
Appl Bioinformatics 2004; 3 (2-3): 167-179ORIGINAL RESEARCH 1175-5636/04/0002-0167/$31.00/0

 2004 Adis Data Information BV. All rights reserved.

Inferring Property Selection Pressure from
Positional Residue Conservation
Rose Hoberman,1 Judith Klein-Seetharaman1,2  and Roni Rosenfeld1 

1 School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
2 University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA

In this study, we attempt to understand and explain positional selection pressure in terms of underlyingAbstract
physical and chemical properties. We propose a set of constraining assumptions about how these pressures
behave, then describe a procedure for analysing and explaining the distribution of residues at a particular position
in a multiple sequence alignment. In contrast to previous approaches, our model takes into account both amino
acid frequencies and a large number of physical-chemical properties. By analysing each property separately, it is
possible to identify positions where distinct conservation patterns are present. In addition, the model can easily
incorporate sequence weights that adjust for bias in the sample sequences. Finally, a test of statistical
significance is provided for our conservation measure. The applicability of this method is demonstrated on two
HIV-1 proteins: Nef and Env. The tools, data and results presented in this article are available at http://
flan.blm.cs.cmu.edu.

Introduction binding sites or protein–protein interaction domains.[5-7] Finally,
conservation measures can provide a way to evaluate and refine
MSAs.[8]

Motivation
While many measures have been proposed for quantifying

Multiple sequence alignments (MSAs) contain a wealth of positional conservation (see Valdar[9] for a review), identifying
information about the structure, function and evolution of proteins. positional conservation is only a first step. A more difficult task is
In particular, residue conservation has long been associated with to understand the specific selective pressures that have influenced
functional and structural significance. MSAs therefore provide the distribution of residues at each position. Different positions
important guidance in designing laboratory experiments such as have different functional and structural roles, and thus the amino
studying the effects of site-directed mutants at the conserved sites. acid in each position will be subject to different constraints.
Due to the explosion in the amount of protein data that are Biologists often manually analyse an MSA by using software
available, quantitative measures of positional conservation have packages that colour positions in an alignment according to the
been devised. Measures such as entropy are used to systematically types of amino acids present. These packages use simple heuristics
evaluate the distribution of amino acids in each column in an to determine the colour of each position, such as grouping amino
MSA, assigning a numerical value to each position to quantify its acids by one or a few properties, and colouring the column
degree of conservation. These quantitative measures have been according to the property that is most often represented. However,
used to identify functionally or structurally important residues and these methods cannot be used in any systematic way. They consid-
to predict the structure and function of the entire protein.[1-3] Other er only a few possible conservation patterns and do not provide
uses for these measures include building motif-based models of any statistical methodology for testing whether the apparent con-
protein families or domains.[4] Measures of conservation have also servation of a particular property in a position is statistically
been used to detect functional surfaces, such as active sites, ligand- significant.
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The goal of this study is to develop a methodology for identify- amino acids.[9] The values in these matrices are derived by averag-
ing and quantifying the selection pressures acting on amino acid ing over many positions and types of proteins, which can at best
properties in each position in an MSA. We propose a model that capture the selection pressures corresponding to the most domi-
analyses the residue distribution at a particular position in an MSA nant properties. While this sort of averaging yields a reasonable
and explains sequence conservation in terms of selective pressures measure of overall conservation, it will blur specific pressures,
on a specific set of underlying physical and chemical properties. making it difficult to distinguish the effect of one property over
Our method requires only an MSA as input and determines the another. So, although calculating a similarity measure for each
most highly conserved properties in each position, as well as their pair of amino acids is more informative than a simple clustering
statistical significance. approach, it will inevitably ignore similarities based on particular

properties that are only infrequently selected for. Furthermore,
amino acids may be similar with respect to one property, but notRelated Work
with respect to another. Since different positions select for differ-
ent properties, certain amino acids are more likely to be aligned atThe most common measure of positional conservation is entro-
one position than another. However, any approach based on apy.[10,11] However, like other methods based purely on symbol
single similarity matrix cannot represent such position-dependentfrequencies, entropy assumes that each amino acid is an indepen-
distinctions.dent symbol with no relation to any of the other symbols. This

