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Used Resources 
�  Some material and slides for this lecture were borrowed from!
 !

� Hugo Larochelle’s class on Neural Networks:!
https://sites.google.com/site/deeplearningsummerschool2016/!

!
� Grover and Ermon IJCA-ECA Tutorial on Deep Generative Models!

https://ermongroup.github.io/generative-models/!
!
!
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Supervised Learning 
�  Given a set of labeled training examples:                  , we perform Empirical 

Risk Minimization!
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where!

�                 is a (non-linear) function mapping inputs to outputs, parameterized 
by θ -> Non-convex optimization

�                            is the loss function!

�           is a regularization term !
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Loss function ! Regularizer!
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Supervised Learning 
�  Given a set of labeled training examples:                  , we perform Empirical 

Risk Minimization!
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�  Loss Functions:!
�  For classification tasks, we can use Cross-Entropy Loss!
�  For regression tasks, we can use Squared Loss!
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Training 
�  Empirical Risk Minimization!
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�  To train a neural network, we need:!
�  Loss Function:!

�  A procedure to compute its gradients:!

�  Regularizer and its gradient:          , !
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Stochastic Gradient Descent (SGD)  
�  Perform updates after seeing each example: !

6!

-  Initialize: !
!

-  for each training example !
!
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!

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T ))

•
p(x(1)

, . . . ,x(T )) =
Y

t

p(x(t))

• T�1
T

b⌃ = 1
T

P
t
(x(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain = {(x(t)
, y

(t))}

• f(x;✓)

• Dvalid Dtest

•
argmin

✓

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1
T

P
t
r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• ✓  ✓ +�

• {x 2 Rd | rxf(x) = 0}

• v>r2
xf(x)v > 0 8v

• v>r2
xf(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• (x(t)
, y

(t))

5

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T ))

•
p(x(1)

, . . . ,x(T )) =
Y

t

p(x(t))

• T�1
T

b⌃ = 1
T

P
t
(x(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain = {(x(t)
, y

(t))}

• f(x;✓)

• Dvalid Dtest

•
argmin

✓

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1
T

P
t
r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• ✓  ✓ +�

• {x 2 Rd | rxf(x) = 0}

• v>r2
xf(x)v > 0 8v

• v>r2
xf(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

5

•
argmin

✓

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1
T

P
t
r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• ✓  ✓ + ↵ �

• {x 2 Rd | rxf(x) = 0}

• v>r2
xf(x)v > 0 8v

• v>r2
xf(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• (x(t)
, y

(t))

• f
⇤

f

6

Learning rate: Difficult 
to set in practice !

!



Mini-batch, Momentum  

7!

�  Make updates based on a mini-batch of examples (instead of a single example):!
�  The gradient is the average regularized loss for that mini-batch!
�  More accurate estimate of the gradient!
�  Leverage matrix/matrix operations, which are more efficient!

�  Momentum: Use an exponential average of previous gradients:!

!
�  Can get pass plateaus more quickly, by ‘‘gaining momentum’’!
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Adapting Learning Rates 
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�  Updates with adaptive learning rates (“one learning rate per parameter”)!
�  Adagrad: learning rates are scaled by the square root of the cumulative sum of squared 

gradients!

�  RMSProp: instead of cumulative sum, use exponential moving average!

�  Adam: essentially combines RMSProp with momentum!

!
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Regularization 
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�  L2 regularization:!

�  L1 regularization:!
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Dropout 
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�  Key idea: Cripple neural network by removing hidden units stochastically!

�  Each hidden unit is set to 0 with probability 0.5!

�  Hidden units cannot co-adapt to other units!

�  Hidden units must be more generally useful!

!
�  Could use a different dropout probability, but 

0.5 usually works well!

!

Srivastava et al., JMLR 2014 



Dropout 
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�  Use random binary masks m(k) !
!
�  Layer pre-activation for k>0!

�  hidden layer activation (k=1 to L):!

�  Output activation (k=L+1)!

!
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Dropout at Test Time 

12!

�  At test time, we replace the masks by their expectation!
�  This is simply the constant vector 0.5 if dropout probability is 0.5!

�  Beats regular backpropagation on many datasets and has become a standard 
practice !

�  Ensemble: Can be viewed as a geometric average of exponential number of 
networks.!



