Introductory Overview Lecture
The Deep Learning Revolution

Christopher Manning & Russ Salakhutdinov

Stanford University & Carnegie Mellon University
JSM, 2018-07-29

Plan for Part 4

Big ideas for bigger, structured neural models
a. Convolutional models

b. Recurrent models

c. Gated and residual connections

d. Attention

e. Final thoughts

4a. Vision: Convolutional models

* For computer vision, a key property that we
usually wish to capture is translation
Invariance

* We would like to have visual “feature
detectors” that find something in an image
regardless of precisely where it is located

* We do this with a convolutional layer

[Slides from Karpathy/Johnson/Yeung/Fei-Fei, cs231n.stanford.edu]

Motivating a Convolution Layer

32x32x3 image > 10 classes

32

32

input

Could stretch to 3072 x 1 and use an FC layer

—l

3072

Wz

10 x 3072
weights

/

—_—

A number

A probability of the
object being a certain
class

/activation

1 (O

10

Convolution Layer

Filters always extend the
full depth of the input

32x32x3 image volume
5x5x3 filter
32 7
I Convolve a filter with the image
i.e. “slide over the image

spatially, computing dot
products”
32

[Slides from Karpathy/Johnson/Yeung/Fei-Fei, cs231n.stanford.edu

Convolution Layer

__— 32x32x3 image

5x5x3 filter w
2

“~~ 1 number:
the result of taking a dot product between

the filter and a small 5x5x3 chunk of the

32 image
3 (i.e. 5*5*3 = 75-dimensional dot product +
bias)

wliz+b

Convolution Layer

__— 32x32x3 image

y
=

32

5x5x3 filter

»
»

convolve (slide) over all
spatial locations

Do it for multiple filters

/|

activation
map

1

/|

/|

We now have a new 28x28x4 “image”

Pooling layer

e Allows convolutional features with a broader view
without a lot of parameters
e Can make representations more manageable

224x224x64
112x112x64

pool
—_—

'

—

224

i 112
downsampling
112

Pooling layer

Single depth slice
X 1 1|2 | 4
max pool with 2x2
516 |7/ 8 filters and stride 2 6 | 8
312|1]0 3| 4
1|1 2] 3| 4

A (Very Simple) Modern ConvNet

RELU RELU RELU RELU RELU RELU

CONV lCONVl CONV lCONVl CONV lCONVl FC

bbb b by

car

\

N NN N 5 R

fruck
airplane

Ship

ﬁworse

INEYRRERDR
% NN A 10 N

A EETEIVE BW

1 O R

ConvNet Representation Learning

e Atthe beginning of the e Highinthe ConvNet,
ConvNet, features are edge features detect parts and
and color/texture detectors object types

rp UL AL

- 'l"l1”

4b. Language: Recurrent models

e Until now, we’ve dealt with
classifying/generating fixed-size objects.

e We just resized images to our procrustean bed!

e How can we deal with variable-size inputs, such
as the word sequences in human language text
or bioinformatic gene sequences?

* We do this with a recurrent layer

Recurrent Neural Networks (RNN)

Core idea: Apply
the same weights
W repeatedly

outputs
P { ey e 43 e

(optional)

~ hD h(i h(i h4)
@
@
@
@

(1) 2(2) 2(3) ey

hidden states <

Vv

input
sequence (any L
length)

13 Read, update, predict

Example: a Recurrent ‘“‘Language
Model” that generates sentences

Transition Function hy = f(hi_1, x¢)

Inputs
i. Currentword x; € {1,2,...,|V|}
ii. Previousstate h;_1 € R
Parameters

i. Input weight matrix W e RIVI*4
ii. Transition weight matrix U € R4*¢
iii. Biasvector p € R¢

p(the) p(cat| .. p(i) p(eating|...)

(isf . .
14)os the cat

Building a Recurrent Language Model

Transition Function hy = f(hs—1, x¢)
Naive Transition Function

f(ht—ly ZEt) = tanh(W [Clﬁt] -+ Uht_l -+ b)
Element-wise nonlinear \

transformation Linear transformation of

. previous state
Trainable word vector

p(the) p(cat] .. p(is|...) p(eating]|..