Position-specific patterns of amino acid conservation have beenassumption is clearly invalid for amino acids. Furthermore, an
estimated for use in building better profile hidden Markov modelsexplicit evaluation of an entropy score showed little correlation
(HMMs) of protein families. One step in building a profile HMMwith structural conservation.[12]

is to learn the probability of observing each amino acid at a givenA second class of approaches considers only the physical-
site in the protein. When the number of training sequences is smallchemical properties of each amino acid. These methods[13,14] clas-
however, the observed frequency of each amino acid is a poorsify amino acids based on their position in a Venn diagram of
estimate of the true probability. To improve these estimates, aoverlapping sets representing different physical and chemical
regularisation method has been developed based on mixtures ofproperties. For each aligned position, such a method finds the
Dirichlets.[15] A small number of Dirichlet distributions and mix-smallest set of properties that explains the observed amino acids at
ing weights are estimated from a large set of protein alignments.that site. Since the number of combinations of properties is large,
These distributions often appear to be correlated with physical andonly a limited number of combinations is considered. The ad hoc
chemical properties such as size, hydrophobicity and charge.selection of a subset of combinations is necessarily subjective, and
Nevertheless, the mixture of Dirichlets is used merely as a prior tolimiting. In addition, these methods only work with binary proper-
smooth the posterior probability estimates, not as a means ofties and, perhaps more importantly, fail to account for amino acid
explaining the observed amino acid counts. Given a set offrequency. For example, they do not distinguish between a posi-
Dirichlets, one can calculate the posterior probability that each oftion with one leucine and 100 arginine from a position with 100
them generated the position-specific conservation pattern fromleucine and 100 arginine.
which the observed amino acids were sampled. Although theA third hybrid class of approaches tries to derive entropy scores
Dirichlet assigned the highest probability can be said to providethat are sensitive to the physical and chemical relationships be-
the best explanation of the data, no statistical test is provided totween amino acids.[9] These methods divide the 20 amino acids
determine if that Dirichlet provides a significant fit to the data. Ininto a small number of physically or chemically related clusters
addition, the number of components must be preselected, and even(about 5–10) and calculate entropy on this reduced symbol set.
once the number is fixed there is no guarantee that the componentsAgain, this clustering is ad hoc, and by choosing a handful of
learned are optimal.clusters, the number of properties modelled is necessarily limited.

In addition, each amino acid in a cluster is considered to be Instead of deriving a similarity matrix indirectly from mutation
uniformly distant from the amino acids in every other cluster. data, there have been attempts to make direct use of a large set of
Consequently, even the properties that are used for clustering are continuous, experimentally determined properties. These include
modelled at only a very coarse level. methods that build a similarity matrix directly from physical-

More sophisticated approaches use mutation-based substitution chemical properties and methods that use dimensionality reduction
matrices to quantify the physical-chemical similarity between to reduce the large number of properties to a small set of prototypi-
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Fig. 1. Frequencies of amino acids in a specific position in the alignment. (a) A small sample alignment. Distribution of residues in the first position of the
sample alignment are plotted against two different scales, (b) hydrophobicity and (c) radius of gyration of side chains.

cal ‘aggregate’ properties. Because of their aggregation of multi- aggregate over many positions, and therefore our method can
ple properties, these direct approaches suffer from similar weak- detect property constraints specific to single positions. We do not
nesses to those based on substitution matrices. One specific model aggregate multiple properties into a similarity matrix or a small set
of this type is the exponential fitness model of Koshi et al.[16] This of prototypical properties; our method can therefore identify con-
method not only aggregates multiple columns but uses only two servation of even those properties that only occasionally affect
hybrid properties, corresponding roughly to hydrophobicity and fitness.
size. To maximise the sensitivity of our conservation test, we use

All of the approaches described above are based solely on the continuous instead of binary properties. Each property scale as-
identities of the amino acids observed at each position in the signs a numerical value to each of the 20 amino acids. Frequencies
alignment. However, the likelihood of seeing a particular amino of amino acids in a specific position in the alignment can be
acid at a particular position depends not only on the fitness of that mapped directly into frequencies along the property scale. For
amino acid, but on its mutational distance from the ancestral example, the amino acid frequencies in the first position of the
amino acid. As a result, any method based solely on observed alignment shown in figure 1a are also shown plotted against two
amino acid frequencies will unintentionally confound mutation different properties (figure 1b and figure 1c). In figure 1b these
effects with fitness. Yampolsky and Stoltzfus (personal communi- frequencies are mapped onto the (normalised) Roseman hydropho-
cation) have attempted to decouple these two effects. A measure of bicity scale. Figure 1c shows the same frequencies mapped onto
amino acid exchangeability has been derived based solely on the Levitt scale, which measures the radius of gyration of side
fitness measurements obtained by experimental replacement of chains. It is not difficult to see from these graphs that hydrophobic-
amino acids. This article, however, is based on learning a global ity is more conserved in this position than size.
exchangeability matrix and, thus, cannot make predictions in a

Two Simple Measures of Property Conservationposition-specific manner.

