Carnegie Mellon University

Introductory Overview Lecture
The Deep Learning Revolution
Part II: Optimization, Regularization

Russ Salakhutdinov

Machine Learning Department
Carnegie Mellon University
Canadian Institute for Advanced Research

(Carnegie
Mellon

University

Carnegie Mellon University

Used Resources

» Some material and slides for this lecture were borrowed from

» Hugo Larochelle’s class on Neural Networks:

https://sites.gcoogle.com/site/deeplearningsummerschool2016/

» Grover and Ermon IJCA-ECA Tutorial on Deep Generative Models
https://ermongroup.github.io/generative-models/

Carnegie Mellon University

Supervised Learning
» Given a set of labeled training examples:{X(t), y(t)} , we perform Empirical
Risk Minimization
arg min — Zl x(0): 8), y") + XQ(0)
~ J W_J

Loss function Regularizer

where

> f(x(t); 6’) is a (non—lingar.) fulnction mapping inputs to outputs, parameterized
by 6 -> Non-convex optimization

> l(f(x(t); 9)7 y(t)) is the loss function

> Q(H) is a regularization term

Carnegie Mellon University

Supervised Learning
» Given a set of labeled training examples:{X(t), y(t)} , we perform Empirical
Risk Minimization
arg min — Zl x(0): 8), y") + XQ(0)
~ J W_J

Loss function Regularizer

» Loss Functions:
» For classification tasks, we can use Cross-Entropy Loss

» For regression tasks, we can use Squared Loss

Carnegie Mellon University

Training

» Empirical Risk Minimization
arg min — Zl x(0): 8), y") + XQ(0)

~ J W_J

Loss function Regularizer

» To train a neural network, we need:
> Loss Function: [(f(x(!); 9),y")
» A procedure to compute its gradients: Vgl (f(x);), y())
> Regularizer and its gradient: €(6), V€2(0)

Carnegie Mellon University

Stochastic Gradient Descent (SGD)

» Perform updates after seeing each example:
— Initialize: 9 = {WW bW W+ pL+y
- For t=1:T

— for each training example (x®),y®)

A= —Vel(f(x\";0),y")) — AVeQ(8)
0—0+aAd

PEEE22A2ESS SRS SS 1
I Learning rate: Difficult !

| . . |
; to set In practice |

Carnegie Mellon University

Mini-batch, Momentum

» Make updates based on a mini-batch of examples (instead of a single example):
» The gradient is the average regularized loss for that mini-batch
» More accurate estimate of the gradient

» Leverage matrix/matrix operations, which are more efficient

» Momentum: Use an exponential average of previous gradients:

VY = Vel(f(x®),y®) + gVy Y

» Can get pass plateaus more quickly, by “‘gaining momentum”

Carnegie Mellon University

Adapting Learning Rates

» Updates with adaptive learning rates (“one learning rate per parameter”)

» Adagrad: learning rates are scaled by the square root of the cumulative sum of squared
gradients

(£)) 4,(t) B 2
vl _ Vol(f(x'"),y'") A1) = (0 1>+<vel(f(x<t>),y<t>))

» RMSProp: instead of cumulative sum, use exponential moving average

2
o _ Vel(f(x'"), y®) ~B = g1 4 (1 - B) (VQZ(f(X“)), y(t)))

SO

» Adam: essentially combines RMSProp with momentum

(Douchi et. al, 2011, Kingma and Ba, 2014)

Carnegie Mellon University

Regularization

arg min — Zl x():0), yV) + XQ(0)

» L2 regularization:

00) = 2,5, (W) = S, WO

» L1 regularization:

Q0) =3, 3, 5 (W)

Carnegie Mellon University

Dropout

» Key idea: Cripple neural network by removing hidden units stochastically

» Each hidden unit is set to 0 with probability 0.5
» Hidden units cannot co-adapt to other units

» Hidden units must be more generally useful

» Could use a different dropout probability, but
0.5 usually works well

Srivastava et al., JIMLR 2014

Carnegie Mellon University

Dropout

» Use random binary masks m(¥

» Layer pre-activation for k>0

a®) (x) = bK) £ WERKE-1) (x)

