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Abstract. Identifying gene clusters, genomic regions that share local
similarities in gene organization, is a prerequisite for many different types
of genomic analyses, including operon prediction, reconstruction of chro-
mosomal rearrangements, and detection of whole-genome duplications. A
number of formal definitions of gene clusters have been proposed, as well
as methods for finding such clusters and/or statistical tests for determin-
ing their significance. Unfortunately, there is very little overlap between
previously published rigorous analytical statistical tests and the defini-
tions used in practice. In this paper, we consider the max-gap cluster:
a contiguous region containing a maximal set of homologs, where the
number of non-homologous genes between pairs of adjacent homologs is
never greater than a predefined, fixed parameter, g. Although this is one
of the models most widely used in practice, currently the statistical sig-
nificance of max-gap clusters can only be evaluated using Monte Carlo
simulations because no analytical statistical tests have been developed
for it. We give exact expressions for the probability of observing such a
cluster by chance, assuming a simple reference-region scenario and ran-
dom gene order, as well as more efficient methods for approximating this
probability. We use these methods to identify which regions of the pa-
rameter space yield clusters that are statistically significant. Finally, we
discuss some of the challenges in extending this model to whole-genome
comparison.

1 Introduction

Identification of conserved chromosomal segments is an essential first step for
many different types of genomic analyses. Regions of similar gene content in
related genomes can provide evidence for evolutionary relatedness or functional
selection on gene order. For example, within a single genome the pattern of dupli-
cated regions can provide evidence for large-scale or whole-genome duplication [2,
17, 18, 40, 53, 54, 66–68]. Conserved segments between different genomes, on the
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Gap of size 4
n=24, m=9, h=3, g=2

Cluster of size 3
and length 4 Cluster of size  5 and length 10

Fig. 1. A sample genome (n = 24), with m = 9 genes of interest shown in black. When
the maximum gap allowed is g = 2 and the minimum cluster size is h = 3, then two
clusters are found. The rightmost black gene is not part of any cluster.

other hand, have been used extensively to reconstruct the history of chromoso-
mal rearrangements and infer an ancestral genetic map for a diverse group of
species [8, 11, 16, 43, 41, 55, 47, 51], as well as to provide coarse-grain features for
new phylogenetic approaches [6, 12, 26, 49, 50, 62]. In bacteria, conserved gene
order and content have been used for prediction of operons [7, 20], horizontal
transfers [36], and more generally to help understand the relationship between
spatial organization and functional selection [31, 35, 45, 60, 61].

The common goal in all of these analyses is either to detect regions that
share a common ancestor or where gene content is under functional selection.
The signature of such conserved regions, which we call gene clusters, will be
similar gene content, but we do not require gene content or order be strictly
conserved as this would rule out many more distantly related regions.

It is not obvious how to choose a formal definition that best captures our
intuitive notions about gene clusters. A number of definitions have been pro-
posed, as well as algorithms for finding clusters which meet these definitions and
statistical tests to evaluate their significance [3, 22, 23, 29]. The most stringent
of these define conserved segments as two or more contiguous regions that con-
tain the same genes in the same order [42, 44] and sometimes orientation [45, 60,
68]. However, such stringent definitions will invariably lead to the exclusion of
many regions that did indeed descend from a single ancestral region but have
since undergone small rearrangements. More flexible definitions allow for some
amount of divergence and rearrangement.

Many of these more flexible definitions are based on a simple model in which a
genome is represented as an ordered set of n genes: G = (g1,. . .,gn). Chromosome
breaks are ignored and it is assumed that genes do not overlap. We start with
a simple abstraction in which m genes (“the black genes”) are pre-specified
as interesting. These m genes may be of interest because their homologs are
contiguous in another region or genome (the “reference region”) or because they
share some functional properties. We are interested in finding a large group of
black genes that appear in close proximity. The size of the cluster is usually
quantified as the total number of black genes in the cluster, where a complete
cluster contains all m black genes and an incomplete cluster contains only a
subset of the black genes. For example, a short genome with n = 24 genes is
illustrated in Figure 1. The m = 9 black genes are shown grouped into two
incomplete clusters, of size three and five respectively.