A simple way to identify conserved properties is to look forMethod
properties with low variance in particular positions in a protein

In contrast with previous methods, our model takes into ac- family. More specifically, let N be the number of sequences in the
count both amino acid frequencies and a large number of experi- alignment and vk,i be the numerical value assigned to amino acid i
mentally derived physical-chemical properties. Our approach is by the k-th property scale. If ni,j is the number of times amino acid
position- and property-specific: the degree of conservation of each i occurs in column j in the alignment, then the mean and variance
property is tested independently at each position. We do not of property k in the j-th position are:
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are adjacent in property space. Adjacency requires that if two
residue types both occur in a particular position of the MSA, then
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any residue that has a property value lying between their property
values must also occur in that position. Thus, properties for which
all the amino acids in a specific position are adjacent will be
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considered significantly conserved. Clearly, for positions withSince property scales are measured in a variety of different
only a few amino acids, this method will have a high falseunits, the expected variance for a random sample of amino acids
discovery rate. A position with only a single residue will appearcan differ substantially for different properties. An observed vari-
equally conserved with respect to almost all properties. Even two-ance of 0.5 along a scale that ranges from 0 to 100 is not equivalent
residue positions will appear to be equally conserved with respectto the same variance measured on a scale that ranges from –1 to 1.
to many properties. The false discovery rate for a position withTo ensure that variances of different scales are comparable, each
only i amino acids can be quantified precisely — it is just thescale is normalised to have unit variance.
probability that these i amino acids are adjacent according to a

Even after this normalisation however, low variance in itself
random property:

does not provide sufficient evidence that a property exerts pressure
on a particular position. If the entropy is low (i.e. only a few
different amino acids are present in this position), then many
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properties will have low variance. In the extreme case of only a
Thus, the false discovery rate is 10% for a position with onlysingle amino acid present, all properties will have zero variance. In

two amino acids present, 1.6% for three amino acids, 0.35% foraddition, a variance-based measure is inadequate because it fails to
four and 0.1% for five.penalise for residues that have not been observed. Figure 2 illus-

trates this point for an example protein. Shown is the distribution
of amino acids at position 85 of the HIV-1 negative factor protein Gaussian Fitting
(Nef), plotted on a scale that quantifies the normalised frequency
of a bend. Four amino acids occur in this position (I, V, L and F).

Unlike variance, the adjacency measure does not explicitly
All four of these amino acids have a similar frequency of occurring

evaluate the degree of dispersion of the property values of residues
in a bend region of a protein, with the result that this property has

at a specific position. Furthermore, it only considers whether an
low variance in this position. Nonetheless, the striking absence of

amino acid is present or absent. This leads to a strict definition of a
cysteine raises a red flag. This ‘hole’ causes us to doubt whether

hole and a subsequent failure to reject property distributions that
this property is actually being selected for. Thus, we make an

are clearly not unimodal. For example, in figure 2, if cysteine was
additional assumption: when selection is based on a single proper-

not completely absent in this position, but occurred in only one or
ty, fitness is unimodal (i.e. holes constitute negative evidence).

two sequences, then the adjacency method would view this amino
This new assumption suggests another very simple strategy: acid as ‘present’ and fail to detect the very clear presence of a hole.

look for properties where all the residues at a particular position
Adjacency measures also ignore the distances between the

property values of different amino acids. For instance, consider the
two property plots of the HIV-1 Nef protein at position 85 (figure
3). The two graphs show the same data plotted against two
different property scales: bulkiness (figure 3a) and normalised
hydrophobicity (figure 3b). In both cases, all the observed residues
are adjacent (in figure 3a, I and L have identical property values).
Nevertheless, in figure 3a, V is closer to W than it is to any of the
other amino acids occurring at this position (F, I and L). Given the
relative distances between these amino acids, the total absence of
W in this alignment position makes it doubtful that bulkiness is
truly conserved, but does not affect our confidence in the conser-
vation of hydrophobicity.

Absent C creates a 'hole'
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Fig. 2. Distribution of residues in position 85 of HIV-1 Nef protein plotted
against a scale that quantifies the normalised frequency of a bend.