» hidden layer activation (k=1 to L):
h(®) (x) = g(a®) (x)) em»
» Output activation (k=L+1)

h(E+D) (x) = o(al“+1) (x)) = £(x)

Srivastava et al., JIMLR 2014

Carnegie Mellon University

Dropout at Test Time

» At test time, we replace the masks by their expectation
» This is simply the constant vector 0.5 if dropout probability is 0.5

» Beats regular backpropagation on many datasets and has become a standard
practice

» Ensemble: Can be viewed as a geometric average of exponential number of
networks.

Carnegie Mellon University

Batch Normalization

» Normalizing the inputs will speed up training (Lecun et al. 1998)

» Could normalization be useful at the level of the hidden layers?

» Batch normalization is an attempt to do that (loffe and Szegedy, 2015)
» each hidden unit's pre-activation is normalized (mean subtraction, stddev division)
» during training, mean and stddev is computed for each mini-batch
» backpropagation takes into account the normalization al®)(x) = bk) £ WEIph(=1)(x)
» at test time, the global mean and stddev is used

» Why normalize the pre-activation?

» helps keep the pre-activation in a non-saturating regime
=> helps with vanishing gradient problem

Batch Normalization

Input: Values of x over a mini-batch: B = {z1. ,};
Parameters to be learned: v, 8
Output: {y; = BN, 5(z;)}

1 m
— — i // mini-batch

HB < — ; x mini-batch mean
1 m

0% — (x; — pg)z // mini-batch variance
i=1

T; Ti” BB // normalize

e Noemte
: Yi < YZ; + B = BN, g(z;) : // scale and shift

Carnegie Mellon University

Learned linear transformation to adapt to non-linear

activation function (y and B are trained)

Carnegie Mellon University

Model Selection

» Training Protocol:
» Train your model on the Training Set Ptrain

» For model selection, use Validation Set Dva’hd

— Hyper-parameter search: hidden layer size, learning rate, number of iterations, etc.

» Estimate generalization performance using the Test Set Dtest

» Generalization is the behavior of the model on unseen examples.

Early Stopping

Carnegie Mellon University

» To select the number of epochs, stop training when validation set error

increases = Large Model can Overfit

0,5

0,4

0,3

0,2

0,1

0,0

O Training O Validation

underfitting overfitting

—0—

number of epochs

—0-

But in Practice

Carnegie Mellon University

» To select the number of epochs, stop training when validation set error

increases = Large Model can Overfit

0,5

0,4

0,3

0,2

0,1

0,0

O Training O Validation

underfitting overfitting

Generalization

number of epochs

Error

Implicit Regularization

» Optimization plays a crucial role in
generalization

» Generalization ability is not
controlled by network size but rather
by some other implicit control

Behnam Neyshabur, PhD thesis 2017
Neyshabur et al., Survey Paper, 2017

Carnegie Mellon University

Best Practice

» Given a dataset D, pick a model so that:

» You can achieve 0 training error = Overfit on the training set.

» Regularize the model (e.g. using Dropout).

» Initialize parameters so that each feature across layers has similar
variance. Avoid units in saturation.

» SGD with momentum, batch-normalization, and dropout usually
works very well.

Carnegie Mellon University

Choosing Architecture

» How can we select the right architecture:

» Manual tuning of features is now replaced with the manual tuning of architectures

» Many hyper-parameters:

» Number of layers, number of feature maps

» Cross Validation
» Grid Search (need lots of GPUs)

» Smarter Strategies

» Bayesian Optimization

AlexNet

» 8 layers total

» Trained on Imagenet dataset [Deng et al. CVPR'09]

» 18.2% top-5 error

[From Rob Fergus’ CIFAR 2016 tutorial]

Krizhevsky et al., NIPS 2012

Carnegie Mellon University

Softmax Output

I

Layer 2: Conv + Pool

==

Layer 1. Conv + Pool

= =

Input Image

AlexNet

» Remove top fully connected layer 7

» Drop 716 million parameters

» Only 1.1% drop in performance!