Although it is quite clear how to characterize cluster size, there is no agreed
upon definition of “close proximity.” Some definitions restrict the total length of
the cluster [15] (the total number of genes from the first to the last black gene in
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the cluster). Others constrain the cluster density (the proportion of black genes
in the cluster, or size / length). Others require only that clusters be compact [52],
where compactness is determined by the distance, or gap, between adjacent black
genes, that is, the number of white genes between them. For example, in Figure 1
the gap between the first and second black genes is one and the gap between the
second and third black genes is zero. Of the definitions that constrain the gap
sizes, some allow no gaps in a cluster [27, 28], others limit the sum of all gaps,
while the majority constrain the size of the largest gap observed [5, 10, 40, 45,
56, 60, 65, 67].

In addition to cluster size and length, many cluster definitions constrain gene
order, with some requiring a strictly conserved gene order, while others allow
only a fixed number of order violations [25]. The majority ignore gene order
altogether.

Although a number of formal definitions of gene clusters have been proposed,
there is unfortunately very little overlap between cluster definitions used in anal-
yses of genomic data and the definitions upon which rigorous analytical statis-
tical tests are based. In this paper, we focus on a particular cluster definition
that is widely used in genomic studies, including the identification of large-scale
duplications in Arabidopsis [5] and the chordate lineage [40], the assignment of
functions to uncharacterized genes in prokaryotes [45, 60], and the prediction of
putative operons in newly sequenced bacterial genomes [10]. According to this
definition, gene order is disregarded, and there is no limit on the total number
of gaps as long as the maximum gap between adjacent black genes in the cluster
is not too large. To distinguish these clusters from our informal notion of a clus-
ter we call them max-gap clusters. A max-gap cluster is a maximal set of black
genes where the gap between adjacent black genes is never larger than g. For
example, when the maximum gap allowed is g = 2, three clusters can be found
in the example genome in Figure 1. The first has size three and length four, the
second has size five and length ten, and the third is a singleton.

The max-gap cluster definition has a number of desirable properties. It is
flexible in that it does not require that every gene in the cluster have a homolog,
yet it guarantees that the gap between adjacent homologs will not be too large.
As a result, the density of a cluster is guaranteed to be no less than 1/(g + 1).
This definition does not arbitrarily constrain the cluster length, but instead lets
clusters grow to their “natural” size. Consequently, clusters will never overlap:
unlike some other cluster definitions [15, 9], a gene can never be considered part
of two distinct clusters that cannot be merged. On the other hand, two max-gap
clusters containing the same number of homologs may have significantly different
densities. For example, the length of a cluster of size m can range from m (density
of one) to g(m− 1) + m (a density close to 1/(g + 1)). Finally, an algorithm has
been developed for finding max-gap clusters efficiently [4]. However, most groups
do not describe in detail the algorithm they use for finding max-gap clusters, so
it is not clear whether they are using an efficient or even a correct algorithm.

Analytical statistical models in the literature are designed for other defini-
tions of gene clusters [9, 14–16,63, 66] and it is not obvious how to extend them to
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apply to this commonly used cluster model. Studies based on the max-gap cluster
model usually use randomization to estimate the significance of clusters [5, 40,
45, 56, 65, 67]. However, this approach “is computationally expensive and does
not permit very precise estimation of the probabilities of rare events” [9]. In ad-
dition, parameter values such as the maximum gap and minimum cluster size are
generally selected in an ad-hoc manner. A formal, rigorous mathematical model
of gene clusters will allow us to evaluate cluster significance more accurately and
more quickly, and to choose parameter values in a principled manner.

Our goal in this paper is to try to close the gap between rigorous mathe-
matical models and models used in the analysis of real genomes by developing
formal statistical tests for max-gap clusters. We first present an exact expres-
sion for the probability of observing a complete max-gap cluster containing all
m genes of interest within a randomly ordered genome of size n. We also provide
an approximation for faster analysis. Next we extend this analysis to evaluate
the probability of observing a cluster containing only a subset of the black genes.
We present a simple dynamic programming algorithm that exactly calculates the
probability of observing an incomplete cluster of size h < m, as well as an ana-
lytic solution for the case where h > m

2 . We then use these equations to calculate
the probability of clusters for a range of different genome sizes and parameter
values. We discuss the influence of the parameters n, m, g and h on cluster sig-
nificance and determine which regions of the parameter space yield clusters that
are statistically significant. Finally we discuss some of the challenges that arise
in extending this statistical model to whole-genome comparison.