@~®—@—@%6

15

Building a Recurrent Language Model

Prediction Function p(Ti+1 = W|T<t) = Gu (hy)

Inputs
i. Current state hy € R?
Parameters
i. Softmax matrix R € RIVI*¢
i. Biasvector c € RIV

p(the) p(cat|...) p(is|...) p(eating|...)

0~@—@ —©

16 the cat

Building a Recurrent Language Model

Prediction Function p(Ti+1 = W|T<t) = Gu (hy)

R [fw]T hi + Cw)
exp(R [Z]T hi + ¢;)

/

Normalize

P(Tey1 = wlr<t) = gu(he) =

i/
Yl

This gives a probability
distribution over next words.
To generate text we take max.
prob. word (or sample a word),
and then use what we generated

as the input at the next time @_,@_,é_‘
step

!

17 the C‘lt 1S

p(the) p(cat| .. p(is|...) p(eating|...)

Learned word representations show
words’ semantic similarity

................

girardeau

european indian
ek 0.286 et) T mexican
¢ i
0.792 |cricket anafyaian Dogggn%éﬁ'g‘ge” ine
. sapn brazilian
ok —0.177
french ; Ha“an
_0.107 irish dUtéHJngana
english ; -
eXpeCt = 0.109 nOM§ﬂQ@man
-0.542 nicodemus
v rgin0»349 dictator S
ary 0.27 lsdiomon kingdoms W
._kings i
3%bo.487j<mg' g emd'g'r%%?‘rg'p”e .
princessprmCe
o constantine b egyptian
ndiEon maffinagle oreeks

macedonians

logEard
jetoagitm

Xi

Neural Machine Translation

Source sentence is mapped to vector, then output sentence
generated [Sutskever et al. 2014, Bahdanau et al. 2014,

Luong and Manning 2016]

Translation
The| protests escalated over the| weekend <EOS>
generated

Encoder:
Builds u
P Decoder
sentence
meaning
Source Die Proteste waren am Wochenende eskaliert <E0S> | The protests escalated over |the weekend Feedingin
sentence last word

2017+: Almost every company is now using Neural G;’ glﬁe

MT in production, at least for many language pairs

4c. Gated Units
Fixing Backpropagation through Time
Intuitively, what happens with RNNs?

1. Measure the influence of the past on the future

Olog p(Ttyn|T<iqn) _ Ologp(Titn|T<tqn) Og Ohign ”.3ht+1
Ohy dg Ohiypn Ohtin—1 Ohy

2. How does the perturbation att affect P(Tt4n|T<tin)?

- --->?
R M
(\’\/\t

¥ p(the) p(cat| .. p(is|...) p(eating]...)

«>> ¢

) @—@—@—@

the

20

Backpropagation through Time

Problem: Often get a vanishing gradient which is super-problematic

« With the naive transition function

f(ht_l, Q?t) — tanh(W [ZEt] -+ Uht_l -+ b)

e Thetemporal derivativeis Ohy11 +Otanh(a)
U
5’ht 8&

 When we only observe
‘ Ohi+n ‘ _

Ohy
 We cannot tell whether there is
1. No dependency between t and t+N in data, or
,;, 2. Smallweights (leading eigenvalue < 1) - gradient vanishes

Gated Recurrent Unit

With a simple recurrent model, the error must
backpropagate through all the intermediate nodes:

U’ U' U' U'
U [/ U [/

Perhaps we can create shortcut connections

OEE0E 26

Gated Recurrent Unit

Perhaps we can create adaptive shortcut connections

OGEO= >0

Candidate Update hy = tanh(W [z,] + Uh;_1 + b)
Update gate u; = (W, [x¢] + Uyhi—1 + by)

f(hi—1,) = w © hy + (1 —w) © heq

23 (+): element-wise multiplication

Gated Recurrent Unit

Let the net prune unnecessary connections adaptively

Candidate Update h: = tanh(W [z;] + U(rs © he_1) + b)
Reset gate r, = o(W, [x¢] + U hi—1 + b;.)
Update gate u, = o(W, [x] + Uyhi—1 + by)

f(hi—1,2t) = up © iLt + (1 —uy) ©® hyq

24

Gated Recurrent Unit
tanh-RNN ...