Batch Normalization 

13!

�  Normalizing the inputs will speed up training (Lecun et al. 1998)!
�  Could normalization be useful at the level of the hidden layers?!

�  Batch normalization is an attempt to do that (Ioffe and Szegedy, 2015)!
�  each hidden unit’s pre-activation is normalized (mean subtraction, stddev division)!
�  during training, mean and stddev is computed for each mini-batch!
�  backpropagation takes into account the normalization!
�  at test time, the global mean and stddev is used!

�  Why normalize the pre-activation?!
�  helps keep the pre-activation in a non-saturating regime 

à helps with vanishing gradient problem!

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)(x) (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2



Batch Normalization 

14!

Learned linear transformation to adapt to non-linear 
activation function (𝛾 and β are trained)! and β are trained)!



Model Selection 

15!

�  Training Protocol:!
�  Train your model on the Training Set!

�  For model selection, use Validation Set !

–  Hyper-parameter search: hidden layer size, learning rate, number of iterations, etc.!

�   Estimate generalization performance using the Test Set!

�   Generalization is the behavior of the model on unseen examples. !
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Early Stopping 

16!

�  To select the number of epochs, stop training when validation set error 
increases à Large Model can Overfit!



But in Practice 

17!

�  To select the number of epochs, stop training when validation set error 
increases à Large Model can Overfit!

�  Optimization plays a crucial role in 
generalization!

�  Generalization ability is not 
controlled by network size but rather 
by some other implicit control!

Implicit Regularization!

Generalization 
Error! Behnam Neyshabur, PhD thesis 2017

Neyshabur et al., Survey Paper, 2017



Best Practice 

18!

�  Given a dataset D, pick a model so that: !
�  You can achieve 0 training error à Overfit on the training set.!

�  Regularize the model (e.g. using Dropout).!

�  Initialize parameters so that each feature across layers has similar 
variance. Avoid units in saturation.!

�  SGD with momentum, batch-normalization, and dropout usually 
works very well.!



Choosing Architecture  

19!

�  How can we select the right architecture:!
�  Manual tuning of features is now replaced with the manual tuning of architectures!

�   Many hyper-parameters:!
�  Number of layers, number of feature maps!

�  Cross Validation!
�  Grid Search (need lots of GPUs)!
�  Smarter Strategies !

�  Bayesian Optimization !



AlexNet 

20!

�  8 layers total!

�  Trained on Imagenet dataset [Deng et al. CVPR’09]!

�  18.2% top-5 error !

Input Image 

Layer 1: Conv + Pool 

Layer 6: Full 

Layer 3: Conv 

Softmax Output 

Layer 2: Conv + Pool 

Layer 4: Conv 

Layer 5: Conv + Pool 

Layer 7: Full 

[From Rob Fergus’ CIFAR 2016 tutorial] 
 
 

Krizhevsky et al.,  NIPS 2012 



AlexNet 

21!

�  Remove top fully connected layer 7 !

�  Drop ~16 million parameters!

�  Only 1.1% drop in performance!!

[From Rob Fergus’ CIFAR 2016 tutorial] 
 
 

Input Image 

Layer 1: Conv + Pool 

Layer 6: Full 

Layer 3: Conv 

Softmax Output 

Layer 2: Conv + Pool 

Layer 4: Conv 

Layer 5: Conv + Pool 

Krizhevsky et al.,  NIPS 2012 



AlexNet 

22!

[From Rob Fergus’ CIFAR 2016 tutorial] 
 
 

�  Remove layers 3 4,6 and 7 !

�  Drop ~50 million parameters!

�  33.5% drop in performance!!

�  Depth of the network is the key!

Input Image 

Layer 1: Conv + Pool 

Layer 6: Full 

Softmax Output 

Layer 2: Conv + Pool 

Layer 5: Conv + Pool 

Krizhevsky et al.,  NIPS 2012 



GoogleNet 

23!

Convolution 
Pooling 
Softmax 
Other 

(Szegedy et al., Going Deep with Convolutions, 2014)

�  24 layer model !



Residual Networks  

24!

�  Really, really deep convnets do not train well, e.g. CIFAR10:!

