10703 Deep Reinforcement Learning and Control

Russ Salakhutdinov

Machine Learning Department rsalakhu@cs.cmu.edu

Function Approximation

Used Materials

• **Disclaimer**: Much of the material and slides for this lecture were borrowed from Rich Sutton's class and David Silver's class on Reinforcement Learning.

Large-Scale Reinforcement Learning

- Reinforcement learning can be used to solve large problems, e.g.
 - Backgammon: 10²⁰ states
 - Computer Go: 10¹⁷⁰ states
 - Helicopter: continuous state space

How can we scale up the model-free methods for prediction and control?

Value Function Approximation (VFA)

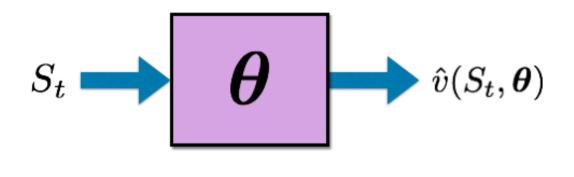
- So far we have represented value function by a lookup table
 - Every state s has an entry V(s), or
 - Every state-action pair (s,a) has an entry Q(s,a)
- Problem with large MDPs:
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually
- Solution for large MDPs:
 - Estimate value function with function approximation

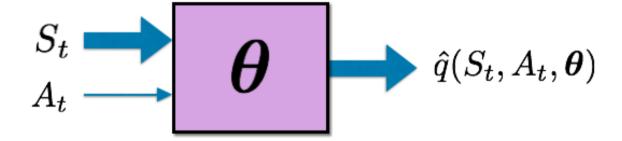
$$\hat{v}(s,\mathbf{w})pprox v_{\pi}(s)$$
 or $\hat{q}(s,a,\mathbf{w})pprox q_{\pi}(s,a)$

Generalize from seen states to unseen states

Value Function Approximation (VFA)

Value function approximation (VFA) replaces the table with a general parameterized form:





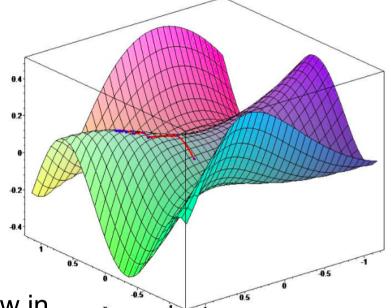
Which Function Approximation?

- There are many function approximators, e.g.
 - Linear combinations of features
 - Neural networks
 - Decision tree
 - Nearest neighbour
 - Fourier / wavelet bases
 - ...
- We consider differentiable function approximators, e.g.
 - Linear combinations of features
 - Neural networks

Gradient Descent

- Let J(w) be a differentiable function of parameter vector w
- Define the gradient of J(w) to be:

$$abla_{\mathbf{w}} J(\mathbf{w}) = egin{pmatrix} rac{\partial J(\mathbf{w})}{\partial \mathbf{w}_1} \ dots \ rac{\partial J(\mathbf{w})}{\partial \mathbf{w}_n} \end{pmatrix}$$



To find a local minimum of J(w), adjust w in direction of the negative gradient:

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$
Step-size

Stochastic Gradient Descent

• Goal: find parameter vector w minimizing mean-squared error between the true value function $v_{\pi}(S)$ and its approximation $\hat{v}(S, \mathbf{w})$:

$$J(\mathbf{w}) = \mathbb{E}_{\pi}\left[\left(v_{\pi}(S) - \hat{v}(S, \mathbf{w})\right)^{2}\right]$$

Gradient descent finds a local minimum:

$$egin{aligned} \Delta \mathbf{w} &= -rac{1}{2} lpha
abla_{\mathbf{w}} J(\mathbf{w}) \ &= lpha \mathbb{E}_{\pi} \left[(v_{\pi}(S) - \hat{v}(S, \mathbf{w}))
abla_{\mathbf{w}} \hat{v}(S, \mathbf{w})
ight] \end{aligned}$$

Stochastic gradient descent (SGD) samples the gradient:

$$\Delta \mathbf{w} = \alpha(\mathbf{v}_{\pi}(S) - \hat{\mathbf{v}}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S, \mathbf{w})$$

Expected update is equal to full gradient update

Feature Vectors

Represent state by a feature vector

$$\mathbf{x}(S) = \begin{pmatrix} \mathbf{x}_1(S) \\ \vdots \\ \mathbf{x}_n(S) \end{pmatrix}$$

- For example
 - Distance of robot from landmarks
 - Trends in the stock market
 - Piece and pawn configurations in chess

Linear Value Function Approximation (VFA)

