Introductory Overview Lecture The Deep Learning Revolution

Stanford

Christopher Manning & Russ Salakhutdinov Stanford University & Carnegie Mellon University JSM, 2018-07-29

Plan for the tutorial

- 1. Introduction to deep learning (Chris)
- 2. More details: model optimization, regularization, interpretation (Rus)
- 3. Unsupervised learning: Boltzmann machines, VAEs, GANs (Rus)
- 4. Extended neural net architectures and applications: convolution, recurrence, attention (Chris)

Plan for Part I

- a. The revolution: A sampling of the great things done with neural networks in the last few years
- b. What is deep learning?
- c. Introducing neural networks: From logistic regression to neural networks
- d. Training a neural network: The backpropagation algorithm

1a. The revolution

Deep learning has provided **empirically much better** methods for:

- Hard prediction problems
- Generative models of natural data distributions

Especially over high-dimensional data such as images, video, speech, text, and robotic control

Deep Learning for Speech

- The first breakthrough results of "deep learning" on large datasets happened in speech recognition
- Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition. Dahl et al. (2010)

Acoustic model Measuring WER	RT03S FSH	Hub5 SWB
Traditional (GMM) (2012)	27.4	23.6
Deep Learning (Dahl et al. 2012)	18.5 (-33%)	16.1 (-32%)
Xiong et al. (2017)		5.8

Phonemes/Words

Deep Learning for Computer Vision

First major focus of deep learning groups was computer vision

The breakthrough DL paper: ImageNet Classification with Deep Convolutional Neural Networks by Krizhevsky, Sutskever, & Hinton, 2012, U. Toronto. 37% error red.

cock

ruffed grouse

Persian cat Siamese cat

tabby

lvnx

Zeiler and Fergus (2013)

ImageNet Classification Challenge Error rates by year

AlphaGo: Next move prediction in Go

The model works from a 319-dimensional input representing the board and uses a regression model to score potential next moves

Combined with Monte Carlo Tree Search, this "solved" Go much more quickly than anyone had been imagining

What is the current best classification method?

Here's the winning recipe for Kaggle, 2015 on:

- Careful data preprocessing, cleaning, augmentation, and feature engineering (this hasn't gone away to win Kaggle!)
- 2.
- a. For classic, structured data tables: Gradient-boosted decision trees (xgboost). Roughly, improved MART.
- b. For "unstructured" text, images, video, speech: Neural networks
- 3. Ensembling/stacking of models, with careful cross-validation testing to find best final configuration

Accurate modeling of the human face manifold

Glow, a reversible generative model using invertible 1x1 convolutions, learns a latent space where certain directions capture attributes like age, hair color, and so on. Kingma & Dhariwal (2018) https://arxiv.org/abs/1807.03039

Audio generation

WaveNet: A deep generative model of raw audio DeepMind (van den Oord et al. 2016) https://arxiv.org/abs/1609.03499

1b. What is Deep Learning (DL)?

- Deep learning is a subfield of machine learning (statistics?)
- Most machine learning methods work well because of human-designed input features or representations
 - SIFT or HOG features for vision
 - MFCC or LPC features for speech
 - Features about words parts (suffix, capitalized?) for finding person or location names
- Machine learning becomes just optimizing weights to best make a final prediction

Feature	NER
Current Word	✓
Previous Word	✓
Next Word	✓
Current Word Character n-gram	all
Current POS Tag	✓
Surrounding POS Tag Sequence	✓
Current Word Shape	✓
Surrounding Word Shape Sequence	✓
Presence of Word in Left Window	size 4
Presence of Word in Right Window	size 4

What is Deep Learning (DL)?

- In contrast to standard machine learning,
- Representation learning attempts to automatically learn good features or representations
- Deep learning algorithms learn multiple levels of representations (here: h¹,h²,h³) and an output (h⁴)
- From "raw" inputs x
 (e.g. sound, pixels, characters, or words)
- Neural networks are the currently successful method for deep learning
- A.k.a. "Differentiable Programming"

Why is deep learning winning now?

- It's hard work to manually find/design good features
 - Hand-designed features are often over-specified, incomplete
 - Learned Features are easy to adapt, fast to learn
 - Deep learning provides a flexible framework for learning to represent information from the world
- Large amounts of training data favor deep learning
- Modern multi-core CPUs/GPUs favor deep learning
- An effective method for end-to-end system optimization
- Better context-modeling due to less independence assumptions
- Better regularization, optimization, transfer etc. methods

1c. From logistic regression to neural nets

Neural networks come with their own terminological baggage (it's their history!)

But if you understand how logistic regression models work

Then **you already understand** the operation of a basic neuron!

Biological neural computation

An artificial neuron

A neuron is essentially a binary logistic regression unit

f = nonlinear activation function (e.g., logistic), w = weights, b = bias, h = hidden, x = inputs

$$h_{w,b}(x) = f(w^{\mathsf{T}}x + b)$$

$$f(z) = \frac{1}{1 + e^{-z}}$$

b: We can have an "always on" feature, which gives a class prior, or separate it out, as a bias term

w, b are the parameters of this neuron i.e., this logistic regression model

A neural network = running several logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression functions, then we get a vector of outputs ...