[From Rob Fergus’ CIFAR 2016 tutorial]

Krizhevsky et al., NIPS 2012

Carnegie Mellon University

)

Softmax Output

il

I

Layer 2: Conv + Pool

==

Layer 1. Conv + Pool

= =

Input Image

AlexNet

» Remove layers 3 4,6 and 7

» Drop 750 million parameters

» 33.5% drop in performance!

» Depth of the network is the key

[From Rob Fergus’ CIFAR 2016 tutorial]

Krizhevsky et al., NIPS 2012

Carnegie Mellon University

[Softmax Output J

il
T wer

| |

[Layer 5: Conv + Pool]
N

Layer 2: Conv + Pool
= =

Layer 1. Conv + Pool

= =

Input Image

Carnegie Mellon University

GoogleNet

Convolution
Pooling

» 24 layer model

Other

(Szegedy et al., Going Deep with Convolutions, 2014)

Residual Networks

» Really, really deep convnets do not train well, e.g. CIFAR10:

201

training error (%)

56-layer

20-layer

L
2

3 3
iter. (le4)

1
5 6

20

test error (%)

56-layer
20-layer

L
2

3 s
iter. (1e4)

» Key idea: introduce “pass through” into each layer

» Thus only residual now needs to be learned:

X

Y

weight layer

relu
\ 4

weight layer

X
identity

(He, Zhang, Ren, Sun, CVPR 2016)

method top-1 err. top-5 err.
VGG [41] (ILSVRC’14) - 8.43"
GoogLeNet [44] ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except | reported on the test set).

With ensembling, 3.57% top-5
test error on ImageNet

output
size: 224

output
size: 112

output
size: 56

output
size: 28

output
size: 14

output
size: 7

output
size: 1

Carnegie Mellon University

VGG-19
image
pool, /2

34-layer plain

image

34-layer residual

image

[33conv,128 |

7x7 conv, 64, /2

[7x7conv,64,/2 |

3x3 conv, 64
v

33 conv, 256

3x3 conv, 64

pool, /2 pool, /2 pool, /2
[3x3conv,256 | 3x3 conv, 64 3x3conv,64 |
v v
[33conv,256 | 3x3 conv, 64 3x3 conv, 64.
[33conv, 256 | 3x3conv,64 |
k2
[]

2
3x3 conv, 64

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 512

v
3x3 conv, 128

[
[
[
[
[3x3conv, 64
[
[
[
[

3x3 conv, 512

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

[]
[]
L2
[3a3cony,512 |
[]

3x3 conv, 128

3x3 conv, 512

3x3 conv, 128

33cony, 128 |

pool, /2

v
3x3 conv, 128

v
3x3 conv, 128

3x3 conv, 128

33cony, 128 |

3x3 conv, 128

3x3 conv, 256, /2

e
3x3conv, 256,/2 |

3x3 conv, 512

2
3x3 conv, 256

v
3x3 conv, 256

3x3 conv, 512

3x3 conv, 256
v

[
[
[
v
[33conv,128 |
[
[
[

33cony, 256 |
v

3x3 conv, 256

3x3 conv, 256

[]
[]
v
[3a3cony,512 |
[]

3x3 conv, 512

3x3 conv, 256

[3x3conv,256 |

v
33 conv, 256

v
| 3x3conv, 256

3x3 conv, 256

[3x3conv,256 |
2

L 2
3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3conyv, 256 |

2
3x3 conv, 256

v
3x3 conv, 256

3x3cony, 25 |

3x3 conv, 256
L 2

3x3 conv, 256

v
33 conv, 256

pool, /2 3x3 cony, 512, /2 3x3cony,512,/2 | N
v M
3x3 conv, 512 3x3conv,512 | oy
3x3 conv, 512 3x3conv,512 |
2 2
3x3 conv, 512 3x3 conv, 512
3x3 conv, 512 3x3conv,512 |
A2
333 conv, 512 3x3cony,512 |
A vy
fc 4096 avg pool avg pool
[fc 4096 | [fc 1000 | [fc 1000 |

fc 1000