 2004 Adis Data Information BV. All rights reserved. Appl Bioinformatics 2004; 3 (2-3)



Inferring Property Selection Pressure from Positional Residue Conservation 171

150

100

50

0

0.6 0.8 1.0 1.2 1.4 0.8 1.0 1.2 1.4

Bulkiness (Zimmerman)

A
m

in
o 

ac
id

 fr
eq

ue
nc

y

Normalised hydrophobicity (Eisenberg)

Y F V WI
L W L V F I

a b

Amino acid property value
Amino acid frequency

Fig. 3. Distribution of residues in position 85 of HIV-1 Nef protein plotted against two different property scales: (a) bulkiness and (b) normalised
hydrophobicity.

We would like our model to take these relative distances into

account, and so we propose using a Gaussian distribution to model
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property conservation. A Gaussian is a good choice because it is
where

unimodal and will thus penalise heavily for missing amino acids

with property values near the mean value. In addition, distribu-

tions such as that in figure 3a will score badly because the
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Gaussian density decreases steeply only when the variance is
where µ and σ are the parameters of the Gaussian, λ is thesmall.
interpolation weight of the background distribution1 and vk,i is the

Given the amino acid frequencies for a position in the MSA, for numerical value assigned to amino acid i by the k-th property
each property we could select the parameters of the Gaussian that scale. These expected counts are compared with the observed
give maximum likelihood to the data. However, maximum likeli- counts with a χ2 goodness-of-fit test. We don’t expect an absolute
hood estimation is not robust: a single amino acid with a property fit of the data to a Gaussian, but we can use the relative fit to rank

different hypotheses.value far from the mean will result in fitting a Gaussian with a

large variance. In addition, since the space of possible observa-
Significance Testingtions is not continuous, but discrete (with at most 20 values), the

sample mean and covariance are not actually the maximum likeli- Clearly, it is not difficult to fit a Gaussian to the amino acid
frequencies if only a few of them are non-zero. Consider, forhood estimates. Indeed, when the space of possible observations is
example, a position with almost perfect conservation. The bestdiscrete and fixed, the maximum likelihood estimates for the
Gaussian for each property will have a very small variance and aparameters cannot be found analytically. Consequently, we
mean centred at the dominant amino acid. As a result, almost everysmooth the likelihood function by interpolating it with a uniform
property will fit the data equally well. In these cases, we will havebackground distribution over the 20 amino acids, then use a simple
a high false discovery rate. We therefore designed a Monte Carlo-

heuristic search procedure to efficiently select the parameters of
type significance test that determines which goodness-of-fit values

the Gaussian to fit the observed data.
are statistically significant. The procedure to determine the signifi-

To measure property conservation we then apply a goodness- cance of a property in a particular position is described as follows.
of-fit test to the learned model. We can calculate the number of A large set of ‘pseudo properties’ is generated by randomly
times we expect to observe amino acid i in column j: permuting the numerical vectors corresponding to the physical-

1 The weight of the uniform background component was set to 0.05 for these experiments.
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chemical properties. A Gaussian is then fitted to each of the sures of positional conservation provide no logical way to incorpo-
randomised properties and its χ2 goodness-of-fit statistic deter- rate these weights. Since our methods are based solely on the
mined. Cumulatively, these χ2 values thus provide an estimate of frequency of each amino acid in each position, it is quite simple to
the empirical distribution of the χ2 values for each position under incorporate sequence weights. We merely weight each position by
the null (null hypothesis = randomness) assumption. This distribu- its corresponding weight before counting frequencies. If Wi(aj) is
tion is then used to convert the χ2 statistic of the original physical- the cumulative weight of all sequences that have amino acid aj in
chemical property into a significance score, which plays the role of position i, the weighted frequency of the j-th amino acid is:
an empirically estimated p-value. This score approximates the
probability of obtaining a χ2 value smaller than the observed value ( )

( )
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= 20

1k ki
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ji

aW
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by chance – small scores represent a highly significant property.
The tree-weighting algorithm of Gerstein/Sonnhammer/Unlike the original χ2 statistics, these significance scores are

