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Plan for the tutorial
1. Introduction to deep learning (Chris)

2. More details: model optimization, regularization, 
interpretation (Rus)

3. Unsupervised learning: Boltzmann machines, VAEs, 
GANs (Rus)

4. Extended neural net architectures and applications: 
convolution, recurrence, attention (Chris)



Plan for Part I
a. The revolution: A sampling of the great things done 

with neural networks in the last few years

b. What is deep learning?

c. Introducing neural networks: From logistic 
regression to neural networks

d. Training a neural network: The backpropagation 
algorithm



1a. The revolution

Deep learning has provided empirically much 
better methods for:

• Hard prediction problems

• Generative models of natural data distributions

Especially over high-dimensional data such as 
images, video, speech, text, and robotic control



Deep Learning for Speech
• The first breakthrough results of 

“deep learning” on large datasets 
happened in speech recognition

• Context-Dependent Pre-trained Deep 
Neural Networks for Large Vocabulary 
Speech Recognition.  Dahl et al. (2010)
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Deep Learning for Computer Vision
First major focus of deep learning 
groups was computer vision

The breakthrough DL paper: 
ImageNet Classification with Deep 
Convolutional Neural Networks by 
Krizhevsky, Sutskever, & Hinton, 
2012, U. Toronto. 37% error red.

Zeiler and Fergus (2013)

8 Olga Russakovsky* et al.
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Fig. 2 The ILSVRC dataset contains many more fine-grained classes compared to the standard PASCAL VOC benchmark;
for example, instead of the PASCAL “dog” category there are 120 di↵erent breeds of dogs in ILSVRC2012-2014 classification
and single-object localization tasks.

are 1000 object classes and approximately 1.2 million
training images, 50 thousand validation images and 100
thousand test images. Table 2 (top) documents the size
of the dataset over the years of the challenge.

3.2 Single-object localization dataset construction

The single-object localization task evaluates the ability
of an algorithm to localize one instance of an object
category. It was introduced as a taster task in ILSVRC
2011, and became an o�cial part of ILSVRC in 2012.

The key challenge was developing a scalable crowd-
sourcing method for object bounding box annotation.
Our three-step self-verifying pipeline is described in Sec-
tion 3.2.1. Having the dataset collected, we perform
detailed analysis in Section 3.2.2 to ensure that the
dataset is su�ciently varied to be suitable for evalu-
ation of object localization algorithms.

Object classes and candidate images. The object classes
for single-object localization task are the same as the
object classes for image classification task described
above in Section 3.1. The training images for localiza-
tion task are a subset of the training images used for
image classification task, and the validation and test
images are the same between both tasks.

Bounding box annotation. Recall that for the image
classification task every image was annotated with one

object class label, corresponding to one object that is
present in an image. For the single-object localization
task, every validation and test image and a subset of the
training images are annotated with axis-aligned bound-
ing boxes around every instance of this object.

Every bounding box is required to be as small as
possible while including all visible parts of the object
instance. An alternate annotation procedure could be
to annotate the full (estimated) extent of the object:
e.g., if a person’s legs are occluded and only the torso
is visible, the bounding box could be drawn to include
the likely location of the legs. However, this alterna-
tive procedure is inherently ambiguous and ill-defined,
leading to disagreement among annotators and among
researchers (what is the true “most likely” extent of
this object?). We follow the standard protocol of only
annotating visible object parts (Russell et al., 2007; Ev-
eringham et al., 2010).5

3.2.1 Bounding box object annotation system

We summarize the crowdsourced bounding box anno-
tation system described in detail in (Su et al., 2012).
The goal is to build a system that is fully automated,

5 Some datasets such as PASCAL VOC (Everingham et al.,
2010) and LabelMe (Russell et al., 2007) are able to provide
more detailed annotations: for example, marking individual
object instances as being truncated. We chose not to provide
this level of detail in favor of annotating more images and
more object instances.
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AlphaGo: 
Next move prediction in Go
The model works from a 
319-dimensional input 
representing the board and 
uses a regression model to 
score potential next moves

Combined with Monte Carlo 
Tree Search, this “solved” 
Go much more quickly than 
anyone had been imagining



What is the current best 
classification method?
Here’s the winning recipe for Kaggle, 2015 on:
1. Careful data preprocessing, cleaning, augmentation, and 

feature engineering (this hasn’t gone away to win Kaggle!)
2.

