"H#"$%&" (%) *+,-./'0'+1%%
2'3.+*+4%3+5%6-+%-7
)8999873:<815*+-%

Machine Learning Department
rsalakhu@cs.cmu.edu

Temporal Difference
Learning%o



Used Materials

¥Disclaimer : Much of the material and slides for this lecture were
borrowed from Rich SuttonOs class and David SilverOs class on
Reinforcement Learning.



MC and TD Learning

» Goal: learn vﬂ(s) from episodes of experience under policy !

» Incremental every-visit Monte-Carlo:
- Update value V(S,) toward actual return G,

V(S:) « V(S5:) + a(G — V(S:))

» Simplest Temporal-Difference learning algorithm: TD(0)
- Update value V(S,)) toward estimated returns Re+1 + 7 V/(S¢+1)

V(S:) « V(S5:) + a(Riv1 + vV (St41) — V(S:))

v Rey1 + vV/(St41) is called the TD target
» 0t = Re41 +7V(St+1) — V(S:) is called the TD error.



DP vs. MC vs. TD Learning

» Remember:

vr(8) = E[G¢ | St

o0
= Er|Rit1+7) Y Ripkio

MC: sample average return

/ approximates expectation

St=.5‘:|

k=0

- ]E'rr[Rt—i—l -I- ’)”U',-r(St_;_l) | StZS] .

_—

TD: combine both: Sample
expected values and use a
current estimate V(S,,,) of the
true Vi (St+1)

\ DP: the expected values are
provided by a model. But we
use a current estimate V(S,,,)
of the true v, (S,,,)



Dynamic Programming

V(S)! E[RL+A(S)] = @S)  pshrisa)lr + " V(s

S r




Monte Carlo

V(S:) <« V(5:) + a(G;
St

= V(5t))




Simplest TD(0) Method

V(5t) < V(St) + a(Revr + 7 V(St41) — V(St))




TD Methods Bootstrap and Sample

» Bootstrapping: update involves an estimate
- MC does not bootstrap
- DP bootstraps
- TD bootstraps

» Sampling: update does not involve an expected value
- MC samples
- DP does not sample

- TD samples



TD Prediction

» Policy Evaluation (the prediction problem):

- for a given policy ! , compute the state-value function v,

» Remember: Simple every-visit Monte Carlo method:
V(S)! V(S)+ # Gt " V(&)

target: the actual return after tinte

» The simplest Temporal-Difference method TD(0):

V(S) ! V(S)+ ! Ret + "V(St1)" V(S
| |

target: an estimate of the return




Example: Driving Home

Elapsed Time  Predicted Predicted

State (minutes) Time to Go Total Time
leaving d' ce, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43

arrive home 43 0 43



Example: Driving Home

Changes recommended by

Monte Carlo methodd =1)

45 -
__.actual outcome__
A
, 40
Predicted
total
travel 35 -
time
30 4

] Ll 1 ] ] Ll
leaving reach exiting 2ndary home arrive
office car highway road street home

Situation

Predicted
total
travel
time

45

40 4

30 +

Changes recommended
by TD methods!(=1)

actual
outcome

I 1 I | I 1
leaving reach exiting 2ndary home arrive
office car highway road sireet home

Situation



Advantages of TD Learning

TD methods do not require a model of the environment, only
experience

TD, but not MC, methods can be fully incremental
You can learn before knowing the final outcome

- Less memory

- Less computation

You can learn without the final outcome

- From incomplete sequences

Both MC and TD converge (under certain assumptions to be
detailed later), but which is faster?



Bias-Variance Trade-Off

Monte-Carlo: Update value V(S,) toward actual return G,

Return G; = Ryy1 +YRiao + ... + VT_lRT iS unbiased estimate
of vr(St)

TD: Update value V(S,) toward estimated returns R;.1 + vV/(St41)
V(St) < V(5¢) + a(Res1 +7V(Sei1) — V(St))

True TD target: Rey1 + YVr(St+1) is unbiased estimate of v, (S¢)

TD target: Ryi1 +vV/(Sty1) is biased estimate of v (S¢)

TD target is much lower variance than the return:

- Return depends on many random actions, transitions, rewards

- TD target depends on one random action, transition, reward



Bias-Variance Trade-Off

» MC has high variance, zero bias
- Good convergence properties
- Even with function approximation
- Not very sensitive to initial value

- Very simple to understand and use

» TD has low variance, some bias
- Good Usually more efficient than MC
- TD(0) converges to v, (s)

- More sensitive to Initial value



Random Walk Example

~— OO0~ CE—

start

0.8 4

100

0.6 - A‘
Estimated ? _— : -
value 0.4 - //

true
values
0.2 5
Values learned by TD after
various numbers of episodes 0 r u ; ] ]
A B C D E

State

V(S) ! V(S)+ ! Ru + "V(Su1)" V(S)



TD and MC on the Random Walk

0.25

0.2 |\ %

RMS error, 9-157
averaged
over states  0.17

0.05 =

Walks / Episodes

Data averaged over
100 sequences of episodes



Batch Updating in TD and MC methods

Batch Updating: train completely on a finite amount of data,

- e.g., train repeatedly on 10 episodes until convergence.

