10703 Deep Reinforcement Learning and Control
Russ Salakhutdinov
Machine Learning Department
rsalakhu@cs.cmu.edu

Temporal Difference Learning
Used Materials

• **Disclaimer**: Much of the material and slides for this lecture were borrowed from Rich Sutton’s class and David Silver’s class on Reinforcement Learning.
MC and TD Learning

- **Goal:** learn $v_\pi(s)$ from episodes of experience under policy π

- Incremental *every-visit* Monte-Carlo:
 - Update value $V(S_t)$ toward actual return G_t
 \[V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t)) \]

- Simplest *Temporal-Difference* learning algorithm: TD(0)
 - Update value $V(S_t)$ toward estimated returns $R_{t+1} + \gamma V(S_{t+1})$
 \[V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t)) \]

- $R_{t+1} + \gamma V(S_{t+1})$ is called the TD target

- $\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$ is called the TD error.
DP vs. MC vs. TD Learning

- **Remember:**

 MC: sample average return approximates expectation

 \[v_\pi(s) = \mathbb{E}_\pi[G_t \mid S_t = s] \]

 \[= \mathbb{E}_\pi \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right] \]

 \[= \mathbb{E}_\pi \left[R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k R_{t+k+2} \mid S_t = s \right] \]

 \[= \mathbb{E}_\pi[R_{t+1} + \gamma v_\pi(S_{t+1}) \mid S_t = s] \]

TD: combine both: Sample expected values and use a current estimate \(V(S_{t+1}) \) of the true \(v_\pi(S_{t+1}) \)

DP: the expected values are provided by a model. But we use a current estimate \(V(S_{t+1}) \) of the true \(v_\pi(S_{t+1}) \)
Dynamic Programming

\[
V(S_t) \leftarrow E_\pi \left[R_{t+1} + \gamma V(S_{t+1}) \right] = \sum_a \pi(a|S_t) \sum_{s', r} p(s', r|S_t, a)[r + \gamma V(s')]
\]
Monte Carlo

\[V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t)) \]
Simplest TD(0) Method

\[V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t)) \]
TD Methods Bootstrap and Sample

- **Bootstrapping**: update involves an estimate
 - MC does not bootstrap
 - DP bootstraps
 - TD bootstraps

- **Sampling**: update does not involve an expected value
 - MC samples
 - DP does not sample
 - TD samples
TD Prediction

- **Policy Evaluation** (the prediction problem):
 - for a given policy \(\pi \), compute the state-value function \(v_\pi \)

- **Remember:** Simple every-visit Monte Carlo method:
 \[
 V(S_t) \leftarrow V(S_t) + \alpha \left[G_t - V(S_t) \right]
 \]
 target: the actual return after time \(t \)

- The simplest **Temporal-Difference** method TD(0):
 \[
 V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right]
 \]
 target: an estimate of the return
Example: Driving Home

<table>
<thead>
<tr>
<th>State</th>
<th>Elapsed Time (minutes)</th>
<th>Predicted Time to Go</th>
<th>Predicted Total Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>leaving office, friday at 6</td>
<td>0</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>reach car, raining</td>
<td>5</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>exiting highway</td>
<td>20</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>2ndary road, behind truck</td>
<td>30</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>entering home street</td>
<td>40</td>
<td>3</td>
<td>43</td>
</tr>
<tr>
<td>arrive home</td>
<td>43</td>
<td>0</td>
<td>43</td>
</tr>
</tbody>
</table>
Example: Driving Home

Changes recommended by Monte Carlo methods ($\alpha=1$)

Changes recommended by TD methods ($\alpha=1$)
Advantages of TD Learning

- TD methods do not require a model of the environment, only experience.
- TD, but not MC, methods can be fully incremental.
- You can learn before knowing the final outcome:
 - Less memory
 - Less computation
- You can learn without the final outcome:
 - From incomplete sequences
- Both MC and TD converge (under certain assumptions to be detailed later), but which is faster?
Bias-Variance Trade-Off

- Monte-Carlo: Update value $V(S_t)$ toward actual return G_t
 \[V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t)) \]

- Return $G_t = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{T-1} R_T$ is unbiased estimate of $\nu_\pi(S_t)$

- TD: Update value $V(S_t)$ toward estimated returns $R_{t+1} + \gamma V(S_{t+1})$
 \[V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t)) \]

- True TD target: $R_{t+1} + \gamma \nu_\pi(S_{t+1})$ is unbiased estimate of $\nu_\pi(S_t)$

- TD target: $R_{t+1} + \gamma V(S_{t+1})$ is biased estimate of $\nu_\pi(S_t)$

- TD target is much lower variance than the return:
 - Return depends on many random actions, transitions, rewards
 - TD target depends on one random action, transition, reward
Bias-Variance Trade-Off

- **MC** has high variance, zero bias
 - Good convergence properties
 - Even with function approximation
 - Not very sensitive to initial value
 - Very simple to understand and use

- **TD** has low variance, some bias
 - Good Usually more efficient than MC
 - TD(0) converges to $v_\pi(s)$
 - More sensitive to initial value
Random Walk Example

\[V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right] \]
TD and MC on the Random Walk

Data averaged over
100 sequences of episodes
Batch Updating in TD and MC methods

- **Batch Updating**: train completely on a finite amount of data,
 - e.g., train repeatedly on 10 episodes until convergence.

- Compute updates according to TD or MC, but only update estimates after each complete pass through the data.

