
Introductory Overview Lecture
The Deep Learning Revolution

Christopher Manning & Russ Salakhutdinov
Stanford University❀ Carnegie Mellon University

JSM, 2018-07-29

Plan for Part 4
Big ideas for bigger, structured neural models

a. Convolutional models

b. Recurrent models

c. Gated and residual connections

d. Attention

e. Final thoughts

4a. Vision: Convolutional models

• For computer vision, a key property that we
usually wish to capture is translation
invariance

• We would like to have visual “feature
detectors” that find something in an image
regardless of precisely where it is located

• We do this with a convolutional layer

[Slides from Karpathy/Johnson/Yeung/Fei-Fei, cs231n.stanford.edu]

Motivating a Convolution Layer

4

32

32

3

3072
1

32x32x3 image → 10 classes

10 x 3072
weights

activationinput

A number
A probability of the
object being a certain
class

1
10

f

Could stretch to 3072 x 1 and use an FC layer

Convolution Layer

5

32

32

3

5x5x3 filter

32x32x3 image

Convolve a filter with the image
i.e. “slide over the image
spatially, computing dot
products”

Filters always extend the
full depth of the input
volume

[Slides from Karpathy/Johnson/Yeung/Fei-Fei, cs231n.stanford.edu

Convolution Layer

6

32

32

3

32x32x3 image
5x5x3 filter

1 number:
the result of taking a dot product between
the filter and a small 5x5x3 chunk of the
image
(i.e. 5*5*3 = 75-dimensional dot product +
bias)

Convolution Layer

7

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation
map

1

28

28

Do it for multiple filters

We now have a new 28x28x4 “image”

Pooling layer
• Allows convolutional features with a broader view

without a lot of parameters
• Can make representations more manageable

8

Pooling layer

9

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2
filters and stride 2 6 8

3 4

A (Very Simple) Modern ConvNet

10

ConvNet Representation Learning
• At the beginning of the

ConvNet, features are edge
and color/texture detectors

• High in the ConvNet,
features detect parts and
object types

4b. Language: Recurrent models

• Until now, we’ve dealt with
classifying/generating fixed-size objects.
• We just resized images to our procrustean bed!

• How can we deal with variable-size inputs, such
as the word sequences in human language text
or bioinformatic gene sequences?

• We do this with a recurrent layer

Recurrent Neural Networks (RNN)

hidden states

input
sequence (any

length)

…

…

…

Core idea: Apply
the same weights

repeatedly

13

outputs
(optional)

Read, update, predict

Inputs
i. Current word
ii. Previous state

Parameters
i. Input weight matrix
ii. Transition weight matrix
iii. Bias vector

Example: a Recurrent “Language
Model” that generates sentences

14

Transition Function

ht�1 2 Rd

W 2 R|V |⇥d

U 2 Rd⇥d

b 2 Rd

ht = f(ht�1, xt)

xt 2 {1, 2, . . . , |V |}

Naïve Transition Function

Building a Recurrent Language Model

15

Transition Function

Trainable word vector

Element-wise nonlinear
transformation Linear transformation of

previous state

ht = f(ht�1, xt)

f(ht�1, xt) = tanh(W [xt] + Uht�1 + b)

Inputs
i. Current state

Parameters
i. Softmax matrix
ii. Bias vector

Building a Recurrent Language Model

16

ht 2 Rd

R 2 R|V |⇥d

c 2 R|V |

Prediction Function p(xt+1 = w|xt) = gw(ht)

p(xt+1 = w|xt) = gw(ht) =
exp(R [w]> ht + cw)

P|V |
i=1 exp(R [i]> ht + ci)

Building a Recurrent Language Model

17

Exponentiate

Compatibility between
trainable word vector
and hidden state

Normalize

Prediction Function p(xt+1 = w|xt) = gw(ht)

This gives a probability
distribution over next words.
To generate text we take max.
prob. word (or sample a word),
and then use what we generated
as the input at the next time
step

