014; 
Chung, Gulcehre, Cho, Bengio, DLUFL2014]

Long Short-Term Memory 
[Hochreiter & Schmidhuber, NC1999; 
Gers, Thesis2001]
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Gated Recurrent Units

ht = ut � h̃t + (1� ut)� ht�1

h̃ = tanh(W [xt] + U(rt � ht�1) + b)

ut = �(Wu [xt] + Uuht�1 + bu)

rt = �(Wr [xt] + Urht�1 + br)

ht = ot � tanh(ct)

ct = ft � ct�1 + it � c̃t

c̃t = tanh(Wc [xt] + Ucht�1 + bc)

ot = �(Wo [xt] + Uoht�1 + bo)

it = �(Wi [xt] + Uiht�1 + bi)

ft = �(Wf [xt] + Ufht�1 + bf )

Two most widely used gated recurrent units

h̃t = tanh(W [xt] + U(rt � ht�1) + b)

In many ways similar, but the LSTM is actually more powerful: Its cell can count



Gated units
Gating is a general idea, which is now used in a whole bunch of 
places

You can also gate vertically

• Indeed the key idea – summing candidate update with shortcut 
connection – is needed for very deep networks to work

relu

Residual block

conv

conv

x
identity

F(x) + x

F(x)

relu

x

+

relu

Highway block

conv

conv

x
identity

F(x)T(x) + x.C(x)

F(x)

relu

x

+



4d. (Selective) Attention

• Problem: The NMT system had to remember 
the entire input in one hidden vector … 
regardless of how long the input sentence was

• And in general we might like to have a large
external memory and to selectively look at 
certain bits of information in it at various times

• Solution: Neural Attention



Sequence-to-sequence: bottleneck problem

30

En
co

de
r R

NN

Source sentence (input)

<START>   the      poor    don’t    have      any    moneyles    pauvres sont démunis

the      poor    don’t    have      any    money  <END>

Decoder RNN

Target sentence (output)

Encoding of the 
source sentence. 

This needs to capture all 
information about the 

source sentence.
Information bottleneck!



Sequence-to-sequence with 
attention
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En
co

de
r 

RN
N

Source sentence (input)

<START>les    pauvres sont démunis

Decoder RNN
At

te
nt

io
n 

sc
or

es

On this decoder timestep, we’re 
mostly focusing on the first 
encoder hidden state (“les”)

At
te

nt
io

n 
di

st
rib

ut
io

n

Take softmax to turn the scores 
into a probability distribution

Calculate a compatibility score between 
current and input hidden states



Sequence-to-sequence with attention
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Source sentence (input)

<START>les    pauvres sont démunis

Decoder RNN
At

te
nt
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n 
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n

At
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Attention 
output

Concatenate attention output 
with decoder hidden state, 
then use to compute !"# as 
before

!"#

the
Use the attention distribution to take a 
weighted sum of the encoder hidden 
states.

Output: gw([at, st])



Attention is great
• Attention significantly improves NMT performance

• It’s very useful to allow decoder to focus on certain parts of the source

• Attention solves the bottleneck problem
• Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with vanishing gradient problem
• Rather than traditional optimization problems, attention provides an 

alternative shortcut to faraway states

• Attention provides some interpretability
• By inspecting attention distribution, we can see 

what the decoder was focusing on
• We get alignment in MT for free!
• This is cool because the network learned alignment by itself
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Alignments: hardest 

The 
poor 
don’t 
have 

any 
money 

Les 
pauvres 
sont 
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many-to-many 
alignment 
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phrase 
alignment 

Alignment as a vector 

Mary 
did 
not 

slap 
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green 
witch 
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no 
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i j 
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4 
4 
4 
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aj=i 
•  used in all IBM models 
•  a is vector of length J 
•  maps indexes j to indexes i 
•  each aj 
 {0, 1 … I} 
•  aj = 0 	 fj is �spurious� 
•  no one-to-many alignments 
•  no many-to-many alignments 
•  but provides foundation for 

phrase-based alignment 

IBM Model 1 generative story 
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Choose length J for French sentence 

For each j in 1 to J: 

–  Choose aj uniformly from 0, 1, … I 

–  Choose fj by translating eaj 

Given English sentence e1, e2, … eI 

We want to learn 
how to do this 

Want: P(f|e) 

IBM Model 1 parameters 
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Applying Model 1* 

As translation model 

As alignment model 

P(f, a | e) can be used as a translation model or an alignment model 

* Actually, any P(f, a | e), e.g., any IBM model 



Attention is a general Deep Learning 
technique
• Variant attention functions:

• Basic dot-product attention:
• Multiplicative attention:
• Additive attention:

• More general definition of attention:
• Given a set of vector keys with associated vector values, and a vector 

query, attention is a technique to compute a weighted sum of the 
values, dependent on the query

• We measure a score between the query and each key and then return an
aggregate value which is a score-weighted average of the values
• E.g. Key-value Memory Networks: (Miller et al. 2016)

https://arxiv.org/abs/1606.0312634



Attention in Question Answering
(Stanford Attentive Reader: Chen et al. 2016, 2017)

35

Who did Genghis Khan unite before he
began conquering the rest of Eurasia?Q

… ……P

Process with LSTMs

Attention

predict start token

Attention

predict end token



4e. Final thoughts

Here are a few “empirical understandings” of a 
decade of deep learning, some of which deserve 
better formal understanding



Non-convex models really are more powerful 
than convex models

• Extremely deep models using the residual 
connections (ResNets) idea, have powered the 
2015–2017 gains on ImageNet
• But what are they doing? With residual 

connections it doesn’t seem to be quite the 
traditional idea of layers of representation



Use of distributed representations of categorical 
values like words allows very effective modeling 
and sharing of dimensions of similarity



Models with orders of magnitude more 
parameters than there are training data 
available, if trained with ample amounts of 
regularization (including new forms like 
dropout), will outperform simpler models –
generalizing better to new data

• Practitioner’s recipe: build a sufficiently high-capacity
model that it can be trained to 0% training error, and then 
increase its regularization until it doesn’t overfit on dev



When we were young, our parents used to warn 
us with tales of bad local minima, but it turns out 
that bad local minima typically don’t exist and 
any different minima seem to be roughly 
equivalently good. No need to worry!



Rather than a clean separation between an 
objective (loss) function and an optimizer that is 
trying to minimize it, we find that in current 
neural network successes, the optimizer is mixed 
up into the loss function – small batch SGD is 
acting as a form of regularizer



Thanks!

Questions?