Represent value function by a linear combination of features

$$\hat{v}(S, \mathbf{w}) = \mathbf{x}(S)^{\top} \mathbf{w} = \sum_{j=1}^{n} \mathbf{x}_{j}(S) \mathbf{w}_{j}$$

Objective function is quadratic in parameters w

$$J(\mathbf{w}) = \mathbb{E}_{\pi}\left[(v_{\pi}(S) - \mathbf{x}(S)^{\top}\mathbf{w})^{2}\right]$$

Update rule is particularly simple

$$abla_{\mathbf{w}}\hat{v}(S,\mathbf{w}) = \mathbf{x}(S)$$
 $\Delta \mathbf{w} = \alpha(v_{\pi}(S) - \hat{v}(S,\mathbf{w}))\mathbf{x}(S)$

- Update = step-size × prediction error × feature value
- Later, we will look at the neural networks as function approximators.

Incremental Prediction Algorithms

- We have assumed the true value function $v_{\pi}(s)$ is given by a supervisor
- But in RL there is no supervisor, only rewards
- In practice, we substitute a target for $v_{\pi}(s)$
- For MC, the target is the return G_t

$$\Delta \mathbf{w} = \alpha(\mathbf{G_t} - \hat{\mathbf{v}}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t, \mathbf{w})$$

For TD(0), the target is the TD target: $R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$

$$\Delta \mathbf{w} = \alpha(R_{t+1} + \gamma \hat{\mathbf{v}}(S_{t+1}, \mathbf{w}) - \hat{\mathbf{v}}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t, \mathbf{w})$$

Remember
$$\Delta \mathbf{w} = lpha(v_{\pi}(S) - \hat{v}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w})$$

Monte Carlo with VFA

- Return G_t is an unbiased, noisy sample of true value $v_π(S_t)$
- Can therefore apply supervised learning to "training data":

$$\langle S_1, G_1 \rangle, \langle S_2, G_2 \rangle, ..., \langle S_T, G_T \rangle$$

For example, using linear Monte-Carlo policy evaluation

$$egin{aligned} \Delta \mathbf{w} &= lpha(G_t - \hat{v}(S_t, \mathbf{w}))
abla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w}) \\ &= lpha(G_t - \hat{v}(S_t, \mathbf{w})) \mathbf{x}(S_t) \end{aligned}$$

Monte-Carlo evaluation converges to a local optimum

Monte Carlo with VFA

Gradient Monte Carlo Algorithm for Approximating $\hat{v} \approx v_{\pi}$

Input: the policy π to be evaluated

Input: a differentiable function $\hat{v}: \mathbb{S} \times \mathbb{R}^n \to \mathbb{R}$

Initialize value-function weights θ as appropriate (e.g., $\theta = 0$)

Repeat forever:

Generate an episode $S_0, A_0, R_1, S_1, A_1, \ldots, R_T, S_T$ using π

For
$$t = 0, 1, ..., T - 1$$
:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha [G_t - \hat{v}(S_t, \boldsymbol{\theta})] \nabla \hat{v}(S_t, \boldsymbol{\theta})$$

TD Learning with VFA

- The TD-target $R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$ is a biased sample of true value $v_{\pi}(S_t)$
- Can still apply supervised learning to "training data":

$$\langle S_1, R_2 + \gamma \hat{v}(S_2, \mathbf{w}) \rangle, \langle S_2, R_3 + \gamma \hat{v}(S_3, \mathbf{w}) \rangle, ..., \langle S_{T-1}, R_T \rangle$$

For example, using linear TD(0):

$$\Delta \mathbf{w} = \alpha (R + \gamma \hat{\mathbf{v}}(S', \mathbf{w}) - \hat{\mathbf{v}}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S, \mathbf{w})$$
$$= \alpha \delta \mathbf{x}(S)$$

TD Learning with VFA

Semi-gradient TD(0) for estimating $\hat{v} \approx v_{\pi}$

```
Input: the policy \pi to be evaluated Input: a differentiable function \hat{v}: \mathbb{S}^+ \times \mathbb{R}^n \to \mathbb{R} such that \hat{v}(\text{terminal},\cdot) = 0 Initialize value-function weights \boldsymbol{\theta} arbitrarily (e.g., \boldsymbol{\theta} = \mathbf{0}) Repeat (for each episode): Initialize S Repeat (for each step of episode): Choose A \sim \pi(\cdot|S) Take action A, observe R, S' \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \left[R + \gamma \hat{v}(S', \boldsymbol{\theta}) - \hat{v}(S, \boldsymbol{\theta})\right] \nabla \hat{v}(S, \boldsymbol{\theta}) S \leftarrow S' until S' is terminal
```