Learned word representations show
words’ semantic similarity

0.286
0.792
−0.177
−0.107
0.109
−0.542
0.349
0.271
0.487

expect =

Die Proteste waren am Wochenende eskaliert <EOS> The protests escalated over the weekend

0.2
0.6

-0.1
-0.7
0.1

0.4
-0.6
0.2

-0.3
0.4

0.2
-0.3
-0.1
-0.4
0.2

0.2
0.4
0.1

-0.5
-0.2

0.4
-0.2
-0.3
-0.4
-0.2

0.2
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

-0.1
0.3

-0.1
-0.7
0.1

-0.2
0.6
0.1
0.3
0.1

-0.4
0.5

-0.5
0.4
0.1

0.2
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

0.2
-0.2
-0.1
0.1
0.1

0.2
0.6

-0.1
-0.7
0.1

0.1
0.3

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.4
0.1

0.2
-0.8
-0.1
-0.5
0.1

0.2
0.6

-0.1
-0.7
0.1

-0.4
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
0.3
0.1

-0.1
0.6

-0.1
0.3
0.1

0.2
0.4

-0.1
0.2
0.1

0.3
0.6

-0.1
-0.5
0.1

0.2
0.6

-0.1
-0.7
0.1

0.2
-0.1
-0.1
-0.7
0.1

0.1
0.3
0.1

-0.4
0.2

0.2
0.6

-0.1
-0.7
0.1

0.4
0.4
0.3

-0.2
-0.3

0.5
0.5
0.9

-0.3
-0.2

0.2
0.6

-0.1
-0.5
0.1

-0.1
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

0.3
0.6

-0.1
-0.7
0.1

0.4
0.4

-0.1
-0.7
0.1

-0.2
0.6

-0.1
-0.7
0.1

-0.4
0.6

-0.1
-0.7
0.1

-0.3
0.5

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

The protests escalated over the weekend <EOS>

Neural Machine Translation
Source sentence is mapped to vector, then output sentence
generated [Sutskever et al. 2014, Bahdanau et al. 2014,
Luong and Manning 2016]

Encoder:
Builds up
sentence
meaning

Source
sentence

Translation
generated

Feeding in
last word

Decoder

2017+: Almost every company is now using Neural
MT in production, at least for many language pairs

@ log p(xt+n|x<t+n)

@ht
=

@ log p(xt+n|x<t+n)

@g

@g

@ht+n

@ht+n

@ht+n�1
· · · @ht+1

@ht

2018-07-2820

Intuitively, what happens with RNNs?

1. Measure the influence of the past on the future

2. How does the perturbation at affect ?

xt

p(xt+n|x<t+n)

✏

?
t

4c. Gated Units
Fixing Backpropagation through Time

2018-07-2921

Problem: Often get a vanishing gradient which is super-problematic

• With the naïve transition function

• The temporal derivative is

• When we only observe

• We cannot tell whether there is
1. No dependency between t and t+N in data, or
2. Small weights (leading eigenvalue < 1) → gradient vanishes

����
@ht+N

@ht

���� =

�����

NY

n=1

U>diag

✓
@ tanh(at+n)

@at+n

◆����� ! 0

Backpropagation through Time

f(ht�1, xt) = tanh(W [xt] + Uht�1 + b)

@ht+1

@ht
= U> @ tanh(a)

@a

2018-07-2822

• With a simple recurrent model, the error must
backpropagate through all the intermediate nodes:

• Perhaps we can create shortcut connections

Gated Recurrent Unit

• Perhaps we can create adaptive shortcut connections

• Candidate Update
• Update gate

23

Gated Recurrent Unit

ut = �(Wu [xt] + Uuht�1 + bu)
h̃t = tanh(W [xt] + Uht�1 + b)

�: element-wise multiplication

2018-07-2824

• Let the net prune unnecessary connections adaptively

• Candidate Update
• Reset gate
• Update gate

Gated Recurrent Unit

h̃t = tanh(W [xt] + U(rt � ht�1) + b)

rt = �(Wr [xt] + Urht�1 + br)
ut = �(Wu [xt] + Uuht�1 + bu)

2018-07-2825

tanh-RNN ….

