10703 Deep Reinforcement Learning and Control
Russ Salakhutdinov
Machine Learning Department
rsalakhu@cs.cmu.edu

Memory-Augmented RL
Used Materials

• **Disclaimer**: Much of the material and slides for this lecture were provided by Alex Graves and Emilio Parisotto
Supervised Learning

- Most deep learning problems are posed as supervised learning problems

- The model is trained to map from an input to an action:
 - Describe what is in an image
 - Translate a sentence from English to French

- Environment is typically static:
 - It does not change over time

- Actions are assumed to be independent of another:
 - E.g. labeling one image does not affect the next one
Challenges

‣ Environment is dynamic and changes over time:
 – An autonomous agent has to handle new environments.

‣ Actions can affect the environment with arbitrary time lags:
 – Buying a stock \(\rightarrow\) years in the future can lose all money

‣ Labels can be expensive/difficult to obtain:
 – Optimal actuations of a swimming octopus robot.
Reinforcement Learning (RL)

- Instead of a label, the agent is provided with a reward signal
 - High reward = good behavior

- RL produces policies:
 - Map observations to actions
 - Maximize long-term reward

- RL allows learning purposeful behaviors in dynamic environments.

![Diagram of Reinforcement Learning Process]
External Memory

- Deep RL does extremely well on reactive tasks
- But typically has a short effective memory horizon
- Can we learn an agent with an external memory?
Current Memory for RL agents

- Current memory structures for RL are usually simple:
 - Just add an LSTM layer to the network

- Almost every kind of interesting problem is partially observable:
 - 3D games (with long-term objectives)
 - Autonomous robots (partial occlusion)

- Memory structures will be crucial to scaling up deep RL agents to partially-observable and non-reflexive tasks

- **Challenge**: complicated memory systems are difficult to train, especially using RL objectives.
Random Maze with Indicator

- **Indicator**: Either blue or pink
 - If blue, find the green block
 - If yellow, find the red block
- **Negative reward** if agent does not find correct block in N steps or goes to wrong block.

Parisotto, Salakhutdinov, 2017
Neural Turing Machines
Graves et al., 2014

- **Basic idea**: turn neural networks into ‘differentiable computers’ by giving them read-write access to external memory.

\[\text{‘CPU’} \quad + \quad \text{Memory} \quad = \quad \text{computer that learns programs from examples} \]

(neural net that separates computation from memory)
The Controller is a neural network (recurrent or feedforward)

The Heads select portions of the memory and read or write to them

The Memory is a real-valued matrix

Everything is differentiable
Selective Attention

- Want to focus on the parts of memory the network will read and write to: need an attention model

- Use the controller outputs to parameterize a distribution (weighting) over the rows (locations) in the memory matrix

- The weighting defines content-based attention mechanism.

Differentiable Neural Computer, Graves et al., Nature, 2016;
Neural Turing Machine, Graves et al., 2014
Addressing by Content

- A key vector k is emitted by the controller and compared to
 - content of each memory location $M[i]$
 - using a similarity measure $S(.,.)$, e.g. cosine distance
 - then normalized with a softmax.

- A ‘sharpness’ β is used to narrow the focus:
 - Finds the memories “closest” to the key

\[
 w[i] = \frac{\exp(\beta S(k, M[i]))}{\sum_j \exp(\beta S(k, M[j]))}
\]

Differentiable Neural Computer, Graves et al., Nature, 2016; Neural Turing Machine, Graves et al., 2014
Reading and Writing

› Once the weightings are defined, each read head returns a read vector \(r \) as input to the controller at the next time step

\[
r = \sum_i w[i] M[i]
\]

› Each write head receives an erase vector \(e \) and an add vector \(a \) from the controller
 - and then writes to modify the memory (like LSTM)

\[
M[i] \leftarrow M[i](1 - w[i]e) + w[i]a
\]

Differentiable Neural Computer, Graves et al., Nature, 2016; Neural Turing Machine, Graves et al., 2014
The NTM Copy Algorithm

initialize: move head to start location
while input delimiter not seen do
 receive input vector
 write input to head location
 increment head location by 1
end while
return head to start location
while true do
 while true do
 read output vector from head location
 emit output
 increment head location by 1
 end while
end while
NTM Generalization: length 10 to 120
Copy N Times

- Learning For Loop using content to jump, iteration to step, and a variable to count to N
Memory Networks

- A class of structures that were recently shown to learn difficult maze-based memory tasks
- These systems just store *(key, value)* representations for the M last frames

Oh et al., 2016, Weston et al. 2014
Memory Networks

- At each time step, they:
 - Predict a “context” vector from the current state
 - Match the context vector to the M last (key) features to get a probability distribution over the M last (value) features
 - Use the context vector and a weighted average of the value features to predict Q-values

Oh et al., 2016, Weston et al. 2014
Challenges

‣ Memory networks are easier to learn because the agent never needs to make the initial guess on what to store in memory.
 - No need to learn “what to write” to memory, just store as much as possible!