Registers |

s ™ Execution

— 1. Read the whole register h

— 2. Update the whole register

h < tanh(W [z] + Uh + b)

25

Gated Recurrent Unit

GRU ...

Registers |

-

_

Execution

1. Select a readable subset 7

» 2. Read the subset r ® h

3. Select a writable subset U

4. Update the subset
hu®h+(1—u)Oh

Gated recurrent units are much more realistic!

26

Gated Recurrent Units

Two most widely used gated recurrent units

Gated Recurrent Unit Long Short-Term Memory
[Cho et al., EMNLP2014; [Hochreiter & Schmidhuber, NC1999;
Chung, Gulcehre, Cho, Bengio, DLUFL2014] Gers, Thesis2001]

hy = uy @ hy + (1 —w) ® hyq ht = 0 ® tanh(c;)

;Li: tanh(W [QEt] + U(Tt ® ht—l) + b) Ct = ft O) Ct—1 + 7:75 © ét

up = o(Wy, [z¢] + Uyhi—1 + by) ¢t = tanh(We [z,] + Uchi—1 + bc)
ro = (W 1] + Urhe 1 + by) ot = (W, [at] + Uofe—r + bo)

it = o(W; | + Ushe—1 + b;)
ft =Wy |xe) + Uphi—1 + by)

, In many ways similar, but the LSTM is actually more powerful: Its cell can count
7

Gated units

Gating is a general idea, which is now used in a whole bunch of
places

You can also gate vertically

* Indeed the key idea - summing candidate update with shortcut
connection - is needed for very deep networks to work

% relu t relu
F(x) + x F(x)T(x) + x.C(x)
F(x) Trelu X F(x) Trelu X
identity identity
X X

Residual block Highway block

4d. (Selective) Attention

* Problem: The NMT system had to remember
the entire input in one hidden vector ...
regardless of how long the input sentence was

* Andin general we might like to have a large
external memory and to selectively look at
certain bits of information in it at various times

e Solution: Neural Attention

Sequence-to-sequence: bottleneck problem

Encoding of the
source sentence.
This needs to capture all Target sentence (output)
information about the A

(\
source sentence. " A -
. < >
Information bottleneck! € poor dont have dny money

] ~— I I)
= @
o ol (o] (o] (o ol (o] (o] [o] (o] (o] [eo Q
5 e |® ol | |® Jo| .|o ol .ol o o) o) a
.S o “|le[‘o[[|e® lo[]e o[le[o o[o ®
S o (o |o| |@® ol |e|] |o] |o] |e| |o] |[eo >
C A T T i

les pauvres sont démunis <START> the poor don’t have any money

\ J

Y

Source sentence (input)

30

Sequence-to-sequence with
attention

On this decoder timestep, we’re

- mostly focusing on the first
.5 = / encoder hidden state (“les”)
£ 3 {
25
Z 0
S Take softmax to turn the scores
S into a probability distribution
28
I3 § { " Calculate a compatibility score between
= current and input hidden states -
— (D
o = ® o
o = Q| . Q.
S o I @
L o X
=
T =
les pauvres sont démunis <START>
\)

Y
31 Source sentence (input)

Sequence-to-sequence with attention

Use the attention distribution to take a
Attention the weighted sum of the encoder hidden
output T states.