2 Probabilities of Max-Gap Clusters

Our analytical tests of max-gap cluster significance are based on the probability
of observing a cluster by chance in a genome with random gene order, the most
basic null hypothesis we can consider. If we cannot reject that null hypothesis,
no more complex, biologically motivated null hypothesis need be considered.

When calculating the probability of max-gap clusters it will be useful to
know the number of ways of arranging m black genes to form a max-gap cluster
within a window of length l. When both endpoints of the window contain a black
gene the cluster will be of length exactly l and the problem is equivalent to a
well-known sum-of-dice combinatorics problem [64]. Let

dc(m, g, l) =
�(l−m)/(g+1)�∑

i=0

(−1)i

(
m − 1

i

) (
l − i(g + 1) − c

m − c

)
.

When c = 2, dc(m, g, l) corresponds to the the number of ways of rolling m − 1
dice, each with faces numbered 0 to g, such that the sum of their faces is equal to
l − m 1. This is equivalent to the number of ways of creating a max-gap cluster
1 This in turn is equivalent to the number of ways of rolling a set of m − 1 dice, each

of which has faces numbered 1 to g + 1, so that their cumulative sum in equal to
l − 1, due to Uspensky [64].
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of size m and length l since such a cluster has m−1 gaps with a cumulative sum
of l − m.

The number of ways of generating a cluster with length no greater than l is
equivalent to requiring that only one endpoint in the window contain a black
gene. This is simply:

∑l
r=m d2(m, g, r), which can be shown to be equivalent to

d1(m, g, l) (see the Appendix for the derivation). Similarly, the number of ways
of arranging m genes so that they form a max-gap cluster anywhere within a
window of size l is

∑l
r=m d1(m, g, r) = d0(m, g, l).

These expressions will be used in the subsequent sections in various situations
in which the length of a cluster is constrained. Note that an efficient implemen-
tation of dc can be obtained by pre-computing all necessary factorials, allowing
the entire summation to be computed in O(l) time.

2.1 Exact and Approximate Probabilities
for Complete Max-Gap Clusters

We begin by calculating the probability of observing a complete max-gap cluster.
More formally, given a random genome of size n, what is the probability of
observing all m black genes (in any order), such that the gap between adjacent
black genes does not exceed g. We determine the probability by counting the
number of ways to place all m genes in a genome of size n so that they form
a max-gap cluster. We enumerate the clusters by the position of the leftmost
black gene in the cluster. Given the position of the first black gene, there are
(g+1)m−1 ways to place the remaining black genes so that they form a max-gap
cluster, which is simply the number of ways of choosing m − 1 gaps so that the
length of each gap is between 0 and g. The maximum possible length of a max-
gap cluster is w = m + g(m − 1), and thus there are n − w + 1 ways of placing
the first black gene so that a cluster of maximal length can be accommodated.
In addition, the leftmost black gene could also be positioned within the w − 1
genes at the end of the genome. The number of ways of placing m black genes to
form a max-gap cluster in the last w−1 slots is precisely the quantity we derived
in the previous section. Combining these terms, the probability of observing a
complete max-gap cluster of m genes in a genome of size n is

PM (n, m, g) =
max(0, n − w + 1) · (g + 1)m−1 + d0(m, g, min(n, w − 1))(

n
m

) . (1)

When m � n, the total number of permutations can be approximated in
constant time using Stirling’s approximation, and then the complexity of com-
puting PM is simply O(w) = O(mg). Except when w ≥ n, the running time will
be independent of the genome size since the only calculation that is not con-
stant time is computing the number of ways of constructing a max-gap cluster
within the last w − 1 genes in the genome. When a more efficient running time
is required, we can construct a lower bound on the probability of observing a
cluster by simply eliminating the final term that takes edge effects into account.
We can compute an upper bound by instead assuming that all but the last m−1
positions in the genome can accommodate a cluster of maximal length:
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Fig. 2. Probability of a complete max-gap cluster of m black genes in a genome of size
n = 500 as a function of g (a), and as a function of m (b).

max(0, n − w + 1) · (g + 1)m−1

(
n
m

) ≤ PM (n, m, g) ≤ (n − m + 1) · (g + 1)m−1

(
n
m

) .

