Introductory Overview Lecture The Deep Learning Revolution Part II: Optimization, Regularization

Russ Salakhutdinov

Machine Learning Department
Carnegie Mellon University
Canadian Institute for Advanced Research

Used Resources

▶ Some material and slides for this lecture were borrowed from

- Hugo Larochelle's class on Neural Networks:
 https://sites.google.com/site/deeplearningsummerschool2016/
- ► Grover and Ermon IJCA-ECA Tutorial on Deep Generative Models https://ermongroup.github.io/generative-models/

Supervised Learning

▶ Given a set of labeled training examples: $\{\mathbf{x}^{(t)}, y^{(t)}\}$, we perform Empirical Risk Minimization

$$\underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \frac{1}{T} \sum_{t} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)}) + \lambda \Omega(\boldsymbol{\theta})$$
Loss function Regularizer

where

- $f(\mathbf{x}^{(t)}; \theta)$ is a (non-linear) function mapping inputs to outputs, parameterized by θ -> Non-convex optimization
- $lacksquare l(\mathbf{f}(\mathbf{x}^{(t)}; oldsymbol{ heta}), y^{(t)})$ is the loss function
- $m \Omega(m heta)$ is a regularization term

Supervised Learning

lacktriangleright Given a set of labeled training examples: $\{\mathbf{x}^{(t)},y^{(t)}\}$, we perform Empirical Risk Minimization

$$\underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \frac{1}{T} \sum_{t} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)}) + \lambda \Omega(\boldsymbol{\theta})$$
Loss function
Regularizer

- ► Loss Functions:
 - ▶ For classification tasks, we can use Cross-Entropy Loss
 - ▶ For regression tasks, we can use Squared Loss

Training

► Empirical Risk Minimization

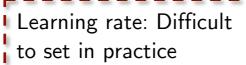
$$\underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \frac{1}{T} \sum_{t} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)}) + \lambda \Omega(\boldsymbol{\theta})$$
Loss function
Regularizer

- ► To train a neural network, we need:
 - ▶ Loss Function: $l(\mathbf{f}(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)})$
 - lacktriangledown A procedure to compute its gradients: $abla_{m{ heta}}l(\mathbf{f}(\mathbf{x}^{(t)};m{ heta}),y^{(t)})$
 - lacktrianglerize Regularizer and its gradient: $\Omega(oldsymbol{ heta})$, $abla_{oldsymbol{ heta}}\Omega(oldsymbol{ heta})$

Stochastic Gradient Descent (SGD)

- ▶ Perform updates after seeing each example:
 - Initialize: $\boldsymbol{\theta} \equiv \{\mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \dots, \mathbf{W}^{(L+1)}, \mathbf{b}^{(L+1)}\}$
 - For t=1:T
 - for each training example $(\mathbf{x}^{(t)}, y^{(t)})$

$$\Delta = -\nabla_{\boldsymbol{\theta}} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)}) - \lambda \nabla_{\boldsymbol{\theta}} \Omega(\boldsymbol{\theta})$$
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \Delta$$



Mini-batch, Momentum

- ▶ Make updates based on a mini-batch of examples (instead of a single example):
 - ▶ The gradient is the average regularized loss for that mini-batch
 - ► More accurate estimate of the gradient
 - ▶ Leverage matrix/matrix operations, which are more efficient

► Momentum: Use an exponential average of previous gradients:

$$\overline{\nabla}_{\boldsymbol{\theta}}^{(t)} = \nabla_{\boldsymbol{\theta}} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)}) + \beta \overline{\nabla}_{\boldsymbol{\theta}}^{(t-1)}$$

► Can get pass plateaus more quickly, by "gaining momentum"

Adapting Learning Rates

- ▶ Updates with adaptive learning rates ("one learning rate per parameter")
 - Adagrad: learning rates are scaled by the square root of the cumulative sum of squared gradients

$$\overline{\nabla}_{\theta}^{(t)} = \frac{\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})}{\sqrt{\gamma^{(t)} + \epsilon}} \qquad \gamma^{(t)} = \gamma^{(t-1)} + \left(\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})\right)^{2}$$

▶ RMSProp: instead of cumulative sum, use exponential moving average

$$\overline{\nabla}_{\theta}^{(t)} = \frac{\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})}{\sqrt{\gamma^{(t)} + \epsilon}} \qquad \gamma^{(t)} = \beta \gamma^{(t-1)} + (1 - \beta) \left(\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)}) \right)^{2}$$

