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Abstract
Software development is a complex and error prone task. Programming lan-
guages with strong static type systems assist programmers by capturing and
checking the fundamental structure of programs in a very intuitive way. Given
this success, it is natural to ask: can we capture and check more of the struc-
ture of programs?

In this work I consider a new approach called refinement-type checking
that allows many common program properties to be captured and checked.
This approach builds on the strength of the type system of a language by
adding the ability to specify refinements of each type. Such refinement types
have been considered previously, and following previous work I focus on re-
finements that include subtyping and a form of intersection types.

Central to my approach is the use of a bidirectional checking algorithm.
This does not attempt to infer refinements for some expressions, such as func-
tions, but only checks them against refinements. This avoids some difficulties
encountered in previous work, and requires that the programmer annotate
their program with some of the intended refinements, but the required anno-
tations appear to be very reasonable. Further, they document properties in
a way that is natural, precise, easy to read, and reliable.

I demonstrate the practicality of my approach by showing that it can be
used to design a refinement-type checker for a widely-used language with a
strong type system: Standard ML. This requires two main technical devel-
opments. Firstly, I present a new variant of intersection types that achieve
soundness in the presence of call-by-value effects by incorporating a value re-
striction. Secondly, I present a practical approach to incorporating recursive
refinements of ML datatypes, including a pragmatic method for checking the
sequential pattern matching construct of ML.

I also report the results of experiments with my implementation of
refinement-type checking for SML. These indicate that refinement-type check-
ing is a practical method for capturing and checking properties of real code.

Thesis Committee: Frank Pfenning (Chair), Robert Harper, Peter Lee,
John Reynolds, Alex Aiken (Stanford University).



1 Thesis

A new technique called refinement-type checking provides a practical mech-
anism for expressing and verifying many properties of programs written in
fully featured languages.

2 Motivation

Static type systems are a central feature of many programming languages.
They provide a natural and intuitive mechanism for expressing and checking
the fundamental structure of programs. They thus allow many errors in pro-
grams to be automatically detected at an early stage, and they significantly
aid the process of understanding unfamiliar code. This is particularly true
for large, modular programs, since types can be used to describe module
interfaces.

While strong static type systems are very effective at capturing the basic
structure of a program, generally programs involve many important prop-
erties that are not captured by types. For example, a particular function
may always return a non-zero number, or may require that its argument
be non-zero, but programming languages generally do not provide a specific
type for non-zero numbers.

Such invariants are often critical to the understanding and correctness of
a program, but usually they are only informally documented via comments.
While such comments are certainly useful, it takes considerable discipline to
ensure that properties are described accurately and precisely, particularly
when the code may be modified frequently. Further, the lack of any conve-
nient mechanism for checking whether the code actually satisfies the stated
properties means that such comments cannot be relied upon.

We might consider attempting to construct formal proofs that such prop-
erties are satisfied. However, constructing such proofs is generally difficult
or infeasible. Further, as a program evolves, the proof needs to be evolved,
which is likely to be awkward. Additionally, when the intended properties
do not hold due to an error in the code, it is unlikely that this method
will guide the programmer to the source of the error as quickly as the error
messages produced by a type checker.

This work demonstrates that a new approach to capturing and checking
some of these properties can be used to build practical tools. This approach
builds on the strength of the static type system of a language by adding the
ability to specify refinements of each type. These refinement types include
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constructs which follow the structure of the type that they refine, and ad-
ditionally include features that are particularly appropriate for specifying
program properties.

3 Background: refinement types

Refinement types were introduced by Freeman and Pfenning [FP91]. They
do not require altering the type system of a language: instead we add a new
kind of checking which follows the structure of the type system, but addi-
tionally includes features that are appropriate for expressing and checking
properties of programs. This means that we are conservatively extending
the language: all programs in the original language are accepted as valid
programs in our extension.

We also refer to refinement types as sorts in accordance with the use of
this term in order-sorted algebras [DG94]. This allows us to use convenient
terminology that mirrors that for types: we can use terms such as subsorting
and sort checking and thus make a clear link with the corresponding notions
for types.

We illustrate the features of sorts with a running example. We first
illustrate the constructs that follow the structure of types, focusing on the
situation for functions. Suppose we have a sort pos for positive integers
which refines a type num for numbers. Then, we can form a sort for functions
mapping positive integers to positive integers: pos→ pos. This uses the
construct → which mirrors the corresponding construct for types. If we
have an additional refinement nat for natural numbers, then we can form
the following refinements of the type num→ num.

pos→ pos pos→ nat nat→ pos nat→ nat

Sorts include similar constructs mirroring each type construct. We now
consider the other features of sorts, which are included specifically because
they are appropriate for capturing program properties.

