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Unsupervised Learning!

Non-probabilistic Models!
Ø  Sparse Coding!
Ø  Autoencoders!
Ø  Others (e.g. k-means)!
!

Explicit Density p(x)!

Probabilistic Generative) 
Models!

Tractable Models!
Ø  Mixture of Gaussians!
Ø  Autoregressive Models!
Ø  Normalizing Flows!
Ø  Many others!

Non-Tractable Models!
Ø  Boltzmann Machines!
Ø  Variational 

Autoencoders!
Ø  Helmholtz Machines!
Ø  Many others…!

Ø  Generative Adversarial 
Networks!

Ø  Moment Matching 
Networks!

Implicit Density!



Statistical Generative Models  
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Grover and Ermon, DGM Tutorial 

Prior Knowledge!

+!

Learning!Data!
!

Sampling from p(x) generates new images:!

Image x! probability p(x)!
A probability 
distribution!

p(x)!

Model family, loss function, 
optimization algorithm, etc.!



Statistical Generative Models  
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(Goodfellow 2018)

Generative Modeling: 
Sample Generation

Training Data Sample Generator
(CelebA) (Karras et al, 2017)Training Data(CelebA)!

!
Model Samples (Karras et.al., 2018)!
!

(Goodfellow 2018)

3.5 Years of Progress on Faces

2014 2015 2016 2017

(Brundage et al, 2018)

4 years of progression on Faces!
!

Brundage et al., 2017!
!



Conditional Generation  
�  Conditional generative model P(zebra images| horse images)!
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Zhou el al., Cycle GAN 2017 

�   Style Transfer!

Monet Input Image Van Gogh 



Conditional Generation  
�  Conditional generative model P(zebra images| horse images)!
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�  Failure Case!

Zhou el al., Cycle GAN 2017 



Talk Roadmap 
�  Fully Observed Models!

7!

�  Undirected Deep Generative Models!
�  Restricted Boltzmann Machines (RBMs), !
�  Deep Boltzmann Machines (DBMs)!

�  Directed Deep Generative Models!
�  Variational Autoencoders (VAEs)!
�  Normalizing Flows!

�  Generative Adversarial Networks (GANs)!



�  Density Estimation by Autoregression!

Fully Observed Models 

NADE (Uria 2013), MADE (Germain 2017), MAF 
(Papamakarios 2017), PixelCNN (van den Oord, et al, 2016) 

8!

�  Ordering of variables is crucial !

Each conditional can be a 
deep neural network!
 !



�  Density Estimation by Autoregression !

Fully Observed Models 
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PixelCNN (van den Oord, et al, 2016)!

NADE (Uria 2013), MADE (Germain 2017), MAF 
(Papamakarios 2017), PixelCNN (van den Oord, et al, 2016) 
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WaveNet 
�  Generative Model of Speech Signals !

van den Oord et al, 2016 

Quality: Mean Opinion Scores!



Talk Roadmap 
�  Fully Observed Models!
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�  Undirected Deep Generative Models!
�  Restricted Boltzmann Machines (RBMs), !
�  Deep Boltzmann Machines (DBMs)!

�  Directed Deep Generative Models!
�  Variational Autoencoders (VAEs)!
�  Normalizing Flows!

�  Generative Adversarial Networks (GANs)!



Restricted Boltzmann Machines 
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Image      visible variables!

  hidden variables!
Pairwise! Unary! Unary!

Markov random fields, Boltzmann machines, log-linear models. !

�  RBM is a Markov Random Field with!
�  Stochastic binary visible variables!
�  Stochastic binary hidden variables !
�  Bipartite connections!



Maximum Likelihood Learning 

13!

Image      visible variables!

  hidden variables!

�  Maximize log-likelihood objective:!

Difficult to compute: exponentially many configurations!

�  Derivative of the log-likelihood:!



Learning Features  

14!

Learned W:  “edges”!
Subset of 1000 features!

=! ….!

New Image:!

Observed  Data !
Subset of 25,000 characters!

Logistic Function: Suitable for 
modeling binary images!



RBMs for Real-valued & Count Data 
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Learned features (out of 10,000)!4 million unlabelled images!