Control with VFA

- Policy evaluation Approximate policy evaluation: $\hat{q}(\cdot,\cdot,\mathbf{w})pprox q_{\pi}$
- Policy improvement ε-greedy policy improvement

Action-Value Function Approximation

Approximate the action-value function

$$\hat{q}(S, A, \mathbf{w}) pprox q_{\pi}(S, A)$$

Minimize mean-squared error between the true action-value function $q_{\pi}(S,A)$ and the approximate action-value function:

$$J(\mathbf{w}) = \mathbb{E}_{\pi}\left[\left(q_{\pi}(S,A) - \hat{q}(S,A,\mathbf{w})\right)^{2}\right]$$

Use stochastic gradient descent to find a local minimum

$$-rac{1}{2}
abla_{\mathbf{w}}J(\mathbf{w}) = (q_{\pi}(S,A) - \hat{q}(S,A,\mathbf{w}))
abla_{\mathbf{w}}\hat{q}(S,A,\mathbf{w})$$
 $\Delta\mathbf{w} = lpha(q_{\pi}(S,A) - \hat{q}(S,A,\mathbf{w}))
abla_{\mathbf{w}}\hat{q}(S,A,\mathbf{w})$

Linear Action-Value Function Approximation

Represent state and action by a feature vector

$$\mathbf{x}(S,A) = \begin{pmatrix} \mathbf{x}_1(S,A) \\ \vdots \\ \mathbf{x}_n(S,A) \end{pmatrix}$$

Represent action-value function by linear combination of features

$$\hat{q}(S, A, \mathbf{w}) = \mathbf{x}(S, A)^{\top} \mathbf{w} = \sum_{j=1}^{n} \mathbf{x}_{j}(S, A) \mathbf{w}_{j}$$

Stochastic gradient descent update

$$abla_{\mathbf{w}}\hat{q}(S,A,\mathbf{w}) = \mathbf{x}(S,A)$$

$$\Delta \mathbf{w} = \alpha(q_{\pi}(S,A) - \hat{q}(S,A,\mathbf{w}))\mathbf{x}(S,A)$$

Incremental Control Algorithms

- Like prediction, we must substitute a target for $q_{\pi}(S,A)$
- For MC, the target is the return G_t

$$\Delta \mathbf{w} = \alpha(\mathbf{G_t} - \hat{q}(S_t, A_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$$

For TD(0), the target is the TD target: $R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$

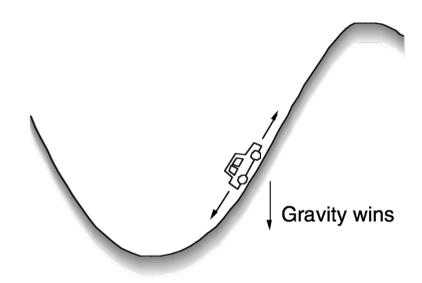
$$\Delta \mathbf{w} = \alpha(R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \mathbf{w}) - \hat{q}(S_t, A_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$$

Incremental Control Algorithms

Episodic Semi-gradient Sarsa for Estimating $\hat{q} \approx q_*$

```
Input: a differentiable function \hat{q}: \mathcal{S} \times \mathcal{A} \times \mathbb{R}^n \to \mathbb{R}
Initialize value-function weights \theta \in \mathbb{R}^n arbitrarily (e.g., \theta = 0)
Repeat (for each episode):
     S, A \leftarrow \text{initial state} and action of episode (e.g., \varepsilon-greedy)
     Repeat (for each step of episode):
           Take action A, observe R, S'
           If S' is terminal:
                 \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha [R - \hat{q}(S, A, \boldsymbol{\theta})] \nabla \hat{q}(S, A, \boldsymbol{\theta})
                 Go to next episode
           Choose A' as a function of \hat{q}(S',\cdot,\boldsymbol{\theta}) (e.g., \varepsilon-greedy)
           \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \left[ R + \gamma \hat{q}(S', A', \boldsymbol{\theta}) - \hat{q}(S, A, \boldsymbol{\theta}) \right] \nabla \hat{q}(S, A, \boldsymbol{\theta})
           S \leftarrow S'
           A \leftarrow A'
```