a. For classic, structured data tables: Gradient-boosted decision 
trees (xgboost). Roughly, improved MART.

b. For “unstructured” text, images, video, speech: Neural networks
3. Ensembling/stacking of models, with careful cross-validation 

testing to find best final configuration



Accurate modeling of the human 
face manifold

Glow, a reversible generative model using invertible 1x1 convolutions, learns a 
latent space where certain directions capture attributes like age, hair color, 
and so on. Kingma & Dhariwal (2018) https://arxiv.org/abs/1807.03039



Audio generation
WaveNet: A deep generative model of raw audio 
DeepMind (van den Oord et al. 2016) https://arxiv.org/abs/1609.03499

Concatenative    Parametric      WaveNet

Quality: Mean Opinion Scores



1b. What is Deep Learning (DL)?
• Deep learning is a subfield of machine learning (statistics?)

• Most machine learning methods work 
well because of human-designed 
input features or representations
• SIFT or HOG features for vision
• MFCC or LPC features for speech
• Features about words parts (suffix, capitalized?)

for finding person or location names

• Machine learning becomes just optimizing
weights to best make a final prediction

3.3. APPROACH 35

Feature NER TF
Current Word ! !

Previous Word ! !

Next Word ! !

Current Word Character n-gram all length ≤ 6
Current POS Tag !

Surrounding POS Tag Sequence !

Current Word Shape ! !

Surrounding Word Shape Sequence ! !

Presence of Word in Left Window size 4 size 9
Presence of Word in Right Window size 4 size 9

Table 3.1: Features used by the CRF for the two tasks: named entity recognition (NER)
and template filling (TF).

can go beyond imposing just exact identity conditions). I illustrate this by modeling two
forms of non-local structure: label consistency in the named entity recognition task, and
template consistency in the template filling task. One could imagine many ways of defining
such models; for simplicity I use the form

PM(y|x)∝ ∏
λ∈Λ

θ#(λ ,y,x)
λ (3.1)

where the product is over a set of violation types Λ, and for each violation type λ we
specify a penalty parameter θλ . The exponent #(λ ,s,o) is the count of the number of times
that the violation λ occurs in the state sequence s with respect to the observation sequence
o. This has the effect of assigning sequences with more violations a lower probability.
The particular violation types are defined specifically for each task, and are described in
sections 3.4.1 and 3.5.2.

This model, as defined above, is not normalized, and clearly it would be expensive to do
so. As we will see in the discussion of Gibbs sampling, this will not actually be a problem
for us.



What is Deep Learning (DL)?
• In contrast to standard machine learning,
• Representation learning attempts 

to automatically learn good 
features or representations

• Deep learning algorithms learn multiple 
levels of representations (here: h1,h2,h3) 
and an output (h4)

• From “raw” inputs x 
(e.g. sound, pixels, characters, or words)

• Neural networks are the currently 
successful method for deep learning

• A.k.a. “Differentiable Programming”



Why is deep learning winning now?
• It’s hard work to manually find/design good features

• Hand-designed features are often over-specified, incomplete
• Learned Features are easy to adapt, fast to learn
• Deep learning provides a flexible framework for learning to represent 

information from the world

• Large amounts of training data favor deep learning
• Modern multi-core CPUs/GPUs favor deep learning

• An effective method for end-to-end system optimization
• Better context-modeling due to less independence assumptions
• Better regularization, optimization, transfer etc. methods



1c. From logistic regression to neural nets

Neural networks come with their own 
terminological baggage (it’s their history!)

But if you understand how logistic regression 
models work

Then you already understand the operation of a 
basic neuron!



Biological neural computation

16



An artificial neuron
Mathematical Model of a Neuron 

•  Neural%networks%deKine%functions%of%the%inputs%(hidden%features)%
•  ArtiKicial%neurons:%units%
•  Each%unit%activity%based%on%weighted%activity%of%preceding%units%

17

Inputs

Bias corresponding to intercept term

A single neuron
A computational unit with n (3) inputs

and 1 output
and parameters w, b



A neuron is essentially a binary logistic regression unit

hw,b(x) = f (w
Tx + b)

f (z) = 1
1+ e−z

w, b are the parameters of this neuron
i.e., this logistic regression model

b: We can have an “always on” 
feature, which gives a class prior, 
or separate it out, as a bias term

f = nonlinear activation function (e.g., logistic), 
w = weights, b = bias, h = hidden, x = inputs



A neural network = running several 
logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic 
regression functions, then we get a vector of outputs …

But we don’t have to decide 
ahead of time what variables 
these logistic regressions are 
trying to predict!