Learned features: ``topics’’!
russian!
russia!
moscow!
yeltsin!
soviet!

clinton!
house!
president!
bill!
congress!

computer!
system!
product!
software!
develop!

trade!
country!
import!
world!
economy!

stock!
wall!
street!
point!
dow!

Reuters dataset: 
804,414 unlabeled 
newswire stories!
Bag-of-Words !



Deep Boltzmann Machines  
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Image!

Low-level features:!
Edges!

Input: Pixels!

Built from unlabeled inputs. !

(Salakhutdinov 2008, Salakhutdinov & Hinton 2009)



Deep Boltzmann Machines  
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Image!

Higher-level features:!
Combination of edges!

Low-level features:!
Edges!

Input: Pixels!

Built from unlabeled inputs. !

Learn simpler representations,!
then compose more complex ones!

(Salakhutdinov 2008, Salakhutdinov & Hinton 2009)



Model Formation  

18!

�  Dependencies between hidden variables!
�  All connections are undirected!

h3

h2

h1

v

W3

W2

W1

Same as RBMs!
model parameters!

�  Maximum Likelihood Learning:!

�  Both expectations are intractable !

!



Data!

Approximate Learning 

19!

h3

h2

h1

v

W3

W2

W1

�  Maximum Likelihood Learning:!



Approximate Learning 

20!

h3

h2

h1

v

W3

W2

W1 Variational!
 Inference!

 !

Stochastic Approximation !
(MCMC-based)!

�  Maximum Likelihood Learning:!



Good Generative Model? 

21!

�  Handwritten Characters !



Good Generative Model? 
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�  CIFAR Dataset!

DAP Report

(a) Samples on CIFAR10 (32⇥ 32) (b) Samples on ImageNet64 (64⇥ 64)

Figure 3: Samples generated by our model trained on CIFAR10 (left) and ImageNet64 (right).

properly evaluated as a density model. Additionally, the flexibility of our framework could also
accommodate potential future improvements.

5.3 ImagetNet64

We next use the 64⇥ 64 ImageNet [26] to test the scalability of our model. Figure 3b, shows samples
generated by our model. Although samples are far from being realistic and have strong artifacts,
many of them look coherent and exhibit a clear concept of foreground and background, which
demonstrates that our method has a strong potential to model high resolution images. The density
estimation performance of this model is 4.92 bits/dim.

6 Conclusion

In this paper we presented a novel framework for constructing deep generative models with RBM
priors and develop e�cient learning algorithms to train such models. Our models can generate
appealing images of natural scenes, even in the large-scale setting, and, more importantly, can be
evaluated quantitatively. There are also several interesting directions for further extensions. For
example, more expressive priors, such as those based on deep Boltzmann machines [3], can be used

11 of 19

Training! Samples!



Learning Part-Based Representations 
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Deep Belief Network!

Trained on face images.!

Object Parts!

Groups of parts!

Lee, Grosse, Ranganath, Ng, ICML 2009 

v

h2

h1

h3

W1

W3

W2



Learning Part-Based Representations 

24!

Faces	 Cars	 Elephants	 Chairs	

Lee, Grosse, Ranganath, Ng, ICML 2009 



Talk Roadmap 
�  Fully Observed Models!

25!

�  Undirected Deep Generative Models!
�  Restricted Boltzmann Machines (RBMs), !
�  Deep Boltzmann Machines (DBMs)!

�  Directed Deep Generative Models!
�  Variational Autoencoders (VAEs)!
�  Normalizing Flows!

�  Generative Adversarial Networks (GANs)!



Helmholtz Machines 

26!

Input data!

h3

h2

h1

v

W3

W2

W1

Generative 
Process!

Approximate 
Inference!

�  Hinton, G. E., Dayan, P., Frey, B. J. and Neal, R., Science 1995!

�  Kingma & Welling, 2014!
�  Rezende, Mohamed, Daan, 2014!
�  Mnih & Gregor, 2014 !
�  Bornschein & Bengio, 2015!
�  Tang & Salakhutdinov, 2013  !



Helmholtz Machines 

27!

Input data!

h3

h2

h1

v

W3

W2

W1

Approximate 
Inference! h3

h2

h1

v

W3

W2

W1

Deep Boltzmann MachineHelmholtz Machine

Generative 
Process!