Both bounds can be computed in constant time using Stirling’s approximation
to estimate the denominator. We have verified empirically that when n is large
in relation to w, the upper bound is only a slight overestimate of PM (data not
shown).

In some cases we may wish to constrain the total length of the cluster, by
adding the restriction that all m genes must appear in a window of size at most
r. The limit on window size ensures a minimum cluster density, while the max-
gap property prevents the gaps between black genes from becoming too large.
More formally, given a genome of size n, the probability of finding all m black
genes (in any order) in a window of size at most r such that the gap between
adjacent black genes is never more than g, is simply

PMR(n, m, g, r) =
1(
n
m

) [(n − r + 1) · d1(m, g, r) + d0(m, g, r − 1)] ,

where we have replaced (g + 1)m−1 in Equation 1 with d1(m, g, r) in order to
constrain the maximum length of the cluster.

The probability of finding a complete cluster for varying values of n, m, and
g was calculated from Equation 1 using Mathematica. We selected parameter
values corresponding to the range of values seen in real analyses. For example, we
selected values of g ranging from 0 to 50, since typical values of this parameter
used in genomic analyses range from three in bacteria [60] to about thirty in
human [40]. We calculated probabilities for genomes sizes of 500, 1000, 5000,
20,000, and 25,000, corresponding to typical gene sets for bacteria, yeast, worm,
and higher eukaryotes like human and Arabidopsis. For complete clusters we
tested all values of m ranging from 2 to n.

Figure 2(a) shows the probability of observing a complete cluster containing
all m black genes in a genome of size n = 1000, as m ranges from 1 to 250 and
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Fig. 3. Region of the parameter space that is statistically significant (shown in black)
at the α = 0.0001 level for a genome of size 500. (a) Complete parameter space where
m ranges from 1 to 500. (b) Detail for m ≤ 50.

g increases from 2 to 50. The probability of finding a complete cluster increases
monotonically with g. We might also expect that this probability will increase
monotonically with m, but this is not the case. As Figure 2(b) shows, as m
increases, the probabilities first decrease and then increase. When m is small, a
small increase in the number of black genes will actually decrease the probability
of finding a cluster. This makes sense intuitively if ones considers the extreme
cases: when m = 1 or m = n the probability of finding a complete cluster
will clearly be 1, and the values of m in between these two extremes will have
probabilities of less than one.

One question of interest is the range of values of m and g for which is it
possible to obtain a significant cluster. Figure 3 shows the parameter values for
which the probability of observing a cluster in a genome of size 500 is no more
than 0.0001. The significant region of the parameter space is shown in black,
indicating that as gap size increases, the range of values of m for which it is
possible to obtain a significant cluster becomes more and more restricted.

As the genome size n increases the probabilities decrease but the general
trends seen in Figure 2 remain the same (data not shown).

2.2 Exact Probabilities for Incomplete Max-Gap Clusters

Requiring all m genes of interest to appear in a single cluster is often too strict a
requirement. In practice, researchers often look for clusters that contain a subset
of the genes of interest [1, 13, 19, 21, 30, 33, 34, 37, 39, 46, 48, 58, 59, 63]. Thus, we
relax the cluster definition to allow incomplete clusters of size at least h, for
h < m (maintaining the requirement that there is no gap greater than g be-
tween adjacent black genes). Unlike complete clusters, there can be more than
one incomplete cluster in the same genome. A simple extension of Equation 1 to
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incomplete clusters would therefore lead to overcounting permutations contain-
ing more than one cluster. Instead, we present a simple dynamic programming
algorithm to count those permutations which do not contain a cluster of size h
or larger, and subtract to obtain the probability of observing at least one incom-
plete cluster. The algorithm moves along the genome, adding a black or white
gene at each step. It keeps track of runs of black genes that satisfy the max-gap
cluster criterion and avoids creating a cluster of size h or larger by judicious
placement of white genes.

The quantity nH̄ [n, m, j, c] represents the number of ways to place m black
genes in n slots without creating a max-gap cluster of size greater than or equal
to h, where j is the distance to the previous black gene and c is the size of any
cluster created so far. It is defined recursively as follows:

nH̄ [n, m, j, c] =






0, if c = h

0, else if n < m

1, else if m = 0
nH̄ [n−1, m, j+1, c] + nH̄ [n−1, m−1, 0, c+1], else if j ≤ g

nH̄ [n− 1, m, j+1, c] + nH̄ [n−1, m−1, 0, 1], otherwise.