‣ The state at each time step is a temporal convolution of the last M frames, with the weights being defined by the context vector.

‣ This is inefficient:
 - We need $M >$ time horizon of the task (can’t know this a-priori).
 - We might store a lot of useless/redundant data.
 - Time/space requirements increase with M.
Neural Map (Location-Aware Memory)

- Neural Map: NTM with a specific inductive bias:
 - We structure the memory into a $K \times K$ grid instead of M cells.
 - For every (x,y) position in the environment, we write to a corresponding position (x',y') in the $K \times K$ grid.

- Acts as a map that the agent fills out as it explores.

- **Sparse Write**: The inductive bias prevents the agent from overwriting its memory too often, allowing easier credit assignment over time.

Parisotto, Salakhutdinov, 2017
Random Maze with Indicator

M_t
\[\text{Write} \]
w_t
\[\text{Read with Attention} \]
O_t

M_{t+1}
\[\text{Write} \]
w_{t+1}
\[\text{Read with Attention} \]
O_{t+1}

a_t

a_{t+1}

Parisotto, Salakhutdinov, 2017
Neural Map: Operations

- M_t is a k channel WxW image representing the environment.

- **Two read operations:**
 - **Global** summarization
 - **Context-based** retrieval

- **Sparse write** only to map position where agent current is.

- **Outputs** of both reads and the write vector are passed to next layer.

\[
\begin{align*}
r_t &= \text{read}(M_t) \\
c_t &= \text{context}(M_t, s_t, r_t) \\
w^{(x_t,y_t)}_{t+1} &= \text{write}(s_t, r_t, c_t, M^{(x_t,y_t)}_t) \\
M_{t+1} &= \text{update}(M_t, w^{(x_t,y_t)}_{t+1}) \\
o_t &= [r_t, c_t, w^{(x_t,y_t)}_{t+1}] \\
\pi_t(a|s) &= \text{Softmax}(f(o_t)),
\end{align*}
\]

Parisotto, Salakhutdinov, 2017
Neural Map: Global Read

- M_t is a k channel $W \times W$ image representing the environment.

- Reads from the entire neural map using a deep convolutional network.

- Produces a vector that provides a global summary.

\[
\begin{align*}
 r_t &= \text{read}(M_t) \\
 c_t &= \text{context}(M_t, s_t, r_t) \\
 w_{t+1}^{(x_t,y_t)} &= \text{write}(s_t, r_t, c_t, M_t^{(x_t,y_t)}) \\
 M_{t+1} &= \text{update}(M_t, w_{t+1}^{(x_t,y_t)}) \\
 o_t &= [r_t, c_t, w_{t+1}^{(x_t,y_t)}] \\
 \pi_t(a|s) &= \text{Softmax}(f(o_t))
\end{align*}
\]
Neural Map: Context Read

- M_t is a k channel $W \times W$ image representing the environment.
- **Context read** operation.

$$q_t = W[s_t, r_t]$$
$$a_t^{(x,y)} = q_t \cdot M_t^{(x,y)}$$
$$\alpha_t^{(x,y)} = \frac{e^{a_t^{(x,y)}}}{\sum_{(w,z)} e^{a_t^{(w,z)}}}$$
$$c_t = \sum_{(x,y)} \alpha_t^{(x,y)} M_t^{(x,y)}$$

$$r_t = \text{read}(M_t)$$
$$c_t = \text{context}(M_t, s_t, r_t)$$
$$w_{t+1}^{(x_t,y_t)} = \text{write}(s_t, r_t, c_t, M_t^{(x_t,y_t)})$$
$$M_{t+1} = \text{update}(M_t, w_{t+1}^{(x_t,y_t)})$$
$$o_t = [r_t, c_t, w_{t+1}^{(x_t,y_t)}]$$
$$\pi_t(a|s) = \text{Softmax}(f(o_t)),$$
Neural Map: Write

- M_t is a k channel $W \times W$ image representing the environment.

- Create a new vector to write to the current position in the neural map.

- Write to the neural map at the current position with this new vector.

\[
\begin{align*}
 r_t &= \text{read}(M_t) \\
 c_t &= \text{context}(M_t, s_t, r_t) \\
 w_{t+1}^{(x_t,y_t)} &= \text{write}(s_t, r_t, c_t, M_t^{(x_t,y_t)}) \\
 M_{t+1} &= \text{update}(M_t, w_{t+1}^{(x_t,y_t)}) \\
 o_t &= [r_t, c_t, w_{t+1}^{(x_t,y_t)}] \\
 \pi_t(a|s) &= \text{Softmax}(f(o_t)),
\end{align*}
\]
Neural Map: Output

- M_t is a k channel $W \times W$ image representing the environment.

- Output the read vectors and what we wrote.