- For any finite Markov prediction task, under batch updating, TD converges for sufficiently small α.

- Constant-α MC also converges under these conditions, but may converge to a different answer.
Random Walk under Batch Updating

- After each new episode, all previous episodes were treated as a batch, and algorithm was trained until convergence. All repeated 100 times.
AB Example

- Suppose you observe the following 8 episodes:

 A, 0, B, 0
 B, 1
 B, 1
 V(B)? 0.75
 B, 1
 V(A)? 0?
 B, 1
 B, 1
 B, 0

- Assume Markov states, no discounting ($\gamma = 1$)
AB Example

$V(A) = 0.75$
AB Example

- The prediction that best matches the training data is $V(A)=0$
 - This minimizes the mean-square-error on the training set
 - This is what a batch Monte Carlo method gets

- If we consider the sequentiality of the problem, then we would set $V(A)=.75$
 - This is correct for the maximum likelihood estimate of a Markov model generating the data
 - i.e., if we do a best fit Markov model, and assume it is exactly correct, and then compute what it predicts.
 - This is called the certainty-equivalence estimate
 - This is what TD gets
Summary so far

- Introduced one-step tabular model-free TD methods
- These methods bootstrap and sample, combining aspects of DP and MC methods
- TD methods are computationally congenial
- If the world is truly Markov, then TD methods will learn faster than MC methods
Unified View

Temporal-difference learning

Dynamic programming

Monte Carlo

Exhaustive search

width of backup

height (depth) of backup
Learning An Action-Value Function

- Estimate q_π for the current policy π

After every transition from a nonterminal state, S_t, do this:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$$

If S_{t+1} is terminal, then define $Q(S_{t+1}, A_{t+1}) = 0$
Sarsa: On-Policy TD Control

- Turn this into a control method by always updating the policy to be **greedy** with respect to the current estimate:

```
Initialize $Q(s, a), \forall s \in S, a \in A(s)$, arbitrarily, and $Q(terminal-state, \cdot) = 0$
Repeat (for each episode):
  Initialize $S$
  Choose $A$ from $S$ using policy derived from $Q$ (e.g., $\varepsilon$-greedy)
Repeat (for each step of episode):
  Take action $A$, observe $R, S'$
  Choose $A'$ from $S'$ using policy derived from $Q$ (e.g., $\varepsilon$-greedy)
  $Q(S, A) \leftarrow Q(S, A) + \alpha[R + \gamma Q(S', A') - Q(S, A)]$
  $S \leftarrow S'$; $A \leftarrow A'$;
until $S$ is terminal
```
Windy Gridworld

- undiscounted, episodic, reward = -1 until goal
Results of Sarsa on the Windy Gridworld
Q-Learning: Off-Policy TD Control

- One-step Q-learning:

\[
Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]
\]

Initialize \(Q(s, a), \forall s \in S, a \in A(s) \), arbitrarily, and \(Q(\text{terminal-state}, \cdot) = 0 \)

Repeat (for each episode):
 - Initialize \(S \)
 - Repeat (for each step of episode):
 - Choose \(A \) from \(S \) using policy derived from \(Q \) (e.g., \(\varepsilon \)-greedy)
 - Take action \(A \), observe \(R, S' \)
 - \(Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)] \)
 - \(S \leftarrow S' \)
 - until \(S \) is terminal
Cliffwalking

\[R = -1 \]

\[R = -100 \]

Optimal path

Safe path

\(\varepsilon \)-greedy, \(\varepsilon = 0.1 \)

Reward per episode

Sarsa

Q-learning

Episodes
Expected Sarsa

- Instead of the sample value-of-next-state, use the expectation!

\[
Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \mathbb{E}[Q(S_{t+1}, A_{t+1}) | S_{t+1}] - Q(S_t, A_t) \right]
\]

\[
\leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \sum \pi(a | S_{t+1}) Q(S_{t+1}, a) - Q(S_t, A_t) \right]
\]

- **Expected Sarsa** performs better than Sarsa (but costs more)
Performance on the Cliff-walking Task

Interim and asymptotic performance of TD control methods on the cliff-walking task. The grid world problem, one with a deterministic environment. As in the cliff walking task, we choose between four movement actions: up, down, left, and right. The grid has a height of 7 and a width of 10 squares. There are two non-terminal states, one with a reward of -1, except when the agent steps into the cliff area, which results in a reward of -100 and an immediate return to the start state. The episode ends upon reaching the goal state.

We evaluated the performance over the first n episodes as a function of the learning rate \(\alpha \). Figure 6.13: Interim and asymptotic performance of TD control methods on the cliff-walking task as a function of \(\alpha \). We averaged the results over 50,000 runs and note that for large values of \(\alpha \), the performance for Q-learning comes close to the performance of Expected Sarsa only for \(\alpha \approx 0.2 \). We first consider a deterministic environment. In a deterministic environment, the optimal state-action value function is unique, and the greedy policy with \(\epsilon \)-greedy policy with \(\epsilon = 0.1 \). Figure 2 shows the result for \(n = 100 \) and \(n = 10,000 \) using an \(\epsilon \)-greedy policy with \(\epsilon = 0.1 \).
Summary

- Introduced one-step tabular model-free TD methods
- These methods bootstrap and sample, combining aspects of DP and MC methods
- TD methods are computationally congenial
- If the world is truly Markov, then TD methods will learn faster than MC methods
- Extend prediction to control by employing some form of GPI
 - On-policy control: Sarsa, Expected Sarsa
 - Off-policy control: Q-learning