The probability of observing at least one incomplete cluster of size at least h is
then just one minus the probability of containing no incomplete clusters

PH(n, m, h, g) = 1 − nH̄ [n, m, g + 1, 0](
n
m

) . (2)

The complexity of computing PH is O(nmgh). Since h < m, this is bounded
above by O(nm2g). However, in practice m will be significantly smaller than n.
For example, the size of typical bacterial genomes ranges from 500 to 5000 [57],
whereas the average number of genes in an operon is predicted to be between two
and four, and the large majority of operons contain fewer than fifteen genes [69].
Vertebrate genomes can be much larger. For example, the estimated size of the
human genome is around 25, 000 genes [32], but duplicated or conserved regions
reported in the literature tend to include only five to thirty genes in a window
containing a hundred genes at most [1, 13, 19, 21, 30, 33, 34, 37, 39, 46, 48, 58, 59,
63]. If we make the conservative assumption that m ≤ √

n and that g is a small
constant, then the running time will be bounded above by O(n2).

When h > m
2 , the probability can be computed directly because we do not

have to worry about overcounting genomes containing more than one cluster. We
count the number of permutations containing a cluster, enumerating them by
the position of the leftmost black gene in the leftmost cluster, just as we did for
complete clusters. Unlike the complete case, however, we have to be careful not
to overcount clusters of size greater than h. We accomplish this by considering
each possible cluster length (for the first h black genes in the cluster) individually
and placing g + 1 white genes before the start of the cluster to ensure that it
cannot be extended to the left. This yields a probability of finding an incomplete
cluster of size at least h of
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Fig. 4. Probability of an incomplete cluster of size at least h as a function of gap size
in (a) a genome of 500 genes with m = 10 black genes, (b) a genome of 1000 genes
with m = 50 black genes.

1(
n
m

)
h+g(h−1)∑

l=h

[
(n − l − g) · d0(h, g, l) ·

(
n − l − g − 1

m − h

)
+ E

]
, (3)

where l ranges over all possible lengths of a cluster of size h and E is a term to
address edge effects. The first term is the number of positions in which to start
the cluster. The second term is the number of ways to choose the gaps to obtain
a cluster length of exactly l. The third term is the number of ways to place the
remaining m − h genes outside the cluster. The final term counts clusters close
to the beginning of the genome before which it is only possible to place i < g +1
white genes. It is calculated as

E =
g∑

i=0

d0(h, g, l) ·
(

n − l − i

m − h

)
= d0(h, g, l)

[(
n − l + 1
m − h + 1

)
−

(
n − l − g

m − h + 1

)]
,

where the binomials are defined to be zero when the upper value is smaller than
the lower value and the simplification is by application of the upper summation
identity [24]. The complexity of computing Equation 3 depends on the extent
to which sub-computations are reused, but empirically we observe that even a
naive implementation has a substantially faster running time than Equation 2
(data not shown).

We calculated the probability of finding an incomplete cluster from Equa-
tions 2 and 3 using Mathematica for the values of n and g given in Section 2.1.
We chose to examine values of m ranging from 3 to 250, which covers the range
of gene numbers found in typical reference regions of interest [1, 13, 19, 21, 30,
33, 34, 37, 39, 46, 48, 58, 59, 63], and values of h ranging from 3 to m/2. Figure 4
shows the probability of observing a cluster of a subset of 50 black genes in a
genome of size 500 for varying values of g and h. As the maximum gap size
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Fig. 5. Probability of observing a cluster that includes at least half of all m black genes
in a genome of size 500.

allowed increases, so does the probability of finding an incomplete cluster. In-
creasing the required size (h) of the cluster, on the other hand, decreases its
probability of occurring by chance. Figure 5 shows the probability of max-gap
clusters for varying values of m, where h = m

2 . As in the case of complete
clusters, the probabilities first decrease then increase with m. Finally, Figure 6
shows the region of parameter space for which it is possible to find a significant
cluster at a significance level of α = 0.0001, when m = 100, for genomes of size
n = 500 and n = 1000. Probabilities were also calculated for larger genome sizes
as in Section 2.1. Again, as n increases the probabilities decrease but the general
trends are similar (data not shown).