► Adam: essentially combines RMSProp with momentum

Regularization

$$\underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \frac{1}{T} \sum_{t} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)}) + \lambda \Omega(\boldsymbol{\theta})$$

► L2 regularization:

$$\Omega(\boldsymbol{\theta}) = \sum_{k} \sum_{i} \sum_{j} \left(W_{i,j}^{(k)} \right)^{2} = \sum_{k} ||\mathbf{W}^{(k)}||_{F}^{2}$$

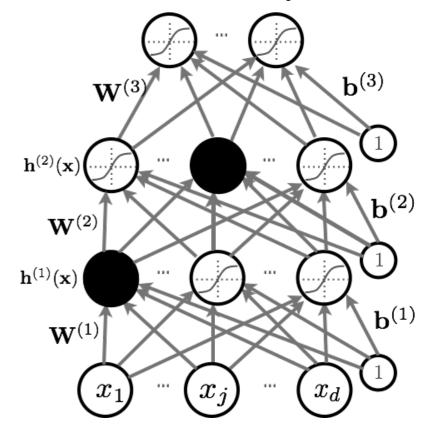
▶ L1 regularization:

$$\Omega(\boldsymbol{\theta}) = \sum_{k} \sum_{i} \sum_{j} |W_{i,j}^{(k)}|$$

Dropout

- ▶ Key idea: Cripple neural network by removing hidden units stochastically
 - ► Each hidden unit is set to 0 with probability 0.5
 - ► Hidden units cannot co-adapt to other units
 - ► Hidden units must be more generally useful

► Could use a different dropout probability, but 0.5 usually works well



Dropout

- ► Use random binary masks m^(k)
 - ► Layer pre-activation for k>0

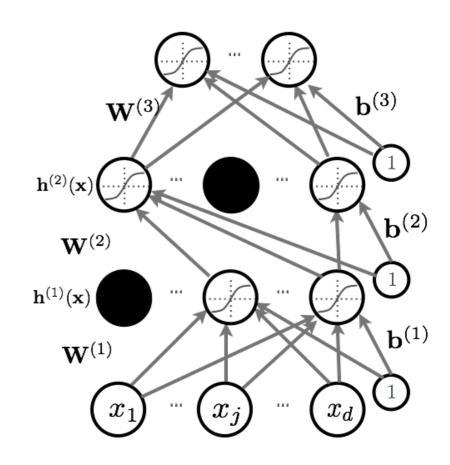
$$\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$$

▶ hidden layer activation (k=1 to L):

$$\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x})) \odot \mathbf{m}^{(k)}$$

▶ Output activation (k=L+1)

$$\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$$

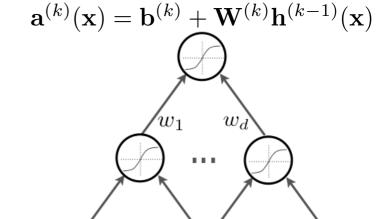


Dropout at Test Time

- ▶ At test time, we replace the masks by their expectation
 - ▶ This is simply the constant vector 0.5 if dropout probability is 0.5
- ► Beats regular backpropagation on many datasets and has become a standard practice
- ► Ensemble: Can be viewed as a geometric average of exponential number of networks.

Batch Normalization

- ▶ Normalizing the inputs will speed up training (Lecun et al. 1998)
 - Could normalization be useful at the level of the hidden layers?
- ▶ Batch normalization is an attempt to do that (loffe and Szegedy, 2015)
 - each hidden unit's pre-activation is normalized (mean subtraction, stddev division)
 - during training, mean and stddev is computed for each mini-batch
 - backpropagation takes into account the normalization
 - ▶ at test time, the global mean and stddev is used
- ▶ Why normalize the pre-activation?
 - ▶ helps keep the pre-activation in a non-saturating regime
 - → helps with vanishing gradient problem