Chothia (as implemented in ClustalW[19]) was used in this analy-comparable across positions with significantly different entropies.
sis. This algorithm first constructs a guide tree using pairwiseSince we are conducting a large number of tests at each position
distances between sequences and then assigns weights accordingin the MSA, any p-value threshold should be corrected to account
to the branch lengths and local density of the tree. The methodfor the number of comparisons being performed. For instance, if
essentially works by down-weighting those sequences that appearwe want the experiment-wide chance of a type I error to be <5%,
to have diverged from each other recently.then a Bonferroni correction for multiple testing (of 240 proper-

Sequence weighting methods are generally simple, fast to com-ties) yields a significance threshold of α = 0.05/240 = 0.0002. The
pute, and effectively adjust for sample bias. They are not, howev-Bonferroni correction is an overly conservative adjustment, espe-
er, able to fully account for the influence of phylogenetic relation-cially since there are significant correlations between many of the
ships among the sequences.[20] Fully correcting for phylogeneticproperties we are testing.[17]

correlations requires a more sophisticated approach, and this isIndeed, it is often the case that, for a single site, the p-values of
discussed further in the section Conclusions and Future Work.multiple property scales are significant. In this case, we report all

of them as likely alternative explanations of the observed position-
Experimentsal conservation. In most cases, these scales will be highly correlat-

ed, as they are often just different experimental measurements of
the same underlying property. When this is not the case and the

Data Sources
scales truly measure different properties, our results can give
guidance in designing mutation experiments to fully determine the A set of 240 property scales was obtained from the online
physical or chemical constraints imposed on the amino acid at this databases PDbase (http://www.scsb.utmb.edu/comp_biol.html/
position in the protein. venkat/prop.html) and ProtScale (http://us.expasy.org/cgi-bin/

protscale.pl). This set includes both experimentally derived scales,
such as average accessible surface area, and scales derived com-Adjusting for Sequence Bias
putationally from data, such as relative frequency in an α-helix.

Sequences in an MSA are not independent. In most cases, they Each scale assigns a numerical value to each of the 20 amino acids.
have diverged from a common ancestor. In other cases, the sam- The dataset we used to develop and test our method comprises
pling of sequences is biased toward certain subfamilies. As a proteins from HIV, for the following reasons. HIV, like other
result, a typical alignment contains clusters of similar sequences. RNA viruses, has a high rate of mutation. This leads to a large and
If these related clusters are large, they can significantly bias our variable collection of protein sequences that provides a wealth of
estimates of amino acid frequency, effectively obscuring the varia- information about the selective constraints acting at particular
bility exhibited by the less common subfamilies. positions in the HIV proteins. MSAs for two HIV proteins were

Many different methods have been proposed for reducing this downloaded from the HIV Molecular Immunology Database
bias, the majority of which assign a numerical weight to each (http://www.hiv.lanl.gov/content/immunology). These alignments
sequence, with the goal of down-weighting closely related se- include many isolates of each HIV-1 subtype and inter-subtype
quences. Although there are many algorithms for determining recombinants, but include only one sequence from any one indi-
sequence weights (see Durbin et al.[18] for a review), most mea- vidual. The alignments were built by scientists at the Los Alamos
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National Laboratory. They used HMMs and hand editing to con- well purely by chance. In this case, there are two (almost identical)
struct very accurate alignments. Furthermore, since the functions property scales that pass this threshold: ‘Percentage of buried
of the proteins in the alignment are identical, and the sequences are residues/Janin’ and ‘Free energy of transfer from inside to outside
derived from the same organism, the amino acid substitutions in of a globular protein/Janin’.
the MSAs are not affected by possible contributions from organ- Figure 4b and its enlarged detail (figure 4d), on the other hand,
ism-specific amino acid usage preferences, nor substitutions that show a position where none of the 240 properties achieve a
slightly modulate function (such as would be the case in protein significant fit. There is little difference between the distribution of
families where individual members bind different ligands, for the physical-chemical properties and that of random properties.
example). The envelope protein (Env) alignment was constructed Either this position has very little conservation or the selective
from 388 protein sequences. The alignment for the Nef protein is pressures are acting on more than one property, with the result that
slightly larger, encompassing 484 sequences. The Nef sequences our method fails to detect a single property that is conserved.
are about 200 residues long and the Env proteins are over 800 In figure 4e, an almost perfectly conserved position is shown.
residues long. Since almost all properties (including random properties) can be