3 Discussion

The work presented here was motivated by the gap that currently exists between
mathematical cluster models and models used in analysis of real genomes. We
provide analytical statistical tests for max-gap clusters, a model widely used in
practice [5, 10, 38, 40, 45, 60]. We determine the probability of observing a max-
gap cluster containing a set of m pre-specified genes of interest, assuming a
genome with random gene order. We also consider incomplete clusters, where a
subset of the pre-specified genes satisfies the max-gap criterion. This scenario
corresponds to a reference-region approach in which a particular chromosomal
region in one genome is of interest, and another region containing a similar set
of genes is sought. We have presented exact expressions for the probabilities of
finding complete and incomplete max-gap clusters under this simple model. We
have also provided an efficient approximation for the probability of finding a
complete cluster, which is highly accurate when n is large in relation to mg.

Our calculations show that the probability of finding a cluster increases mono-
tonically with g, and that as the gap size increases, the range of values of m for
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Fig. 6. Region of the parameter space that is statistically significant (shown in black)
at the α = 0.0001 level for m = 100 black genes in a genome of size n = 500 (a) and
n = 1000 (b).

which it is possible to obtain a significant cluster becomes more and more re-
stricted. For a fixed value of m, increasing the required size (h) of an incomplete
cluster decreases its probability of occurring by chance. However, the behavior
of cluster probabilities with respect to m is more complex. There is a high prob-
ability that all m black genes will form a cluster when m is small in relation to
n, and this probability decreases as m grows larger. As m approaches n, how-
ever, the majority of genes in the genome will be black, and the probability that
they cluster together begins to increase again. This behavior is also observed for
incomplete clusters when h is chosen to be a fixed percentage of m.

The model considered here treats the genome as an ordered set of genes,
disregarding actual distances between genes. This assumption can be advanta-
geous because physical distances often differ substantially between organisms.
Furthermore, it eliminates the need to model the variation in gene density that
can lead to gene-rich and gene-poor regions of chromosomes. A distance-based
model would have to take into account the fact that a cluster that is surprising
in a gene-poor region might easily occur by chance in a gene rich region. How-
ever, since prokaryotic genomes tend to be gene dense, it would not be difficult
to modify the model used here to a model that explicitly considers distance for
bacteria. When analyzing clusters in bacterial genomes, statistical models that
take into account the orientation of genes and the possibility of circular instead
of linear chromosomes are also of interest. These extensions remain as future
work.

The current model also disregards the presence of tandem duplications and
gene families. Since tandem duplications can be detected easily in genomic data
due to their regular spatial patterns, they can be taken into account by a prepro-
cessing step in genomic analysis. Gene families are more problematic, however.
Virtually all genomes contain gene families, sets of genes with similar sequence
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and function, that arose through duplication of genetic material. Large gene
families will increase the likelihood of finding a conserved cluster by chance and,
hence, can have a large impact on the statistical significance of a particular
cluster. However, factoring gene families into an analytical statistical model is
difficult because the exact size of each gene family in a genome cannot be easily
determined.

An important open problem is the development of statistical tests for max-
gap clusters in whole genome comparisons. More formally, given two genomes
G = (g1,. . .,gn) and H = (h1,. . .,hn), and a mapping between homologs in G and
H , we wish to find all maximal max-gap clusters containing at least k homologs.

It is not obvious how to calculate max-gap cluster probabilities in the case
of whole-genome comparison because, unlike the abstraction of white and black
genes presented here, in whole-genome comparison there is no specific set of
genes that is of interest. Consider the simple model of whole genome comparison
in which the genomes are assumed to have identical gene complements, and can
therefore be treated as two permutations of the numbers 1, . . . , n. Although this
model appears quite natural, max-gap clusters found under this approach to
genome comparison have some surprising properties2:
1. Under this simple model of genome comparison with identical gene content,
there will always be a cluster of size n and hence, the probability of finding a
max-gap cluster of at least size k when comparing two genomes is always one.
For example, consider these two genomes:

G = 1 2 3 4 5 6
H = 3 4 6 5 1 2

Suppose we wish to find the largest max-gap cluster that can be formed around
gene 3, when g = 0. If we attempt to construct a cluster in a greedy fashion,
the cluster will only include genes 3 and 4. However, if we look ahead a bit, it
is possible to find the cluster [3 4 5 6]. In both genomes there are zero gaps
between these four genes. Extending this look-ahead idea, we can see that under
this model, regardless of the value of g, a pair of genomes always contain a max-
gap cluster of size n. Since n ≥ k, the probability of finding a cluster of size at
least k is one.