Deep Directed Generative Models 
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Code Z �  Latent Variable Models!

�  Conditional distributions are 
parameterized by deep neural 
networks!

Dreal 

�  Generative!
�  Top-Down!
�  P(x|z)!

�  Recognition!
�  Bottom-up!
�  Q(z|x)!



Directed Deep Generative Models  

�  Directed Latent Variable Models with Inference Network!

29!

�  Maximum log-likelihood objective!

�  Marginal log-likelihood is intractable:!

�  Key idea: Approximate true posterior p(z|x) with a simple, tractable 
distribution q(z|x) (inference/recognition network). !

Grover and Ermon, DGM Tutorial 



Variational Autoencoders (VAEs) 

�  The VAE defines a generative process in terms of ancestral sampling through a 
cascade of hidden stochastic layers: !

30!

Input data!

h3

h2

h1

v

W3

W2

W1

Generative Process! Each conditional term denotes a 
nonlinear relationship !

�  L is the number of stochastic layers!
�  Sampling and probability evaluation is 

tractable for each !



Variational Autoencoders (VAEs) 

�  Single stochastic (Gaussian) layer, followed by many deterministic layers!
!

31!

Deep neural network parameterized by θ.
(Can use different noise models)

Deep neural network parameterized by φ.

z !



Variational Bound 

�  VAE is trained to maximize the variational lower bound:!

32!

Tightness Condition:!

�  Trading off the data log-likelihood and the KL divergence from the true posterior!
�  Hard to optimize the variational bound with respect to the q recognition network (high variance) !
�  Key idea of Kingma and Welling is to use reparameterization trick!



Reparameterization   

�  Assume that the recognition distribution is Gaussian:!

33!

�   The recognition distribution can be expressed as a deterministic mapping!

Deterministic Encoder!
 !

�  Distribution of ε does not depend on φ!

�  Alternatively, we can express this in term of 
auxiliary variable:  !



Computing Gradients 

�  The gradients of the variational bound w.r.t the recognition (similar w.r.t the 
generative) parameters:!

34!

Gradients can be 
computed by backprop!

The mapping z is a deterministic 
neural net for fixed ε     !
 !

Autoencoder!



Importance Weighted Autoencoder 

�  Improve VAE by using the following k-sample importance weighting of 
the log-likelihood: !

35!

unnormalized 
importance weights !
 !

�  where multiple z are sampled from the 
recognition network.!

Burda, Grosse, Salakhutdinov, ICLR 2016,  
Mnih & Rezende, ICML 2016 

�  Can improve the tightness of the bound. !



Talk Roadmap 
�  Fully Observed Models!
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�  Undirected Deep Generative Models!
�  Restricted Boltzmann Machines (RBMs), !
�  Deep Boltzmann Machines (DBMs)!

�  Directed Deep Generative Models!
�  Variational Autoencoders (VAEs)!
�  Normalizing Flows!

�  Generative Adversarial Networks (GANs)!



Generative Adversarial Networks (GAN) 

�  Implicit generative model for !
an unknown target density p(x)!

�  Converts sample from a known noise !
density pZ(z) to the target p(x)!

37!

Unknown target density p(x) of !
data over domain    , e.g. !

Distribution of generated samples !
should follow target density p(x)!Noise density pZ(z) over space!

Goodfellow et al, 2014 [Slide Credit: Manzil Zaheer]  !



GAN Formulation 

�  GAN consists of two components!

38!

Random 
input!

Generator!

Goal: Produce samples !
indistinguishable from true data!

Discriminator!

Goal: Distinguish !
true and generated!
data apart!

Goodfellow et al, 2014 [Slide Credit: Manzil Zaheer]  !



GAN Formulation: Discriminator 

�  Discriminator’s objective: Tell real and generated data apart like a classifier!

39!

Discriminator!

Random 
input!

Generator!

D outputs:!

     real!

     generated!

Real Data p(x)!

pZ(z)!

Goodfellow et al, 2014 [Slide Credit: Manzil Zaheer]  !



GAN Formulation: Generator 

�  Generator’s objective: Fool the best discriminator!

40!

Discriminator!

D outputs:!

     real!

     generated!