Sorts express properties of programs, and generally there are natural
inclusion relationships between these properties. For example, every positive
number is a natural number, so we should allow a positive number whenever
a natural number is required. Thus, we have a natural partial order on the
refinements of each type, and we write pos ≤ nat to indicate this order.
This is essentially a form of subtyping, although we refer to it as subsorting
since the order is on the refinements of a particular type rather than on the
types themselves. This partial order is extended to refinements of function
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types following the standard contravariant-covariant subtyping rule. Thus,
the following inclusion holds.

nat→ pos ≤ pos→ nat

In practice it is sometimes necessary to assign more than one property to
a particular part of a program. For example, if we have a function double
with type num→num that doubles a number, we may need two properties of
this function: that it maps positive numbers to positive numbers, and that
it maps natural numbers to natural numbers. To allow multiple properties
to be specified in such situations, sorts include an intersection operator &
which allows two refinements of the same type to be combined. Thus, we
can specify the desired property of double with the following sort.

(pos→ pos) & (nat→ nat)

The operator & is based on work on intersection types, such as that of
Coppo, Dezani-Ciancaglini and Venneri [CDV81] and Reynolds [Rey96].

One might notice that refinements are essentially another level of types,
and wonder whether it is really necessary to have both ordinary types and
refinements as two separate levels for the same language. In fact, it is possi-
ble to design a language which instead includes intersections and subtyping
in the ordinary type system. We consider such a language in Chapter 4 of
the dissertation, and a real language with these features has been described
by Reynolds [Rey96]. However, we have both philosophical and practical
reasons for considering types and refinements as two separate levels.

The philosophical reason is that we consider type correctness to be neces-
sary in order for the semantics of a program to be defined, while refinements
only express properties of programs that have already been determined to be
valid. This is essentially the distinction between typed languages in the style
of Church [Chu40] and type assignment systems in the style of Curry [Cur34].
Reynolds [Rey02] has considered a similar distinction between intrinsic and
extrinsic semantics. In our case we consider that we have both, with one
system refining the other, and we would argue that this is a natural design
since the two levels serve different purposes.

The practical reason for considering types and refinements as two sep-
arate levels is that it allows us to extend an existing widely-used typed
language without modifying it in any way. This allows us to easily experi-
ment with refinements in real code. It also allows others to use refinements
without committing to writing code in an experimental language. Thus,
this approach allows significant experience to be gained in programming
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with advanced features such as intersection types and subtyping without
introducing a new language.

Sorts are of little use to a programmer without a practical tool for check-
ing the sorts associated with a program. Previous work on sorts focused on
algorithms for sort inference, but this seems to be problematic. One reason
for this that code generally satisfies many accidental properties which must
be reflected in the inferred sort. Such accidental properties often prevent
errors from being reported appropriately, such as when a function is applied
to an inappropriate argument that nevertheless matches part of the inferred
sort for the function. Further, as we move to more complicated types there
is a combinatorial explosion in the number of refinements and the potential
size of principal sorts. Experiments with refinements have thus been limited
to relatively small and simple code fragments in previous work.

4 Our approach

4.1 Bidirectional checking

Central to this thesis work is a new approach called refinement-type checking,
which we also call sort checking. This approach uses a bidirectional algo-
rithm that does not attempt to infer sorts for some forms of expressions,
such as functions, but instead only checks them against sorts. We still in-
fer sorts for other forms of expressions, such as variables and applications.
The technique is called bidirectional because it works top-down through a
program when checking against sorts, and bottom-up when inferring sorts.

Bidirectional algorithms have been considered previously by Reynolds
[Rey96] and Pierce [Pie97] for languages with general intersection types,
and by Pierce and Turner [PT98] for a language with impredicative poly-
morphism and subtyping.