Example: The Mountain-Car problem



Minimum-Time-to-Goal Problem

SITUATIONS:

car's position and velocity

ACTIONS:

three thrusts: forward, reverse, none

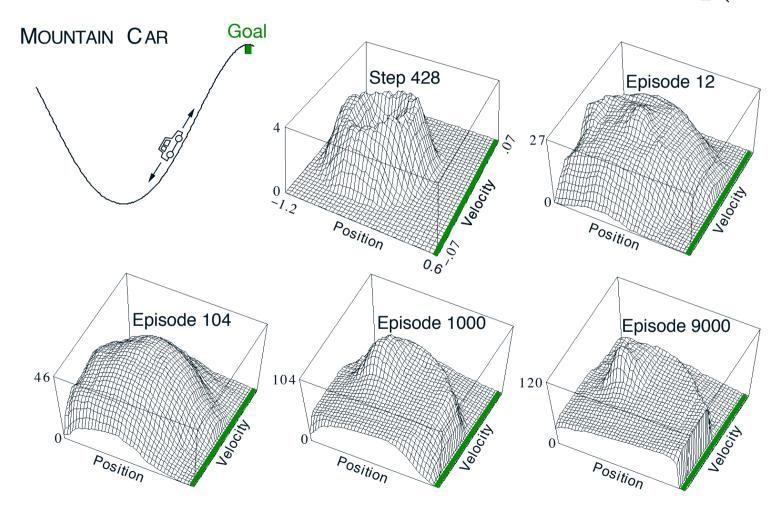
REWARDS:

always –1 until car reaches the goal

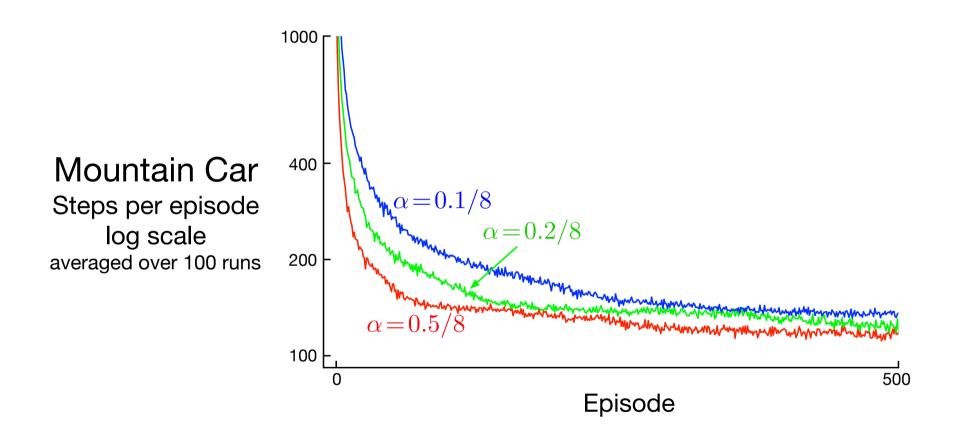
Episodic, No Discounting, $\gamma=1$

Example: The Mountain-Car problem

 $-\max_a \hat{q}(s, a, \boldsymbol{\theta})$



Linear Sarsa: Mountain Car



Batch Reinforcement Learning

- Gradient descent is simple and appealing
- But it is not sample efficient
- Batch methods seek to find the best fitting value function
- Given the agent's experience ("training data")

Least Squares Prediction

- Given value function approximation: $\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s)$
- And experience D consisting of (state, value) pairs

$$\mathcal{D} = \{\langle s_1, v_1^{\pi} \rangle, \langle s_2, v_2^{\pi} \rangle, ..., \langle s_T, v_T^{\pi} \rangle\}$$

- Find parameters w that give the best fitting value function v(s,w)?
- Least squares algorithms find parameter vector w minimizing sumsquared error between v(S_t,w) and target values v_t^π:

$$egin{aligned} LS(\mathbf{w}) &= \sum_{t=1}^T (v_t^\pi - \hat{v}(s_t, \mathbf{w}))^2 \ &= \mathbb{E}_{\mathcal{D}}\left[(v^\pi - \hat{v}(s, \mathbf{w}))^2
ight] \end{aligned}$$

SGD with Experience Replay

Given experience consisting of (state, value) pairs

$$\mathcal{D} = \{\langle s_1, v_1^{\pi} \rangle, \langle s_2, v_2^{\pi} \rangle, ..., \langle s_T, v_T^{\pi} \rangle\}$$

- Repeat
 - Sample state, value from experience

$$\langle s, v^\pi
angle \sim \mathcal{D}$$

- Apply stochastic gradient descent update

$$\Delta \mathbf{w} = \alpha (\mathbf{v}^{\pi} - \hat{\mathbf{v}}(\mathbf{s}, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(\mathbf{s}, \mathbf{w})$$

Converges to least squares solution

We will look at Deep Q-networks later.