10707
Deep Learning
Russ Salakhutdinov

Machine Learning Department
rsalakhu@cs.cmu.edu
http://www.cs.cmu.edu/~rsalakhu/10707/

Sequence to Sequence II
Slides borrowed from ICML Tutorial

Seq2Seq ICML Tutorial

Oriol Vinyals and Navdeep Jaitly
@OriolVinyalsML | @NavdeepLearning
Site: https://sites.google.com/view/seq2seq-icml17
Sydney, Australia, 2017
Applications
Sentence to Constituency Parse Tree

1. Read a sentence
2. Flatten the tree into a sequence (adding (,))
3. "Translate" from sentence to parse tree

John has a dog. →

(NP NNP VBZ NP DT NN)VP .)S

Speech Recognition

$p(y_{i+1}|y_{1..i}, x)$

Attention Example

Prediction derived from “attending” to segment of input

Attention vector - where the model thinks the relevant information is to be found

Attention Example

Attention Example

Attention Example

Attention Example

Attention Example

Attention Example

A man riding a horse in a field.

Xu et al, ICML 2015
Caption Generation with Visual Attention

A woman holding a clock in her hand.

A large white bird standing in a forest.

Xu et al, ICML 2015
Listen Attend and Spell (LAS)

- Reducing time resolution with a pyramidal encoder

LAS Results

<table>
<thead>
<tr>
<th>Beam</th>
<th>Text</th>
<th>LogProb</th>
<th>WE R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truth</td>
<td>call aaa roadside assistance</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>call aaa roadside assistance</td>
<td>-0.5740</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>call triple a roadside assistance</td>
<td>-1.5399</td>
<td>50.0</td>
</tr>
<tr>
<td>3</td>
<td>call trip way roadside assistance</td>
<td>-3.5012</td>
<td>50.0</td>
</tr>
<tr>
<td>4</td>
<td>call xxx roadside assistance</td>
<td>-4.4375</td>
<td>25.0</td>
</tr>
</tbody>
</table>
Lip Reading

<table>
<thead>
<tr>
<th>Channel</th>
<th>Series name</th>
<th># hours</th>
<th># sent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBC 1 HD</td>
<td>News†</td>
<td>1,584</td>
<td>50,493</td>
</tr>
<tr>
<td>BBC 1 HD</td>
<td>Breakfast</td>
<td>1,997</td>
<td>29,862</td>
</tr>
<tr>
<td>BBC 1 HD</td>
<td>Newsnight</td>
<td>590</td>
<td>17,004</td>
</tr>
<tr>
<td>BBC 2 HD</td>
<td>World News</td>
<td>194</td>
<td>3,504</td>
</tr>
<tr>
<td>BBC 2 HD</td>
<td>Question Time</td>
<td>323</td>
<td>11,695</td>
</tr>
<tr>
<td>BBC 4 HD</td>
<td>World Today</td>
<td>272</td>
<td>5,558</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td>4,960</td>
<td>118,116</td>
</tr>
</tbody>
</table>

http://www.robots.ox.ac.uk/~vgg/data/lip_reading/

Lip Reading

Separate embedding and attention for audio and visual streams

Google Neural Machine Translation System

Google Neural Machine Translation System

Closes gap between old system and human-quality translation by 58% to 87%
Loss Functions
Loss Functions

- Cross Entropy
- Scheduled Sampling [1]
- Expected Loss [2]
- Augmented Loss [3]
- Sequence to Sequence as a beam search optimization [4]
- Learning decoders with different loss function [5]

Cross Entropy (Negative Log Likelihood) Loss

- Log Likelihood, by chain rule is sum of next step log likelihoods

\[\log p(y|x) = \sum_{i=1}^{N} \log p(y_i|y_{<i}, x) \]

- Supervised classification for each time step
 - depends on input, past outputs, which are known during training
Training and Inference Mismatch

Training

\[P(y_t|h_t) \text{ with } h_t = f(h_{t-1}, y_{t-1}; \theta) \]

Training and Inference Mismatch

Inference

\[P(y_t|h_t) \text{ with } h_t = f(h_{t-1}, y_{t-1}; \theta) \]

Scheduled Sampling

\[P(y_t | h_t) \text{ with } h_t = f(h_{t-1}, \hat{y}_{t-1}; \theta) \]