Generally bidirectional algorithms require that the programmer annotate
some parts of their program with the intended sorts. In our case, these
annotations are only required for function definitions, and only those for
which the programmer has in mind a property beyond what is checked by
the ordinary type system. Our experience suggests that this requirement
is very reasonable in practice. Further, these annotations usually appear
at locations where it is natural to describe the properties using a comment
anyway. They thus document properties in a way that is natural, easy to
read, and precise. Additionally, these annotations can be relied upon to a
greater extent than informal comments, since they are mechanically verified
by sort checking.
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To demonstrate the practicality and utility of sort checking for real pro-
grams, we have designed and implemented a sort checker for Standard ML,
which is a widely used programming language with a strong static type sys-
tem and advanced support for modular programming [MTHM97]. We now
briefly outline the two main technical developments required to extend our
approach to this fully featured language. These form the technical core of
the dissertation, along with our bidirectional approach to sort checking.

4.2 Intersection types with call-by-value effects

The first main technical development is a new form of intersection types that
achieves soundness in the presence of call-by-value effects. The standard
form of intersection types is unsound in the presence of such effects, as
illustrated by the following SML code, which includes sort annotations in
stylized comments (as used by our implementation).

(*[ cell <: (pos ref) & (nat ref) ]*)
val cell = ref one
val () = (cell := zero)

(*[ result <: pos ]*)
val result = !cell

Here we create a reference cell that initially contains one. (We assume
that one and zero have the expected refinements pos and nat.) Since one
has sort pos we can assign ref one the sort pos ref, and since one has
sort nat we can assign ref one the sort nat ref. The standard rule for
intersection introduction then allows us to assign ref one the intersection
of these two sorts (pos ref) & (nat ref).

This leads to unsoundness, because the first part of the intersection
allows us to update cell with zero, while the second part of the intersection
allows us to conclude that reading the contents of cell will only return
values with sort pos. Hence, standard intersection types allow us to assign
result the sort pos when it will actually be bound to the value zero, which
is clearly incorrect.

Our solution to this problem is to restrict the introduction of intersec-
tions to values. Our restricted form of intersection introduction states that
if we can assign a value V the sort R and also the sort S then we can assign
the intersection of those sorts R&S. (The general form of the rule allows
any expression, not just values.)
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This follows the value restriction on parametric polymorphism in the
revised definition of SML [MTHM97], which was first proposed by Wright
and Felleisen [WF94]. In our case we find that we additionally need to
remove one of the standard subtyping rules for intersection types. The
resulting system has some pleasing properties, and seems even better suited
to bidirectional checking than standard intersection types.

4.3 Datasorts and pattern matching

The second main technical development is a practical approach to refine-
ments of ML datatypes, including the sort checking of sequential pattern
matching. Following previous work on sorts, we focus on refinements which
are introduced using a mechanism for refining datatypes using recursive def-
initions. These refinements are particularly appropriate for ML because
datatypes play an important role in the language: e.g. conditional control-
flow is generally achieved by pattern matching with datatypes.

We illustrate the expressiveness of these refinements with an example.
Suppose we have a program that includes the following ML datatype for
strings of bits.

datatype bits = bnil | b0 of bits | b1 of bits

Further, suppose that in part of the program this datatype is used to rep-
resent natural numbers with the least significant digits at the beginning of
the string. To ensure that there is a unique representation of each number,
the program uses the following representation invariant: a natural number
should have no zeros in the most significant positions (i.e. at the end). We
can capture this invariant with the following datasort declarations, which
define refinements of the datatype bits.

(*[ datasort nat = bnil | b0 of pos | b1 of nat
and pos = b0 of pos | b1 of nat ]*)

The syntax for datasort declarations mirrors that that of the datatype dec-
larations which are being refined, except that some value constructors may
be omitted and some may appear more than once with different sorts for the
constructor argument. The datasort nat represents valid natural numbers,
while pos represents valid positive natural numbers. In this declaration, the
datasort pos is necessary in order to define nat, since b0 bnil is not a valid
representation of a natural number. The inclusion pos ≤ nat clearly holds
for these two datasorts, just like the refinements of the type num that we
considered in Section 3.
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In general, we would like to determine which inclusions hold for a par-
ticular set of datasort declarations. We differ from previous work on refine-
ments in that we formulate an algorithm for determining which inclusions
hold that is complete with respect to an inductive semantics in the case
when the recursive definitions correspond to a regular-tree grammar. This
makes it easier for a programmer to determine which inclusions should hold.
We also show how to extend our approach to refinements of datatypes which
include functions and references, including datatypes with recursion in con-
travariant positions, unlike previous work on refinements. We can no longer
formulate an inductive semantics in this case, but our experience suggests
that this extension validates those inclusions that are intuitively expected,
and that forbidding such refinements would be limiting in practice.