A large number of gaps often indicates that a position is not fitted well by a Gaussian, none of the 240 properties achieve a fit
important to the structure or function of the protein. In addition, that is significantly better than random. Thus, our method is not
there is no way to assign property values to gaps. Hence, we applicable for highly conserved positions where sequence conser-
analyse only those positions where a majority of sequences do not vation is a better descriptor for evolutionary pressure than property
contain gaps. For efficiency reasons, we only test positions with conservation.
entropy >0.5, since our method will not be able to identify the Table I lists some of the most highly conserved properties at
cause of conservation in such highly conserved positions. After specific positions in the Nef and Env proteins. For each of the
filtering, there were 145 columns in the Nef alignment and 625 in reported positions, either the property listed in the table is the only
the Env alignment. property that passes the given significance threshold or it is highly

For the remainder of this paper, unless otherwise stated, all correlated with all other scales found to be significantly conserved
position numbers refer to the HIV reference proteins with Swiss- at that position.
Prot IDs NEF_HV112 and ENV_HV1H2.

Discussion

Results
For a qualitative evaluation and interpretation of the results

obtained with our method, we analysed in detail the MSAs of the
Applying the Gaussian fitting method to the two HIV protein

HIV-1 Nef and Env proteins in relation to the existing knowledge
alignments described in the Data Sources section, we observe that

about their structure and function. HIV-1 is a lentivirus, which as a
for certain positions the method is clearly identifying properties

retrovirus encodes the prototypic Gag, Pol and Env genes, plus a
that fit the data much better than would be expected by chance.

number of accessory genes including Nef.
The use of randomised properties for significance testing of prop-
erty conservation is illustrated by figure 4, which shows the

Property Conservation in Nef Proteins
empirical cumulative distribution of χ2 goodness-of-fit statistics
for three different positions in the HIV-1 Nef protein. Nef is a 27-kDa myristoylated protein, observed in the cyto-

Figure 4a shows a position for which a small number of plasm of cells infected by lentiviruses.[39] Nef is involved in viral
properties fit the amino acid distribution much more closely than signalling processes and has been shown to be associated with
would be expected by chance. The enlarged detail of this graph in cellular membranes and the cytoskeleton, depending on myristoy-
figure 4c illustrates how the distribution of random χ2 values can lation of the N-terminal glycine.[40-42] Cleavage between W57 and
be used to establish a significance cutoff. If we want the experi- L58 separates the protein into two domains:[43] the C-terminal well
ment-wide chance of a type I error to be <5%, then a Bonferroni folded core domain (amino acids 58 to 206), with structural
correction yields a significance threshold of α = 0.05/240 = similarities to DNA-binding proteins containing a helix-turn-helix
0.0002, which for this cumulative distribution function yields a motif,[44,45] and the flexible N-terminal sequence that is proposed
critical value of χ2 < 102. Any property with a goodness-of-fit that to function as a membrane anchor.[43,46] The N-terminal fragment
is better than this cutoff is highly unlikely to have fitted the data is largely unstructured in solution, but in the presence of myristoy-
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lation there are two relatively well defined helices separated by a the recognition of primary sequences. In contrast, the interaction

turn.[47] The structures of fragments corresponding to the two sites for signalling molecules that contain SH3 domains or the

domains obtained by nuclear magnetic resonance (NMR) spectros- p21-activated kinases are associated with the well folded core

copy are shown in figure 5a and figure 5b, for the N-terminal and domain, suggesting the recognition of highly structured protein

C-terminal fragments, respectively. The structures are shown in surfaces.[49] Critical for the folding of the C-terminal domain are

the predicted correct relative orientation between the two domains residues W141 and W183, which form the scaffold of the protein

in the full-length protein.[48] and assemble the two core helices to the β-pleated sheet (figure

5).[48] As can be seen, several of the amino acids with conservedTable I lists the properties found to be the most significantly
properties are located in close proximity to these two amino acids,conserved at specific positions in the Nef proteins, where the
which are highlighted in red in figure 5b.significance level is α = 0.05, and thus the corrected p-value

threshold is 0.0002. These positions are highlighted in the struc- An interesting observation arising from our analysis is that a

tures shown in figure 5 (labelled in black with the amino acid single property, the retention coefficient in NaH2PO4, appears to

identity and position of the HIV-1 Nef reference protein). Previous be conserved in seven amino acid positions2 that are all located in a

structure-function studies have correlated surface accessibility not well conserved, variable duplication region in the loop follow-

with secondary structure elements and sequence conservation.[49] ing the first helix of the N-terminal domain (shown in figure 5a