Scheduled Sampling

<table>
<thead>
<tr>
<th>Machine Translation Model</th>
<th>Bleu-4</th>
<th>Meteor</th>
<th>Cider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>28.8</td>
<td>24.2</td>
<td>89.5</td>
</tr>
<tr>
<td>Baseline with dropout</td>
<td>28.1</td>
<td>23.9</td>
<td>87.0</td>
</tr>
<tr>
<td>Scheduled sampling</td>
<td>30.6</td>
<td>24.3</td>
<td>92.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parsing Model</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline LSTM with dropout</td>
<td>87.00</td>
</tr>
<tr>
<td>Scheduled sampling with dropout</td>
<td>88.68</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speech Recognition Model</th>
<th>WER</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAS + LM Rescoring</td>
<td>12.6</td>
</tr>
<tr>
<td>LAS + Sampling + LM Rescoring</td>
<td>10.3</td>
</tr>
</tbody>
</table>

Rewards (-loss) used in Structured Prediction

<table>
<thead>
<tr>
<th>TASK</th>
<th>REWARD</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>0/1 rewards</td>
<td>$r(y, y^) = 1[y = y^]$</td>
</tr>
<tr>
<td>Segmentation</td>
<td>Intersection over Union</td>
<td>$r(y, y^) = \frac{\cap(y, y^)}{\cup(y, y^*)}$</td>
</tr>
<tr>
<td>Speech Recognition</td>
<td>Edit Distance</td>
<td>$r(y, y^*) = (#d + #i + #s)$</td>
</tr>
<tr>
<td>Machine Translation</td>
<td>BLEU</td>
<td></td>
</tr>
</tbody>
</table>
Expected reward (-loss)

Given a dataset of input output pairs, \(\mathcal{D} \equiv \{ (x^{(i)}, y^{(i)*}) \}_{i=1}^{N} \)

learn a conditional distribution \(p_\theta(y \mid x) \) that minimizes expected loss:

\[
\mathcal{L}_{\text{RL}}(\theta) = \sum_{(x, y^{*}) \in \mathcal{D}} - \sum_{y \in \mathcal{Y}} p_\theta(y \mid x) \ r(y, y^{*})
\]

Sample from the model distribution

Difficult / Impossible to train from scratch!!
Mixed Incremental Cross-Entropy Reinforce (MIXER)

● Gradually interpolate from Cross-Entropy to Expected Loss

Data: a set of sequences with their corresponding context.
Result: RNN optimized for generation.
Initialize RNN at random and set N_{XENT}, N_{XE+R} and Δ;
for $s = T, 1, -\Delta$ do
 if $s == T$ then
 train RNN for N_{XENT} epochs using XENT only;
 else
 train RNN for N_{XE+R} epochs. Use XENT loss in the first s steps, and REINFORCE (sampling from the model) in the remaining $T - s$ steps;
end

More expected loss optimization as training proceeds

Mixed Incremental Cross-Entropy Reinforce (MIXER)

<table>
<thead>
<tr>
<th>TASK</th>
<th>XENT</th>
<th>DAD</th>
<th>E2E</th>
<th>MIXER</th>
</tr>
</thead>
<tbody>
<tr>
<td>summarization</td>
<td>13.01</td>
<td>12.18</td>
<td>12.78</td>
<td>16.22</td>
</tr>
<tr>
<td>translation</td>
<td>17.74</td>
<td>20.12</td>
<td>17.77</td>
<td>20.73</td>
</tr>
<tr>
<td>image captioning</td>
<td>27.8</td>
<td>28.16</td>
<td>26.42</td>
<td>29.16</td>
</tr>
</tbody>
</table>

Reward Augmented Maximum Likelihood (RML)

Finding the *right output sequence*, for tasks like speech recognition or machine translation is like finding a *needle in a haystack*. It is very risky to shoot *only* for the *true target*. What if we expand the targets to make learning easier? *E.g.* by inserting, deleting random words...