For convenience, each datatype has a default refinement which has the
same name as the datatype, and a datasort declaration that mirrors the
datatype declaration. Thus, we can think of the above datatype declaration
as also including the following declaration.

(*[ datatype bits = bnil | b0 of bits | b1 of bits ]*)

These datasorts make it easy to provide sorts that do no more checking
than done by the type system. Further, our sort checker uses these de-
fault refinements when annotations are missing in positions required by our
bidirectional algorithm, to ensure that we have a conservative extension of
SML.

In the presence of datasort declarations, sort checking the pattern match-
ing construct of ML presents a number of challenges. For example, consider
the following code for a function which standardizes an arbitrary bit string
by removing zeros at the end to satisfy the sort nat.

(*[ stdize <: bits -> nat ]*)
fun stdize bnil = bnil
| stdize (b0 x) = (case stdize x

of bnil => bnil
| y => b0 y

)
| stdize (b1 x) = b1 (stdize x)

The inner pattern match is the most interesting here. To check the branch
“y => b0 y” it is critical that we take account of the sequential nature of
ML pattern matching to determine that y can not be bnil. We achieve this
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by using a generalized form of sorts for patterns that accurately capture the
values matched by previous patterns.

The example above is relatively simple; in the presence of nested patterns
and products the situation is considerably more complicated, and generally
requires “reasoning by case analysis” to check the body of each branch.
When we perform such an analysis, we avoid the “splitting” into unions of
basic components that was used in previous work on refinements. This is
because it leads to a potential explosion in the case analysis that needs to
be performed. We instead focus on inversion principles that are determined
relatively directly from datasort declarations.

4.4 Extending to a sort checker for Standard ML

We tackled a number of other smaller challenges while extending sort check-
ing to the full SML language. The following are some of the more notable
related to the design of sort checking (as opposed to its implementation).
When a required annotation is missing during sort checking of expressions,
we use a default refinement that results in similar checking to that per-
formed during type checking. We allow parameterized datasort declarations
with variance annotations for each parameter. When we have a type shar-
ing specification for types which have refinements, we also share all refine-
ments according to their names. We allow the specification of refinements
of opaque types in signatures, including specifications of the inclusions that
should hold between them.

We also briefly mention some of the more notable challenges tackled
while implementing our sort checker for SML. The implementation of the
datasort inclusion algorithm uses a sophisticated form of memoization and
other techniques in order to obtain acceptable performance. The implemen-
tation of the bidirectional checking algorithm uses a library of combinators
for computations with backtracking and error messages which is designed to
be efficient and allow a natural style of programming. The implementation
of checking for pattern matching uses some important optimizations, such
as avoiding redundancy during case analysis.

Our experiments with our implementation indicate that refinement-type
checking is a practical and useful method for capturing and checking prop-
erties of real SML code. We found that the annotations required were very
reasonable in most cases, and that the time taken to check was at most a
few seconds. In general, the error messages produced were even more infor-
mative than those produced by an SML compiler for similar errors: this is
because bidirectional checking localizes the effect of errors better than type
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inference based on unification (as generally used for SML).

5 Introductory examples

We now show some additional examples. These use the type for bit strings
and the sorts for the associated representation invariant for natural numbers
that were introduced in the previous section.

datatype bits = bnil | b0 of bits | b1 of bits

(*[ datasort nat = bnil | b0 of pos | b1 of nat
and pos = b0 of pos | b1 of nat ]*)

We start with a very simple example: the constant four. As expected it has
the sort pos. This sort could be inferred, so the annotation is not required,
but serves as handy, mechanically checked documentation.

(*[ four <: pos ]*)
val four = b0 (b0 (b1 bnil))

In contrast, the following bit string consisting of three zeros is not even a
natural number. The best sort it can be assigned is bits, i.e. the default
refinement of the type bits. Again, this sort could be inferred.

(*[ zzz <: bits ]*)
val zzz = b0 (b0 (b0 bnil))

The next example is a function that increments the binary representation
of a number.

(*[ inc <: nat -> pos ]*)
fun inc bnil = b1 bnil
| inc (b0 x) = b1 x
| inc (b1 x) = b0 (inc x)

We remark that ascribing inc <: nat -> nat instead of nat -> pos would
be insufficient: in order to determine that the last clause returns a valid
natural number, we need to know that the result of the recursive call inc x is
positive. This is reminiscent of the technique of strengthening an induction
hypothesis which is commonly used in inductive proofs. Our experience
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indicates that it is not too hard for a programmer to determine when such
stronger sorts are required for recursive calls, and in fact they must be
aware of the corresponding properties in order to write the code correctly.
In fact, using a sort checker actually helps a programmer to understand the
properties their code, and thus allows correct code to be written more easily,
particularly when the properties are complicated.