- Use those features to calculate a policy.

\[
\begin{align*}
 r_t &= \text{read}(M_t) \\
 c_t &= \text{context}(M_t, s_t, r_t) \\
 w_{t+1}^{(x_t,y_t)} &= \text{write}(s_t, r_t, c_t, M_t^{(x_t,y_t)}) \\
 M_{t+1} &= \text{update}(M_t, w_{t+1}^{(x_t,y_t)}) \\
 o_t &= [r_t, c_t, w_{t+1}^{(x_t,y_t)}] \\
 \pi_t(a|s) &= \text{Softmax}(f(o_t)),
\end{align*}
\]
Neural Map: Output

\[r_t = \text{read}(M_t) \]
\[c_t = \text{context}(M_t, s_t, r_t) \]
\[w^{(x_t,y_t)} = \text{write}(s_t, r_t, c_t, M_t^{(x_t,y_t)}) \]
\[M_{t+1} = \text{update}(M_t, w^{(x_t,y_t)}_{t+1}) \]
\[o_t = [r_t, c_t, w^{(x_t,y_t)}_{t+1}] \]
\[\pi_t(a|s) = \text{Softmax}(f(o_t)), \]
Neural Map: Write Operation

\[
\begin{align*}
 r_{t+1}^{(x_t,y_t)} &= \sigma(W_r[s_t, r_t, c_t, M_t^{(x_t,y_t)})]
 \\
 \hat{w}_{t+1}^{(x_t,y_t)} &= \tanh(W_{\hat{h}}[s_t, r_t, c_t] + U_{\hat{h}}(r_{t+1}^{(x_t,y_t)} \odot M_t^{(x_t,y_t)}))
 \\
 \hat{z}_{t+1}^{(x_t,y_t)} &= \sigma(W_{\hat{z}}[s_t, r_t, c_t, M_t^{(x_t,y_t)}])
 \\
 w_{t+1}^{(x_t,y_t)} &= (1 - \hat{z}_{t+1}^{(x_t,y_t)}) \odot M_t^{(x_t,y_t)} + \hat{z}_{t+1}^{(x_t,y_t)} \odot \hat{w}_{t+1}^{(x_t,y_t)},
\end{align*}
\]

- Instead of a hard write each time step, we can use gating.
- Used GRU-like update equations.
- Greatly improved learning speed and stability.
Start in a specific position in a random maze.

Near the start position there is an indicator.
- Either green or yellow

If green, find the blue block.

If yellow, find the red block.

Failure (negative reward) if agent doesn’t find correct block in N steps or goes to wrong block.
Random Maze with Indicator

Real Map
(Not Visible)
3xKxK

Input State
(Partially observable)
3x5x3
Random Maze with Indicator
Results: Random Maze

<table>
<thead>
<tr>
<th>Agent</th>
<th>Goal-Search</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Train</td>
<td>13-15</td>
<td>Total</td>
<td>Test</td>
<td>13-15</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Random</td>
<td>41.9%</td>
<td>25.7%</td>
<td>38.1%</td>
<td>46.0%</td>
<td>29.6%</td>
<td>38.8%</td>
<td></td>
</tr>
<tr>
<td>LSTM</td>
<td>60.6%</td>
<td>41.8%</td>
<td>59.3%</td>
<td>65.5%</td>
<td>47.5%</td>
<td>57.4%</td>
<td></td>
</tr>
<tr>
<td>MemNN-32</td>
<td>85.1%</td>
<td>58.2%</td>
<td>77.8%</td>
<td>92.6%</td>
<td>69.7%</td>
<td>83.4%</td>
<td></td>
</tr>
<tr>
<td>Neural Map</td>
<td>92.4%</td>
<td>80.5%</td>
<td>89.2%</td>
<td>93.5%</td>
<td>87.9%</td>
<td>91.7%</td>
<td></td>
</tr>
<tr>
<td>Neural Map (GRU)</td>
<td>97.0%</td>
<td>89.2%</td>
<td>94.9%</td>
<td>97.7%</td>
<td>94.0%</td>
<td>96.4%</td>
<td></td>
</tr>
</tbody>
</table>

![Graph showing performance over epochs](image)
Neural Map: Learning to Store

Observations

True State

Context Read Distribution
Doom Maze Results

<table>
<thead>
<tr>
<th>Agent</th>
<th>Training Map</th>
<th>Unseen Maps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>20.9%</td>
<td>22.1%</td>
</tr>
<tr>
<td>MemNN</td>
<td>68.2%</td>
<td>60.3%</td>
</tr>
<tr>
<td>LSTM</td>
<td>69.2%</td>
<td>52.4%</td>
</tr>
<tr>
<td>LSTM+Neural Map (GRU)</td>
<td>78.3%</td>
<td>66.6%</td>
</tr>
</tbody>
</table>
Future Directions

- Can we extend to multi-agent domains?
 - Multiple agents communicating through shared memory

- Can we train an agent to learn how to simultaneously localize and map its environment using the Neural Map?
 - Solves problem of needing an oracle to supply \((x,y)\) position

- Can we structure neural maps into a multi-scale hierarchy?
 - Each scale will incorporate longer range information