It was found that conserved motifs involved in Nef-mediated CD4 with an arrow). A likely reason for the conservation of the reten-

and major histocompatibility complex (MHC) I downregulation tion coefficient in NaH2PO4 (a measure of hydrophobicity) at

are located in flexible regions of the Nef protein, suggesting that these sites is suggested by the main function of the N-terminal Nef

the formation of the transient trafficking complexes depends on domain in membrane anchoring. The insertion of amino acids with

Table I. Properties found to be most significantly conserved at specific positions in the Nef and Env proteins, where the significance level is α = 0.05. The
threshold after a Bonferroni correction for multiple testing thus requires a p-value < 0.0002

Protein Alignment Reference Conserved property (p-value < 0.0002) Referencea

position position

Nef 17 16 Percentage of exposed residues 21

Nef 22 21 Hydropathy index 22

Nef 62 45 Relative mutability 23

Nef 63 46 Retention coefficient in HPLC, pH7.4 24

Nef 106 85 Percentage of buried residues 21

Nef 110 89 Average flexibility indices 25

Nef 119 98 Net charge 26

Nef 162 135 Hydrophobicity from HPLC peptide retention times 27

Nef 177 149 Hydrophobicity at pH 3.4 determined by HPLC 28

Nef 214 184 Partition energy 29

Nef 223 192 Optimised transfer energy parameter 30

Env 48 32 Normalised flexibility 31

Env 81 63 Flexibility parameter for no rigid neighbours 32

Env 203 165 Hydrophobicity 33

Env 212 174 Absolute entropy 34

Env 356 291 Side chain torsion angle ϕ 35

Env 427 352 Recognition factors

Env 442 363 Long-range nonbonded energy per atom 36

Env 595 494 Polarity 37

Env 739 620 Hydrophobic parameter π 38

a The references have been taken from the PDbase database (available from URL: http://www.scsb.utmb.edu/comp_biol.html/venkat/prop.html).

Env = envelope protein; HPLC = high performance liquid chromatography; Nef = negative factor protein.
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Fig. 4. Empirical cumulative distribution function, F, of the χ2 goodness-of-fit statistic for physical-chemical properties compared with randomised
properties for three different positions in the HIV-1 Nef protein. (a) Nef position 85; (b) Nef position 54; (c) Nef position 85 (detail); (d) Nef position 54
(detail); (e) Nef position 52. The x axis shows the value of the χ2 statistic, where a value of zero represents a perfect fit to a Gaussian. The y axis shows the
percentage of properties whose goodness-of-fit statistic is less than or equal to that value. The subfigures illustrate the significant differences between the
distribution of χ2 values at different positions in the Nef alignment. Subfigure (a) and its detail (c) illustrate a more variable site, with a small number of
significantly conserved properties. Subfigure (b) and its detail (d) also illustrate a variable site, but in this position there are no physical-chemical properties
with a χ2 value significantly smaller than would be expected by chance. Subfigure (e) shows a highly conserved site, so the average χ2 statistic is close to
zero, and there are no properties with a χ2 value significantly smaller than expected under the null model. 

the same property would therefore be predicted to enhance the example highlights the type of hypothesis that can be generated
interactions of Nef with the membrane. This is a hypothesis that using property conservation, revealing evolutionary pressure that
can be tested directly through wet-lab experiments. Thus, this is not captured by sequence conservation.

2 These seven amino acids are at positions 29, 31, 32, 33, 34, 37 and 38 in the alignment. The first amino acid corresponds to residue 28 in the reference
protein.
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a
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Variable duplication

R21

V16

S45
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b

E149

R184

Y135

H192

W141
V85

H89

W183

E98

Fig. 5. Structures of two fragments of the HIV-1 Nef protein obtained from nuclear magnetic resonance (NMR) spectroscopy. (a) N-terminal Nef anchor
fragment, myristate G2 to W57, Protein Data Bank (PDB) code 1QA5.[47] (b) C-terminal Nef core fragment, 40–206 with a deletion from 159 to 173 and
C206A point mutation, PDB code 2NES.[44] Residues with conserved properties (see table I) are highlighted in stick representation using the standard
colour chart for atoms created by Corey, Pauling and Kolton (CPK). The amino acid identities and positions are labelled in black. Two other amino acids
are highlighted in red: W141 and W183. The locations of the myristoyl group and the variable duplication region are shown. The amino acids from 40 to 56
are unstructured and are not shown. The structures were drawn using the noncovalent bond finder (MDL).