Batch Normalization

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
             Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
  \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i
                                                               // mini-batch mean
   \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 // mini-batch variance
                                                                          // normalize
   y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma, eta}(x_i)
                                                                  // scale and shift
```

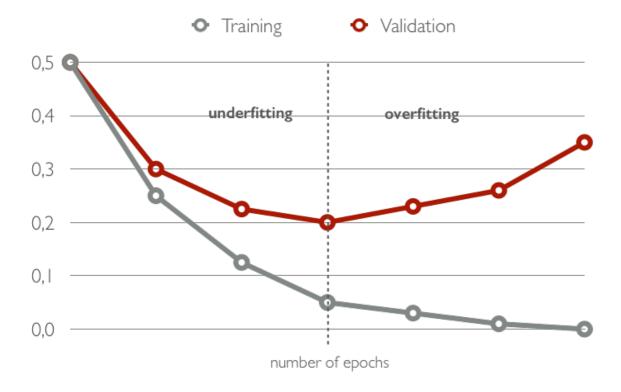
Learned linear transformation to adapt to non-linear activation function (γ and β are trained)

Model Selection

- ► Training Protocol:
 - lacktriangleright Train your model on the Training Set $\mathcal{D}^{\mathrm{train}}$
 - lacktriangleright For model selection, use Validation Set $\mathcal{D}^{\mathrm{valid}}$
 - Hyper-parameter search: hidden layer size, learning rate, number of iterations, etc.
 - ullet Estimate generalization performance using the Test Set $\mathcal{D}^{ ext{test}}$
- Generalization is the behavior of the model on unseen examples.

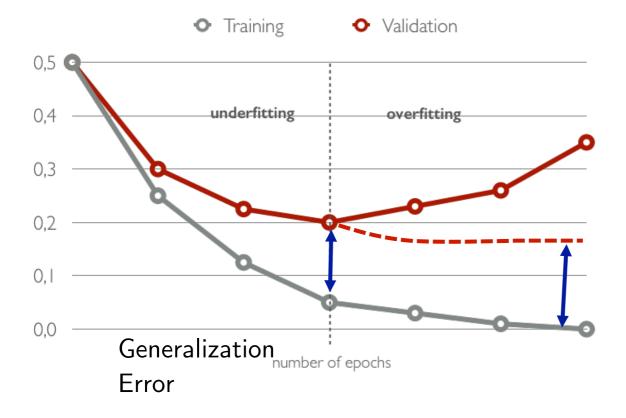
Early Stopping

► To select the number of epochs, stop training when validation set error increases → Large Model can Overfit



But in Practice

► To select the number of epochs, stop training when validation set error increases → Large Model can Overfit



Implicit Regularization

- Optimization plays a crucial role in generalization
- Generalization ability is not controlled by network size but rather by some other implicit control

Behnam Neyshabur, PhD thesis 2017 Neyshabur et al., Survey Paper, 2017

Best Practice

- ▶ Given a dataset D, pick a model so that:
 - ▶ You can achieve 0 training error → Overfit on the training set.