But we don't have to decide ahead of time what variables these logistic regressions are trying to predict!

A neural network = running several logistic regressions at the same time

... which we can feed into another logistic regression function

It is the top-level loss function that will direct what the intermediate hidden nodes should compute, so as to do a good job at predicting the targets for the next layer, etc.

A neural network = running several logistic regressions at the same time

Before we know it, we have a multilayer neural network....

Matrix notation for a layer

We have

$$a_1 = f(W_{11}x_1 + W_{12}x_2 + W_{13}x_3 + b_1)$$

$$a_2 = f(W_{21}x_1 + W_{22}x_2 + W_{23}x_3 + b_2)$$
etc.

In matrix notation

$$z = Wx + b$$
$$a = f(z)$$

where f is applied element-wise:

$$f([z_1, z_2, z_3]) = [f(z_1), f(z_2), f(z_3)]$$

Non-linearities (aka "f"): Why they're needed

- Without non-linearities, deep neural networks can't do anything more than a linear transform
 - Extra layers can just be compiled down: $W_1 W_2 x = Wx$
- Deep nets with non-linearities and more layers can approximate more complex functions!
- In practice, don't use logistic, but:

Building a supervised classifier

- We have a training dataset consisting of samples $\{x_i, y_i\}_{i=1}^N$
- x_i are inputs, represented somehow as numeric features
 - A vector of dimension d
- y_i are labels (one of C classes) we try to predict
- Standard ML approach: assume x_i are fixed, train logistic regression (or softmax regression) weights $W \in \mathbb{R}^{C \times d}$
- Predictions: For each x:

$$p(y|x) = \frac{\exp(W_y.x)}{\sum_{c=1}^{C} \exp(W_c.x)}$$

Details of the softmax classifier

A softmax is itself a neural network layer

1. Take the y^{th} row of W and dot product that row with x:

$$W_{y}.x = \sum_{i=1}^{d} W_{yi}x_i = f_y$$

Compute all f_c for c = 1,...,C

2. Apply softmax function to get normalized probability:

$$p(y|x) = \frac{\exp(f_y)}{\sum_{c=1}^{C} \exp(f_c)} = softmax(f)_y$$

Training with softmax and crossentropy error

- For each training example {x,y}, our objective is to maximize the probability of the correct class y
- Hence, we want to minimize the negative log probability (NLL) of that class

This is our error or loss for the example

$$-\log p(y|x) = -\log \left(\frac{\exp(f_y)}{\sum_{c=1}^{C} \exp(f_c)}\right)$$

Softmax (≈ logistic) regression is not very powerful

Softmax only learns linear decision boundaries

The advantages of depth

 Neural networks can learn much more complex functions and nonlinear decision boundaries!

Of course, they could have too much capacity and overfit wildly, but **the big result is:** We can train models with unbelievably many parameters and they predict **better**

1d. Training a neural net with Backpropagation (Rumelhart et al. 1986)

We fit a model by:

- Defining a loss on the output
- Working out gradient of example-wise loss wrt each parameter
- Adjust the parameters to shrink the loss

Done by "backpropagation". Backpropagation is:

- Taking derivatives and using the chain rule
- Extra trick: get efficiency by re-using derivatives computed for higher layers in computing derivatives for lower layers!
 - If computing the loss(x_i , θ) is O(n) then efficient gradient computation is also O(n)

29 1/18/18

Simple Chain Rule

$$z = f(y)$$

$$y$$

$$y$$

$$y = g(x)$$

$$y$$

$$\frac{\partial z}{\partial y}$$

$$\Delta z = \frac{\partial z}{\partial y} \Delta y$$

$$\Delta z = \frac{\partial z}{\partial x} \Delta x$$

$$\Delta z = \frac{\partial z}{\partial y} \frac{\partial y}{\partial x} \Delta x$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial x}$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial x}$$

Multiple Paths Chain Rule - General

Chain Rule in Computation Graph

Computation graph: any directed acyclic graph node = computation result arc = computation dependency

 $\{y_1,\,y_2,\;\ldots\;y_n\}$ successors of $\,x\,$

$$\frac{\partial z}{\partial x} = \sum_{i=1}^{n} \frac{\partial z}{\partial y_i} \frac{\partial y_i}{\partial x}$$

Back-Prop in Multi-Layer Net

Back-Prop in General Computation Graph

- 1. Fprop: visit nodes in topo-sort order
 - Compute value of node given predecessors
- 2. Bprop:
 - initialize output gradient = 1
 - visit nodes in reverse order:
 Compute gradient wrt each node using gradient wrt successors

$$\{y_1,\,y_2,\,\ldots\,y_n\}$$
 = successors of $\,x\,$

$$\frac{\partial z}{\partial x} = \sum_{i=1}^{n} \frac{\partial z}{\partial y_i} \frac{\partial y_i}{\partial x}$$

In general out nets have regular layer-structure and so we are using matrices and Jacobians...

Automatic Differentiation

- The gradient computation can be automatically inferred from the symbolic expression of the fprop.
- Each node type needs to know how to compute its output and how to compute the gradient wrt its inputs given the gradient wrt its output.
- Modern DL frameworks
 (Tensorflow, PyTorch, etc.) do backpropagation for you via automatic differentiation