(He, Zhang, Ren, Sun, CVPR 2016)

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
Microsoft Research

{kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Abstract

Deeper neural networks are more difficult to train. We
present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8⇥
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions1, where we also won the 1st
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

1. Introduction

Deep convolutional neural networks [22, 21] have led
to a series of breakthroughs for image classification [21,
50, 40]. Deep networks naturally integrate low/mid/high-
level features [50] and classifiers in an end-to-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
[41, 44] reveals that network depth is of crucial importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] all exploit “very deep” [41] models,
with a depth of sixteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] have also

1
http://image-net.org/challenges/LSVRC/2015/ and

http://mscoco.org/dataset/#detections-challenge2015.
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Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
hamper convergence from the beginning. This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a
degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
than its shallower counterpart. But experiments show that
our current solvers on hand are unable to find solutions that
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Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-

dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1⇥1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224⇥224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60⇥ 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments

4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the
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Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

�  Key idea: introduce “pass through” into each layer!

�  Thus only residual now needs to be learned:!

model top-1 err. top-5 err.
VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38

plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B
that only uses projections for increasing dimensions.

method top-1 err. top-5 err.
VGG [41] (ILSVRC’14) - 8.43†

GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except † reported on the test set).

method top-5 err. (test)
VGG [41] (ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

ResNet reduces the top-1 error by 3.5% (Table 2), resulting
from the successfully reduced training error (Fig. 4 right vs.
left). This comparison verifies the effectiveness of residual
learning on extremely deep systems.

Last, we also note that the 18-layer plain/residual nets
are comparably accurate (Table 2), but the 18-layer ResNet
converges faster (Fig. 4 right vs. left). When the net is “not
overly deep” (18 layers here), the current SGD solver is still
able to find good solutions to the plain net. In this case, the
ResNet eases the optimization by providing faster conver-
gence at the early stage.

Identity vs. Projection Shortcuts. We have shown that
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Figure 5. A deeper residual function F for ImageNet. Left: a
building block (on 56⇥56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck” building block for ResNet-50/101/152.

parameter-free, identity shortcuts help with training. Next
we investigate projection shortcuts (Eqn.(2)). In Table 3 we
compare three options: (A) zero-padding shortcuts are used
for increasing dimensions, and all shortcuts are parameter-
free (the same as Table 2 and Fig. 4 right); (B) projec-
tion shortcuts are used for increasing dimensions, and other
shortcuts are identity; and (C) all shortcuts are projections.

Table 3 shows that all three options are considerably bet-
ter than the plain counterpart. B is slightly better than A. We
argue that this is because the zero-padded dimensions in A
indeed have no residual learning. C is marginally better than
B, and we attribute this to the extra parameters introduced
by many (thirteen) projection shortcuts. But the small dif-
ferences among A/B/C indicate that projection shortcuts are
not essential for addressing the degradation problem. So we
do not use option C in the rest of this paper, to reduce mem-
ory/time complexity and model sizes. Identity shortcuts are
particularly important for not increasing the complexity of
the bottleneck architectures that are introduced below.

Deeper Bottleneck Architectures. Next we describe our
deeper nets for ImageNet. Because of concerns on the train-
ing time that we can afford, we modify the building block
as a bottleneck design4. For each residual function F , we
use a stack of 3 layers instead of 2 (Fig. 5). The three layers
are 1⇥1, 3⇥3, and 1⇥1 convolutions, where the 1⇥1 layers
are responsible for reducing and then increasing (restoring)
dimensions, leaving the 3⇥3 layer a bottleneck with smaller
input/output dimensions. Fig. 5 shows an example, where
both designs have similar time complexity.

The parameter-free identity shortcuts are particularly im-
portant for the bottleneck architectures. If the identity short-
cut in Fig. 5 (right) is replaced with projection, one can
show that the time complexity and model size are doubled,
as the shortcut is connected to the two high-dimensional
ends. So identity shortcuts lead to more efficient models
for the bottleneck designs.

50-layer ResNet: We replace each 2-layer block in the

4Deeper non-bottleneck ResNets (e.g., Fig. 5 left) also gain accuracy
from increased depth (as shown on CIFAR-10), but are not as economical
as the bottleneck ResNets. So the usage of bottleneck designs is mainly due
to practical considerations. We further note that the degradation problem
of plain nets is also witnessed for the bottleneck designs.

6

With ensembling, 3.57% top-5 
test error on ImageNet 