Execution
Registers

1. Read the whole register

h

2. Update the whole register

h

h tanh(W [x] + Uh+ b)

Gated Recurrent Unit

2018-07-2826

GRU …

Execution
Registers

1. Select a readable subset

h

r
r � h2. Read the subset

3. Select a writable subset u
4. Update the subset

h u� h̃+ (1� ut)� h

Gated recurrent units are much more realistic!

Gated Recurrent Unit

Gated Recurrent Unit
[Cho et al., EMNLP2014;
Chung, Gulcehre, Cho, Bengio, DLUFL2014]

Long Short-Term Memory
[Hochreiter & Schmidhuber, NC1999;
Gers, Thesis2001]

27

Gated Recurrent Units

ht = ut � h̃t + (1� ut)� ht�1

h̃ = tanh(W [xt] + U(rt � ht�1) + b)

ut = �(Wu [xt] + Uuht�1 + bu)

rt = �(Wr [xt] + Urht�1 + br)

ht = ot � tanh(ct)

ct = ft � ct�1 + it � c̃t

c̃t = tanh(Wc [xt] + Ucht�1 + bc)

ot = �(Wo [xt] + Uoht�1 + bo)

it = �(Wi [xt] + Uiht�1 + bi)

ft = �(Wf [xt] + Ufht�1 + bf)

Two most widely used gated recurrent units

h̃t = tanh(W [xt] + U(rt � ht�1) + b)

In many ways similar, but the LSTM is actually more powerful: Its cell can count

Gated units
Gating is a general idea, which is now used in a whole bunch of
places

You can also gate vertically

• Indeed the key idea – summing candidate update with shortcut
connection – is needed for very deep networks to work

relu

Residual block

conv

conv

x
identity

F(x) + x

F(x)

relu

x

+

relu

Highway block

conv

conv

x
identity

F(x)T(x) + x.C(x)

F(x)

relu

x

+

4d. (Selective) Attention

• Problem: The NMT system had to remember
the entire input in one hidden vector …
regardless of how long the input sentence was

• And in general we might like to have a large
external memory and to selectively look at
certain bits of information in it at various times

• Solution: Neural Attention

Sequence-to-sequence: bottleneck problem

30

En
co

de
r R

NN

Source sentence (input)

<START> the poor don’t have any moneyles pauvres sont démunis

the poor don’t have any money <END>

Decoder RNN

Target sentence (output)

Encoding of the
source sentence.

This needs to capture all
information about the

source sentence.
Information bottleneck!

Sequence-to-sequence with
attention

31

En
co

de
r

RN
N

Source sentence (input)

<START>les pauvres sont démunis

Decoder RNN
At

te
nt

io
n

sc
or

es

On this decoder timestep, we’re
mostly focusing on the first
encoder hidden state (“les”)

At
te

nt
io

n
di

st
rib

ut
io

n

Take softmax to turn the scores
into a probability distribution

Calculate a compatibility score between
current and input hidden states

Sequence-to-sequence with attention

32

En
co

de
r

RN
N

Source sentence (input)

<START>les pauvres sont démunis

Decoder RNN
At

te
nt

io
n

di
st

rib
ut

io
n

At
te

nt
io

n
sc

or
es

Attention
output

Concatenate attention output
with decoder hidden state,
then use to compute !"# as
before

!"#

the
Use the attention distribution to take a
weighted sum of the encoder hidden
states.