We further remark that subsorting allows us to derive additional sorts
for inc, including nat -> nat, via inclusions such as the following.

nat -> pos ≤ nat -> nat
nat -> pos ≤ pos -> pos

We also remark that the sort we have ascribed will result in each call to inc
having its argument checked against the sort nat, with an error message
being produced if this fails. If some parts of the program were designed
manipulate natural numbers that temporarily violate the invariant (and
perhaps later restore it using stdize), it might be appropriate to instead
ascribe the following sort.

(*[ inc <: (nat -> pos) & (bits -> bits) ]*)

It seems reasonable to ascribe this sort, since the result returned is appro-
priate even when the invariant is violated.

Our next example is a function which adds together two binary natural
numbers.

(*[ plus <: (nat -> nat -> nat)
& (nat -> pos -> pos) & (pos -> nat -> pos) ]*)

fun plus bnil n = n
| plus m bnil = m
| plus (b0 m) (b0 n) = b0 (plus m n)
| plus (b0 m) (b1 n) = b1 (plus m n)
| plus (b1 m) (b0 n) = b1 (plus m n)
| plus (b1 m) (b1 n) = b0 (inc (plus m n))

Again, for this definition to sort-check we need to know that
inc <: nat -> pos. We also need a stronger sort than
plus <: nat -> nat -> nat for the recursive calls. For these, the
following sort would have sufficed, but subsequent calls to plus would have
less information about its behavior.

(*[ plus <: (nat -> nat -> nat) & (pop -> pos -> pos) ]*)
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Next, we show an example of an error that is caught by sort checking.

(*[ double <: (nat -> nat) & (pos -> pos) ]*)
fun double n = b0 n

Our sort checker prints the following error message for this code.

fun double n = b0 n
^^^^

Sort mismatch: bits
expecting: nat

This tells us that the expression b0 n has only the sort bits, but should
have sort nat. To figure out why it does not have sort nat, we can look at
the datasort declaration for nat: it specifies that b0 must only be applied to
arguments with sort pos. Indeed, double bnil evaluates to b0 bnil which
is not a valid representation of zero. We are thus led towards an appropriate
fix for this problem: we add an additional case for bnil, as follows.

(*[ double <: (nat -> nat) & (pos -> pos) ]*)
fun double bnil = bnil
| double n = b0 n

We conclude this section with an example which shows some of the expressive
power of sort checking with recursive datasort declarations. This example
uses datasort declarations to capture the parity of a bit string, and verifies
that a function that appends a one bit to the end of a bit string appropriately
alters the parity.

(*[ datasort evPar = bnil | b0 of evPar | b1 of odPar
and odPar = b0 of odPar | b1 of evPar ]*)

(*[ append1 <: (evPar -> odPar) & (odPar -> evPar) ]*)
fun append1 bnil = b1 bnil
| append1 (b0 bs) = b0 (append1 bs)
| append1 (b1 bs) = b1 (append1 bs)

The full power of sorts is not demonstrated by this small example. It it best
demonstrated in the context of real code with all its complexities. See the
experiments in Chapter 9 of the dissertation for examples of real code with
sort annotations.
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6 Organization of the dissertation

The dissertation is organized as follows.
Chapter 1 is the introduction, and is similar to this thesis summary,

although additionally contains a substantial section on related work.
Chapter 2 focuses on sorts and sort checking for a λ-calculus using the

standard intersection type rules.
Chapter 3 focuses on sorts and sort checking for a λ-calculus using a

value restriction on intersections, and modified subtyping for intersections
so that the language is suitable for extension with effects.

Chapter 4 demonstrates that our value restriction and modified subtyp-
ing result in a system that is sound in presence of effects by adding mutable
references and an example datatype.

Chapter 5 presents our approach to datasort declarations, including our
algorithm for comparing them for inclusion.

Chapter 6 considers sort checking in the presence of datasort declara-
tions, including pattern matching.

Chapter 7 describes the design of an extension of our approach to the
full set of features in Standard ML.

Chapter 8 describes our implementation of a sort checker for SML, based
on the design and algorithms in previous chapters.

Chapter 9 reports some experiments with sort checking of real SML code
using our implementation.

Chapter 10 concludes.
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