- ► Regularize the model (e.g. using Dropout).
- ► Initialize parameters so that each feature across layers has similar variance. Avoid units in saturation.

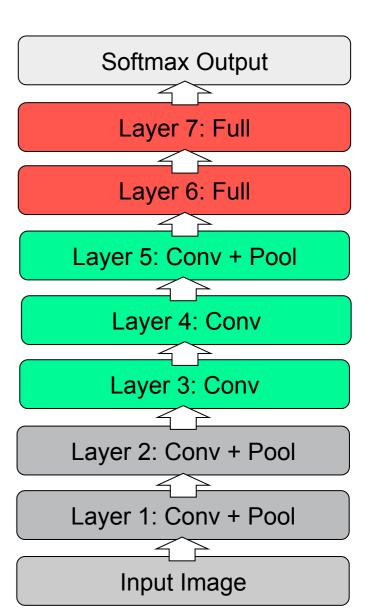
► SGD with momentum, batch-normalization, and dropout usually works very well.

Choosing Architecture

- ► How can we select the right architecture:
 - ▶ Manual tuning of features is now replaced with the manual tuning of architectures
- Many hyper-parameters:
 - Number of layers, number of feature maps
- ► Cross Validation
- ► Grid Search (need lots of GPUs)
- ► Smarter Strategies
 - ► Bayesian Optimization

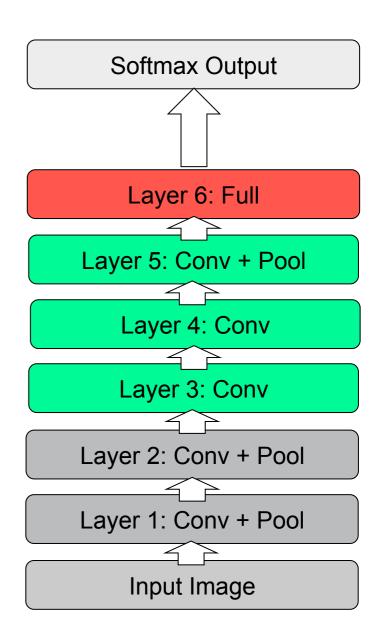
AlexNet

- ▶ 8 layers total
- ► Trained on Imagenet dataset [Deng et al. CVPR'09]
- ▶ 18.2% top-5 error



AlexNet

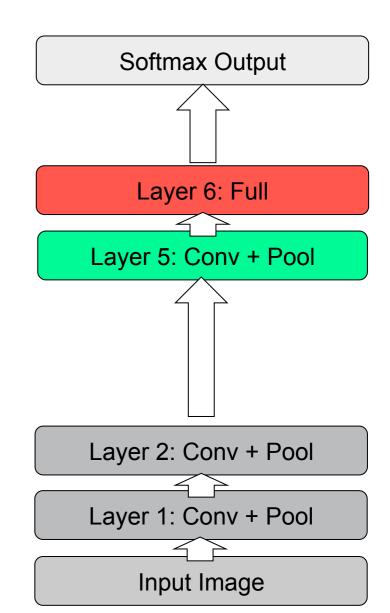
- ► Remove top fully connected layer 7
- ► Drop ~16 million parameters
- ► Only 1.1% drop in performance!



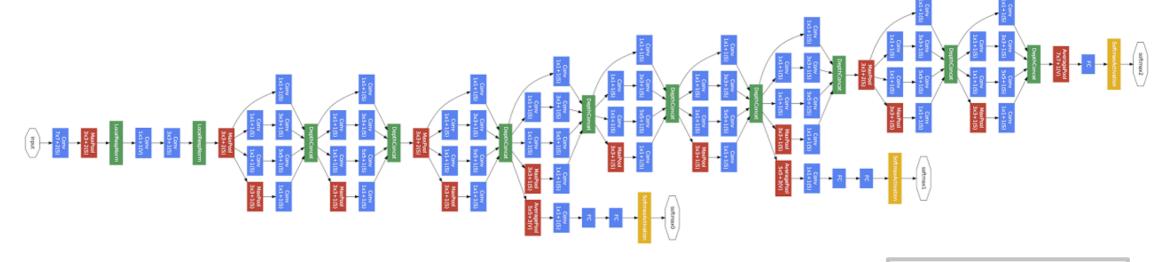
AlexNet

- ▶ Remove layers 3 4,6 and 7
- ► Drop ~50 million parameters
- ▶ 33.5% drop in performance!

▶ Depth of the network is the key



GoogleNet



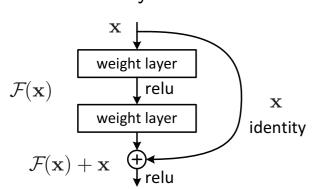
► 24 layer model

Residual Networks

▶ Really, really deep convnets do not train well, e.g. CIFAR10:



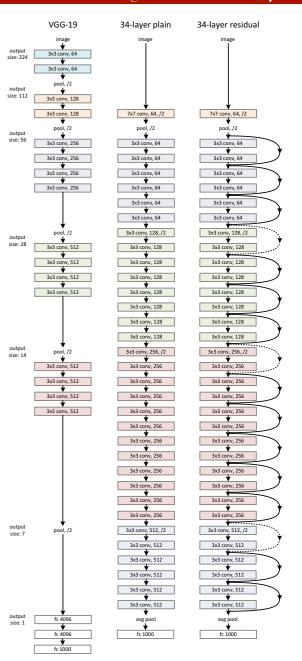
- ▶ Key idea: introduce "pass through" into each layer
- Thus only residual now needs to be learned:



method	top-1 err.	top-5 err.
VGG [41] (ILSVRC'14)	-	8.43 [†]
GoogLeNet [44] (ILSVRC'14)	-	7.89
VGG [41] (v5)	24.4	7.1
PReLU-net [13]	21.59	5.71
BN-inception [16]	21.99	5.81
ResNet-34 B	21.84	5.71
ResNet-34 C	21.53	5.60
ResNet-50	20.74	5.25
ResNet-101	19.87	4.60
ResNet-152	19.38	4.49

Table 4. Error rates (%) of **single-model** results on the ImageNet validation set (except † reported on the test set).

With ensembling, 3.57% top-5 test error on ImageNet



(He, Zhang, Ren, Sun, CVPR 2016)