A neural network = running several 
logistic regressions at the same time

… which we can feed into another logistic 
regression function

It is the top-level loss 
function that will direct 
what the intermediate 
hidden nodes should 
compute, so as to do a 
good job at predicting 
the targets for the next 
layer, etc.



A neural network = running several logistic 
regressions at the same time

Before we know it, we have a multilayer neural 
network….



Matrix notation for a layer
We have 

In matrix notation

where f is applied element-wise:

a1

a2

a3

a1 = f (W11x1 +W12x2 +W13x3 + b1)
a2 = f (W21x1 +W22x2 +W23x3 + b2 )
etc.

z =Wx + b
a = f (z)

f ([z1, z2, z3]) = [ f (z1), f (z2 ), f (z3)]

W12

b3



Non-linearities (aka “f”): Why they’re needed

• Without non-linearities, deep neural 
networks can’t do anything more 
than a linear transform
• Extra layers can just be compiled down: 

W1 W2 x = Wx
• Deep nets with non-linearities and 

more layers can approximate more 
complex functions!

• In practice, don’t use logistic, but:

tanh                                    relu



Building a supervised classifier
• We have a training dataset consisting of samples {xi, yi}Ni=1

• xi are inputs, represented somehow as numeric features
• A vector of dimension d

• yi are labels (one of C classes) we try to predict

• Standard ML approach: assume xi are fixed, train logistic 
regression (or softmax regression) weights

• Predictions: For each x:



Details of the softmax classifier
A softmax is itself a neural network layer
1. Take the yth row of W and dot product that row with x:

Compute all fc for c = 1,…,C
2. Apply softmax function to get normalized probability:

= "#$%&'( $ )



Training with softmax and cross-
entropy error
• For each training example {x,y}, our objective is to 

maximize the probability of the correct class y

• Hence, we want to minimize the negative log 
probability (NLL) of that class

• This is our error or loss for the example



Softmax (≈ logistic) regression is not very powerful
• Softmax only learns linear decision boundaries

• à Unhelpful when
problem is complex

• It would be good to get 
these correct too!



The advantages of depth
• Neural networks can learn much more complex 

functions and nonlinear decision boundaries!

Of course, they could have too much capacity and overfit wildly, but the big result is:
We can train models with unbelievably many parameters and they predict better



1d. Training a neural net with 
Backpropagation (Rumelhart et al. 1986)

We fit a model by:
• Defining a loss on the output
• Working out gradient of example-wise loss wrt each parameter
• Adjust the parameters to shrink the loss
Done by “backpropagation”. Backpropagation is:
• Taking derivatives and using the chain rule
• Extra trick: get efficiency by re-using derivatives computed for 

higher layers in computing derivatives for lower layers!
• If computing the loss(xi, θ) is O(n) then efficient gradient computation is 

also O(n)

1/18/1829



Simple Chain Rule

30



Multiple Paths Chain Rule - General

…

31



Chain Rule in Computation Graph
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…
…

…

Computation graph: any directed acyclic graph
node = computation result
arc = computation dependency

= successors of 



Back-Prop in Multi-Layer Net

…
…

33

h = sigmoid(Vx)



Back-Prop in General Computation Graph

…
…

…

= successors of 

1. Fprop: visit nodes in topo-sort order 
- Compute value of node given predecessors

2. Bprop:
- initialize output gradient = 1 
- visit nodes in reverse order:
Compute gradient wrt each node using 
gradient wrt successors

In general out nets have regular layer-structure 
and so we are using matrices and Jacobians…

Single scalar output

34



Automatic Differentiation
• The gradient computation can be 

automatically inferred from the 
symbolic expression of the fprop.

• Each node type needs to know how 
to compute its output and how to 
compute the gradient wrt its inputs 
given the gradient wrt its output.

• Modern DL frameworks 
(Tensorflow, PyTorch, etc.) do 
backpropagation for you via 
automatic differentiation

35