Output: gw([at, st])

Attention is great
• Attention significantly improves NMT performance

• It’s very useful to allow decoder to focus on certain parts of the source

• Attention solves the bottleneck problem
• Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with vanishing gradient problem
• Rather than traditional optimization problems, attention provides an

alternative shortcut to faraway states

• Attention provides some interpretability
• By inspecting attention distribution, we can see

what the decoder was focusing on
• We get alignment in MT for free!
• This is cool because the network learned alignment by itself

33

9/24/14

5

Alignments: harder

The
balance

was
the

territory
of

the
aboriginal

people

Le
reste

appartenait

aux

autochtones

many-to-one
alignments

The
balance

was
the

territory

of
the

aboriginal
people

 L
e

re
st

e

ap
pa

rte
na

it
au

x

au
to

ch
to

ne
s

Alignments: hardest

The
poor
don’t
have

any
money

Les
pauvres
sont
démunis

many-to-many
alignment

The
poor

don�t
have

any

money

Le
s

pa
uv

re
s

so
nt

dé

m
un

is

phrase
alignment

Alignment as a vector

Mary
did
not

slap

the
green
witch

1
2
3
4

5
6
7

Maria
no
daba
una
botefada
a
la
bruja
verde

1
2
3
4
5
6
7
8
9

i j

1
3
4
4
4
0
5
7
6

aj=i
•  used in all IBM models
•  a is vector of length J
•  maps indexes j to indexes i
•  each aj
 {0, 1 … I}
•  aj = 0 	 fj is �spurious�
•  no one-to-many alignments
•  no many-to-many alignments
•  but provides foundation for

phrase-based alignment

IBM Model 1 generative story

And
the

program
has

been
implemented

aj

Le

pr
og

ra
m

m
e

a ét
é

m
is

en

ap

pl
ic

at
io

n

2 3 4 5 6 6 6

Choose length J for French sentence

For each j in 1 to J:

–  Choose aj uniformly from 0, 1, … I

–  Choose fj by translating eaj

Given English sentence e1, e2, … eI

We want to learn
how to do this

Want: P(f|e)

IBM Model 1 parameters

And
the

program
has

been
implemented

Le

pr
og

ra
m

m
e

a ét
é

m
is

en

ap

pl
ic

at
io

n

2 3 4 5 6 6 6 aj

Applying Model 1*

As translation model

As alignment model

P(f, a | e) can be used as a translation model or an alignment model

* Actually, any P(f, a | e), e.g., any IBM model

Attention is a general Deep Learning
technique
• Variant attention functions:

• Basic dot-product attention:
• Multiplicative attention:
• Additive attention:

• More general definition of attention:
• Given a set of vector keys with associated vector values, and a vector

query, attention is a technique to compute a weighted sum of the
values, dependent on the query

• We measure a score between the query and each key and then return an
aggregate value which is a score-weighted average of the values
• E.g. Key-value Memory Networks: (Miller et al. 2016)

https://arxiv.org/abs/1606.0312634

Attention in Question Answering
(Stanford Attentive Reader: Chen et al. 2016, 2017)

35

Who did Genghis Khan unite before he
began conquering the rest of Eurasia?Q

… ……P

Process with LSTMs

Attention

predict start token

Attention

predict end token

4e. Final thoughts

Here are a few “empirical understandings” of a
decade of deep learning, some of which deserve
better formal understanding

Non-convex models really are more powerful
than convex models

• Extremely deep models using the residual
connections (ResNets) idea, have powered the
2015–2017 gains on ImageNet
• But what are they doing? With residual

connections it doesn’t seem to be quite the
traditional idea of layers of representation

Use of distributed representations of categorical
values like words allows very effective modeling
and sharing of dimensions of similarity

Models with orders of magnitude more
parameters than there are training data
available, if trained with ample amounts of
regularization (including new forms like
dropout), will outperform simpler models –
generalizing better to new data

• Practitioner’s recipe: build a sufficiently high-capacity
model that it can be trained to 0% training error, and then
increase its regularization until it doesn’t overfit on dev

When we were young, our parents used to warn
us with tales of bad local minima, but it turns out
that bad local minima typically don’t exist and
any different minima seem to be roughly
equivalently good. No need to worry!

Rather than a clean separation between an
objective (loss) function and an optimizer that is
trying to minimize it, we find that in current
neural network successes, the optimizer is mixed
up into the loss function – small batch SGD is
acting as a form of regularizer

Thanks!

Questions?