2. In the reference region model discussed in this paper, as well as the gene
cluster models of Durand and Sankoff [15] and Calabrese et al. [9], a cluster that
contains k genes will always contain at least one valid cluster of size each from
1 to k − 1. However, this property does not hold when applying the max-gap
cluster model to whole genome comparison. For example, consider the following
two genomes:

G = ... 0 1 2 3 4 5 6 7 8 9 10 11 12 ...
H = ... 2 4 27 30 9 12 53 81 0 8 99 72 7 ...

2 Bergeron and colleagues [4] have made similar observations in the context of the
development of efficient algorithms for finding max-gap clusters, as opposed to the
statistical questions considered here.
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With a maximum allowed gap of g = 2, the size of the largest max-gap cluster
is seven: [0 2 4 7 8 9 12]. However, this cluster does not contain any valid
max-gap clusters of size three to six. Indeed, it contains only sub-clusters of size
two ([2 4], [9 12], and [7 8]).

This issue is related to point (1). There may be a higher probability of find-
ing a larger cluster than a smaller cluster. To see why this is the case, note
that increasing the size of the cluster essentially increases the maximum allowed
window size. As a result, as the size of the cluster sought increases, the number
of clusters found may grow substantially.

When looking for evidence of whole-genome duplication, a genome is com-
pared with itself, and the gene sets will indeed be identical. In the comparison
of two different genomes, however, point (1) will not be an issue, because gene
sets are never identical in practice. This problem can be partially addressed by a
more realistic model, where only a subset of the gene sets of the two genomes are
shared. We assume that only m genes in each genome have homologs in the other
genome, and the non-homologous genes are randomly distributed throughout the
genome. When g = 0, the non-matching genes will create a natural barrier to
unlimited extension of a cluster, preventing the formation of a max-gap cluster of
size m. However, if g is greater than the longest contiguous run of non-matching
genes then it will still be possible to form a cluster of size m.

Furthermore, this more realistic model does not circumvent the second is-
sue of non-monotonic cluster sizes. These two issues have implications for the
development of analytical statistical models of max-gap clusters found through
whole-genome comparison, and remain exciting problems for the future.
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A Derivation of d1(m, g, r) from d2(m, g, r)

In Section 2 we gave an expression d2(m, g, l) for the number of ways of arranging
m black genes into a max-gap cluster of length exactly l.

The number of ways d1(m, g, l) of arranging m black genes in a max-gap
cluster of length no greater than l is as follows:

l∑

r=m

d2(m, g, r) =
l∑

r=m

�(r−m)/(g+1)�∑

i=0

(−1)i

(
m − 1

i

) (
r − i(g + 1) − 2

m − 2

)
,

The r in the upper bound of the second summation can be replaced by l because
when i > �(r − m)/(g + 1)� the final binomial will be zero, which gives

l∑

r=m

�(l−m)/(g+1)�∑

i=0

(−1)i

(
m − 1

i

) (
r − i(g + 1) − 2

m − 2

)
.

Now the upper bound of the second summation is no longer dependent on r, and
so the outer summation can be moved inward:

�(l−m)/(g+1)�∑

i=0

(−1)i

(
m − 1

i

) l∑

r=m

(
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m − 2

)
.

Rewriting the bounds of the inner summation gives:
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i=0

(−1)i

(
m − 1

i
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(
r
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.

Decreasing the lower bound to r = 0 does not affect the probability because
when 0 ≤ r < m − 2 the binomial is zero. We apply the upper summation
identity [24] to eliminate the inner summation, which yields

�(l−m)/(g+1)�∑

i=0

(−1)i

(
m − 1

i

) (
l − i(g + 1) − 1

m − 1

)
,

which is exactly d1(m, g, r). The derivation of d0(m, g, r) from d1(m, g, r) is iden-
tical.
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