Reward Augmented maximum likelihood (RML)

\[
\mathcal{L}_{\text{RML}}(\theta; \tau) = \sum_{(x, y^*) \in \mathcal{D}} \left\{ - \sum_{y \in \mathcal{Y}} q(y \mid y^*; \tau) \log p_\theta(y \mid x) \right\}
\]

Optimal \(p_\theta(y \mid x) \):

\[
q(y \mid y^*; \tau) = \frac{1}{Z(y^*, \tau)} \exp \left\{ \tau(y, y^*) / \tau \right\}
\]

\[
\mathcal{L}_{\text{RML}}(\theta; \tau) = \sum_{(x, y^*) \in \mathcal{D}} D_{\text{KL}}(q(y \mid y^*; \tau) \parallel p_\theta(y \mid x)) + \text{constant}
\]

RML - Impact of temperature τ

Temperature impacts spread of distribution we sample from

Cross Entropy Targets \quad More spread

$q(y \mid y^*; \tau = 0)$ \quad $q(y \mid y^*; \tau = .1)$ \quad $q(y \mid y^*; \tau = .2)$

\[
\mathcal{L}_\text{RML}(\theta; \tau) = \sum_{(x,y^*) \in \mathcal{D}} D_{KL}(q(y \mid y^*; \tau) \parallel p_\theta(y \mid x)) + \text{constant}
\]

Margin Loss

- Perform beam search until correct hypothesis falls out of the beam
- Restart beam whenever there is a violation
- Extract correct hypothesis and competing hypotheses

Margin Loss

- Add a margin score for all time steps where the correct hypothesis is not better than the Kth best hypothesis by a certain margin.

\[
\mathcal{L}(f) = \sum_{t=1}^{T} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - f(y_t, h_{t-1}) + f(\hat{y}_t^{(K)}, \hat{h}_t^{(K)}) \right]
\]

- Loss for error; 0 when margin constraint is satisfied.
- Score function for prediction of current output.
- Score function for prediction of Kth best output.

Wiseman, S., Rush, A. “Sequence-to-sequence learning as beam-search optimization.” *EMLP (2016).*
Margin Loss

<table>
<thead>
<tr>
<th></th>
<th>Machine Translation (BLEU)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$K_{te} = 1$</td>
</tr>
<tr>
<td>seq2seq</td>
<td>22.53</td>
</tr>
<tr>
<td>BSO, SB-Δ</td>
<td>23.83</td>
</tr>
<tr>
<td>XENT</td>
<td>17.74</td>
</tr>
<tr>
<td>DAD</td>
<td>20.12</td>
</tr>
<tr>
<td>MIXER</td>
<td>20.73</td>
</tr>
</tbody>
</table>

Wiseman, S., Rush, A. “Sequence-to-sequence learning as beam-search optimization.” *EMLP (2016).*
Autoregressive
Generative Models
Pixel RNN Model

$$p(x) = \prod_{i=1}^{n^2} p(x_i | x_1, \ldots, x_{i-1})$$

- Fully visible
- Similar to language models with RNNs
- Model pixels with Softmax

Softmax Sampling

Pixel RNN

Sequence of Words == Sequence of Pixels

Pixel RNN

Pixel RNN

Video Pixel Network (VPN)

<table>
<thead>
<tr>
<th>Model</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Shi et al., 2015)</td>
<td>367.2</td>
</tr>
<tr>
<td>(Srivastava et al., 2015a)</td>
<td>341.2</td>
</tr>
<tr>
<td>(Brabandere et al., 2016)</td>
<td>285.2</td>
</tr>
<tr>
<td>(Patraucean et al., 2015)</td>
<td>179.8</td>
</tr>
<tr>
<td>Baseline model</td>
<td>110.1</td>
</tr>
<tr>
<td>VPN</td>
<td>87.6</td>
</tr>
<tr>
<td>Lower Bound</td>
<td>86.3</td>
</tr>
</tbody>
</table>

New Architectures

Conv seq2seq, Gehring, et al, 2017

Att is all you need, Vaswani, et al, 2017
Self-Attention

Convolution

Self-Attention
Self-Attention

Convolution

Self-Attention
MultiModel

“Last week, Kigali raised the possibility of military retaliation after shells...”

“Can you give our readers some details on this?”

The above represents a triumph of either apathy or civility

“S NP DT JJS /NP VP VBZ NP NP DT NN /NP PP IN NP NP NN /NP CC NP NN /NP /NP /PP /NP /VP . /S”