Compute updates according to TD or MC, but only update
estimates after each complete pass through the data.

For any finite Markov prediction task, under batch updating, TD
converges for sufficiently small .

Constant-" MC also converges under these conditions, but may
converge to a different answer.



Random Walk under Batch Updating

BATCH TRAINING

RMS error, .15-
averaged
over states .14

.05 TD

0 1 T 1 1
0 25 50 75 100

Walks / Episodes

» After each new episode, all previous episodes were treated as a
batch, and algorithm was trained until convergence. All repeated
100 times.



AB Example

» Suppose you observe the following 8 episodes:

A,0,B,0

B

5, 1 V(B)?

b (B)? 0.75
B.1 V(A)? 0?
B, |

B, 1

B, 0

» Assume Markov states, no discounting (! =1)



AB Example

V(A)? 075




AB Example

» The prediction that best matches the training data is V(A)=0

This minimizes the mean-square-error on the training set

This is what a batch Monte Carlo method gets

» If we consider the sequentiality of the problem, then we would set
V(A)=.75

This is correct for the maximum likelihood estimate of a Markov
model generating the data

l.e, if we do a best fit Markov model, and assume it is exactly
correct, and then compute what it predicts.

This is called the certainty-equivalence estimate

This is what TD gets



Summary so far

Introduced one-step tabular model-free TD methods

These methods bootstrap and sample, combining aspects of
DP and MC methods

TD methods are computationally congenial

If the world is truly Markov, then TD methods will learn faster
than MC methods



Unified View

width
of backup i
Temporal- Dynamic
difference programming
learning

height
(depth)
of backup

Exhaustive

Monte .. search

Carlo



Learning An Action-Value Function

» Estimate q, for the current policy !

. < ) LSV TV T .
VTR OY AL OY ENAL Y S A
After every trangtion from anonermind date, S, do this:

QAS.A)! QS A)+" R, +#S.1. A)SQS.A)]
If S,, iIstermind, then ddineQ(S,,,A,;,) =0




Sarsa: On-Policy TD Control

» Turn this into a control method by always updating the policy to be
greedy with respect to the current estimate:

Initialize Q(s,a),!s" Sa" A(s), arbitrarily, and Q(terminal-state,§ =0
Repeat (for each episode).
Initialize S
ChooseA from S using policy derived fromQ (e.g., ! -greedy)
Repeat (for each step of episode):
Take action A, observeR, S'
ChooseA' from S' using policy derived from Q (e.g., ! -greedy)
Q(S,A) # Q(S,A)+ "[R+ #Q(S',A)) $ Q(S, A)]
S# ST A# A’
until S is terminal




Windy Gridworld

S G + %

standard king's
moves moves

O 001 1 1 2 2 10

» undiscounted, episodic, reward = D1 until goal



Results of Sarsa on the Windy Gridworld

170 +
150 - f
S G
*
100 -
Episodes 0 0 01 11 2 21 0
50 -
0-

0 1000 2000 3000 4000 5000 6000 7000 8000

Time steps



Q-Learning: Off-Policy TD Control

» One-step Q-learning:

Q(SLAY ! Q(SLA)+ I Run + " maxQ(Su1,a) " Q(St,Al)

Initialize Q(s,a),!s" S a" A(S), arbitrarily, and Q(terminal-state,§ = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., !-greedy)
Take action A, observe R, S’
Q(S,A)# Q(S,A) +"[R +#maxa Q(S',a) $ Q(S,A)]
S# &

until S is terminal




Cliffwalking

> safe path

- optimal path

S The Cliff

e—greedy, € =0.1

Sarsa
Reward _s504 [~ VM W\ N\ \J v AN Y J
per Q-learning
epsiode
-75
—100 | 1 T T 1
0 100 200 300 400 500

Episodes



Expected Sarsa

» Instead of the sample value-of-next-state, use the expectation!

Q(St, A ! Q(St, Ar) +! ;Rt—H + " E[Q(St+1, At41) | St1] " Q(St, At)
: #
I Q(St, Ag) +! Repr +" #(alSty1)Q(Sta1,a) " Q(St, At)

» EXpected Sarsa performs better than Sarsa (but costs more)



Performance on the Cliff-walking Task

0
FA A K
Expected Sarsa
-40 - i
D i x @
-learnin X

- © ] o g Sarsa
B IR - NS ARER - EEEL AR - RNEL A NEE TERL"A
per -80r x -V LoBY Q-learning i

episode

1201

x Vo ogoi
Svom
x - @’ Interim Performance

(after 100 episodes)

0.2 0.3 0.4 0.5

0.6

0.7

0.8 0.9 1



Summary

Introduced one-step tabular model-free TD methods

These methods bootstrap and sample, combining aspects of DP
and MC methods

TD methods are computationally congenial

If the world is truly Markov, then TD methods will learn faster than
MC methods

Extend prediction to control by employing some form of GPI
- On-policy control: Sarsa, Expected Sarsa

- Off-policy control: Q-learning