Real Data p(x)!

Random 
input!

Generator!

pZ(z)!

Goodfellow et al, 2014 [Slide Credit: Manzil Zaheer]  !



GAN Formulation: Optimization 

�  Overall GAN optimization!

�  The generator-discriminator are iteratively updated using SGD to find 
“equilibrium” of a “min-max objective” like a game!

41!

[Slide Credit: Manzil Zaheer]  !



Wasserstein GAN  

�  WGAN optimization!

�  Difference in expected output on real vs. generated images!
�  Generator attempts to drive objective ≈ 0!

�  More stable optimization !

42!

D outputs:!

     real!

     generated!

Arjovsky et al., 2017 

Compare to training DBMs!



LSUN Bedroom: Samples 
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Radford et al., 2015 



CIFAR Dataset 
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Training! Samples!

Salimans et. al., 2016 



ImageNet: Cherry-Picked Samples 
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Slide Credit: Ian Goodfellow!

�  Open Question: How can we quantitatively evaluate these models! !



Modelling Point Cloud Data 
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PC-GAN!PC-GAN!Data! Data!AAE! AAE!

Zaheer et al. Point Cloud GAN 2018 



Interpolation in Latent Space 
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z!

x!

z!

x!

Chair! Table!

Interpolate!

Zaheer et al. Point Cloud GAN 2018 



Normalizing Flows 

�  Directed Latent Variable Invertible models!

48!

�  The mapping between x and z is deterministic and 
invertible:  !

�  Use change-of-variables to relate densities between z and x!

Grover and Ermon DGM Tutorial, NICE (Dinh et al. 2014),  
Real NVP (Dinh et al. 2016) 
!



Normalizing Flows 

�  Invertible transformations can be composed: !

49!

�  Planar Flows!

A flow of transformations
Invertible	transformations	can	be	composed	with	each	other

Planar	Flows
7 = _ + |ℎ(}~_ + p)

� = 0 � = 1 � = 2 � = 10

Rezende &	Mohamed,	2016
IJCAI-ECAI	2018	TUTORIAL:	DEEP	GENERATIVE	MODELS 64

A flow of transformations
Invertible	transformations	can	be	composed	with	each	other

Planar	Flows
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A flow of transformations
Invertible	transformations	can	be	composed	with	each	other

Planar	Flows
7 = _ + |ℎ(}~_ + p)

� = 0 � = 1 � = 2 � = 10

Rezende &	Mohamed,	2016
IJCAI-ECAI	2018	TUTORIAL:	DEEP	GENERATIVE	MODELS 64

Rezendre and Mohamed, 2016, Grover and Ermon DGM Tutorial 

Rezendre and Mohamed, 2016 



Normalizing Flows 

�  Maximum log-likelihood objective!

�  Exact log-likelihood evaluation via inverse transformations !
�  Sampling from the model !

�  Inference over the latent representations:!

50!

Learning and inference
• Learningmaximizes	the	model	likelihood	over	the	dataset	Q

• Exact	likelihood	evaluation	via	inverse	transformations
• Ancestral	sampling	via	forward	transformations

• Latent	representations	inferred	via	inverse	transformations

IJCAI-ECAI	2018	TUTORIAL:	DEEP	GENERATIVE	MODELS 65

Learning and inference
• Learningmaximizes	the	model	likelihood	over	the	dataset	Q

• Exact	likelihood	evaluation	via	inverse	transformations
• Ancestral	sampling	via	forward	transformations

• Latent	representations	inferred	via	inverse	transformations

IJCAI-ECAI	2018	TUTORIAL:	DEEP	GENERATIVE	MODELS 65
Rezendre and Mohamed, 2016, Grover and Ermon DGM Tutorial 



Example: GLOW 

�  Generative Flow with Invertible 1x1 Convolutions !
    https://blog.openai.com/glow/!
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Age! Hair 
Color!

Smile! Beard!

Image!

z1! zk!

x!

Latent factors of variation!

Kingma, Dhariwal, 2018 



Example: GLOW 

52!

Increase Age!

Decrease Age!

Input!

https://blog.openai.com/glow/!
!

Add Beard !Smile!

Remove Beard !

Input!
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Thank you !
!