A\

91 Concatenate attention output
A \ with decoder hidden state,

Py
.t
.
.
.
.
.
.
. o
o D
.
.
o
.
.
.
.
.
o

then use to compute ¥; as

Attention
distribution
f_JH

before
c
o wn
.4: &)
c
g 3
<
t 1T T N
) 6—[3th17'-'78th’N]ER E
T = :
o = °
O & o! = softmax(e’) € RY %
g N 2
a; =) oih; eR" -
1=1
\Ies pauvres sont démunisj <START> Output: g, ([a,, s,])
Y

32 Source sentence (input)

Attention is great

e Attention significantly improves NMT performance

* |t’s very useful to allow decoder to focus on certain parts of the source

e Attention solves the bottleneck problem

e Attention allows decoder to look directly at source; bypass bottleneck

e Attention helps with vanishing gradient problem

e Rather than traditional optimization problems, attention provides an
alternative shortcut to faraway states

e Attention provides some interpretability 33§
e By inspecting attention distribution, we can see > The
what the decoder was focusing on poor
e We get alignment in MT for free! dhoar:/:
* Thisis cool because the network learned alignment by itself
money

33

Attention is a general Deep Learning
technique

e Variant attention functions:

e Basic dot-product attention: e;=s h; eR
e Multiplicative attention: e; =8 Wh; € R
e Additive attention: e; = v tanh(Wih; + Was) € R

 More general definition of attention:

e Given a set of vector keys with associated vector values, and a vector
query, attention is a technique to compute a weighted sum of the
values, dependent on the query

 We measure a score between the query and each key and then return an
aggregate value which is a score-weighted average of the values

e E.g. Key-value Memory Networks: (Miller et al. 2016)

24 https://arxiv.org/abs/1606.03126

Attention in Question Answering
(Stanford Attentive Reader: Chen et al. 2016, 2017)

Who did Genghis Khan unite before he
began conquering the rest of Eurasia?

Process with LSTMs q

e N—

g 209 o198

He came to power by uniting many of the nomadic

tribes of Northeast Asia. After founding the Mongol

Empire and being proclaimed "Genghis Khan", he

started the Mongol invasions that resulted in the

conquest of most of Eurasia. These included raids or

. invasions of the Qara Khitai, Caucasus, Khwarezmid .
Empire, Western Xia and Jin dynasties. These

Atte ntl o n campaigns were often accompanied by wholesale tte ntl o n

massacres of the civilian populations — especially in the

Khwarezmian and Xia controlled lands. By the end of his

life, the Mongol Empire occupied a substantial portion of

Central Asia and China. I __ an (T I &)
, a—softmax;(q" W, p;

s — predict start token — predict end token

A 4

\ 4

A 4

A 4

a

a

‘Pi
[J

A

. (@
" L

4e. Final thoughts

Here are a few “empirical understandings” of a

decade of deep learning, some of which deserve
better formal understanding

Non-convex models really are more powerful
than convex models

e Extremely deep models using the residual
connections (ResNets) idea, have powered the
2015-2017 gains on ImageNet

e But what are they doing? With residual
connections it doesn’t seem to be quite the
traditional idea of layers of representation

Use of distributed representations of categorical
values like words allows very effective modeling
and sharing of dimensions of similarity

european ~In dian
hﬁﬁg}et mexican
american sgent
" e pogpgHIF
i DA B _
ie@saian brazil
" french ital
irish dutéwnganah
english %;- i
e Eﬂ‘g austrian
nicodemus
irgi dictat
virgin :
ry solomon Siiadac
AReen kins g rr'lvpirg pompeii ,
i em?f'erorty roma¥
princessprince
vitell constantine b egypt
5259 ; ' greek
e exangﬁa macedonians
logdzard

Models with orders of magnitude more
parameters than there are training data
available, if trained with ample amounts of
regularization (including new forms like
dropout), will outperform simpler models -
generalizing better to new data

 Practitioner’s recipe: build a sufficiently high-capacity

model that it can be trained to 0% training error, and then
increase its regularization until it doesn’t overfit on dev

When we were young, our parents used to warn
us with tales of bad local minima, but it turns out
that bad local minima typically don’t exist and
any different minima seem to be roughly
equivalently good. No need to worry!

Rather than a clean separation between an
objective (loss) function and an optimizer that is
trying to minimize it, we find that in current
neural network successes, the optimizer is mixed
up into the loss function - small batch SGD is
acting as a form of regularizer

Thanks!

Questions?