Property Conservation in Env Proteins located in the gp120 fragment. The structure of the gp120 frag-

ment has been solved by x-ray crystallography in a complex with
The HIV-1 Env protein mediates the fusion of viral and cellular CD4 and a neutralising antibody.[51] Only three of the amino acids

membranes during HIV-1 infection of cells. Env is synthesised as are located in the fragment that has been crystallised: alignment
the precursor protein gp160, which is proteolytically cleaved into positions 356, 427 and 442, corresponding to S291, Q363 and
two subunits, the surface subunit gp120 and the transmembrane Q352 in the HIV-1 reference protein. These three amino acids are
subunit gp41. Both fragments remain noncovalently associated highlighted in figure 6. All are located on different parts of the
with each other after cleavage in a trimeric structure. HIV-1

surface of the molecule. Different properties are conserved at all
infection is initiated by the binding of gp120 primarily to CD4

three sites; however, all of them are conceivably connected to the
with co-receptors of the chemokine receptor family on the host

possible recognition of protein partners. All other amino acids
surface. Subsequent conformational changes in Env result in expo-

with conserved properties are located in regions that are flexiblesure of a hydrophobic N-terminal fusion peptide within the gp41
and thus not amenable to x-ray crystallographic analysis. Thisdomain, thus initiating membrane fusion.
includes the N-terminus (positions 48 and 81), for which bothOnly one of the amino acids with highly conserved properties is
properties are related to its flexibility, supporting the hypothesislocated in gp41, in the disulphide-bonded loop region. This region
that these amino acids contribute to the observed flexibility. Theis thought to act as a hinge in the formation of the trimer-of-
other two amino acids, at positions 203 and 212, are located in thehairpins structure of gp41 that brings the cellular and viral mem-
V1/V2 loop, a sequence variable region that was deleted in thebranes into proximity and to play a key role in the interaction
gp120 crystal structure to allow crystallisation. This loop has beenbetween gp120 and gp41.[50] Thus, the conservation of hydropho-
shown to rescue changes in the important V3 loop on the oppositebicity of the amino acid at position 739 in the alignment may play

an important role in this interaction. All other amino acids are side of the molecule and is a potential interaction site between

 2004 Adis Data Information BV. All rights reserved. Appl Bioinformatics 2004; 3 (2-3)



Inferring Property Selection Pressure from Positional Residue Conservation 177

individual molecules of the three units of the trimer. The lack of correlated are both scored as significant, we would like to test
sequence conservation in this region, but high conservation of whether the different properties explain the data equally well or
absolute entropy (position 212) and hydrophobicity (position 203), whether one property is significantly better than the other.
suggests that these residues may be involved in the inter-monomer Currently, we try to limit the confounding effects that are
interactions, an experimentally testable hypothesis. attributable to the lack of independence between sequences by

using sequence weights. However, it has been shown by Bruno[20]

that since sequence weights assume that the effects of phylogenet-Conclusions and Future Work
ic correlation are identical at every position in the alignment, they
cannot fully correct for phylogenetic dependencies. A more thor-We have described a framework for systematically identifying
ough, but also more computationally intensive, solution to thisthe property-based selection pressures affecting each position in
problem would either use Bruno’s RIND program to estimate site-an MSA. We first calculate a distance from the observed distribu-
specific residue frequencies or explicitly incorporate the phyloge-tion to an idealised distribution (currently a Gaussian), assuming a
netic tree into a generative model of protein evolution that includesparticular property is conserved at this position. We then use a
selection of physical and chemical properties.Monte Carlo procedure to estimate the probability of achieving

We chose to use a Gaussian to model property conservationsuch a good fit by chance. Our method requires only an MSA as
effects because it is unimodal and has other desirable propertiesinput and determines the most highly conserved properties in each
(discussed in the section Gaussian Fitting). However, we do notposition, as well as their statistical significance. In our biological
necessarily believe that selective pressures are truly Gaussian inevaluation, we discuss the significance of our results with respect
nature. Another option would be to not assume any particularto current understanding of the structure and function of two
unimodal distribution, but just test the hypothesis that the distribu-proteins from HIV-1, Nef and Env. We make predictions regard-
tion of property values in a position is unimodal. A dip test is oneing previously unknown sites of property conservation, providing
way to determine whether a distribution is unimodal.[52]guidance for future site-directed mutagenesis studies by experi-

mental biologists. The current method is only designed to find evidence for
Our current test evaluates whether a particular property scale positional conservation of a single property, but we know that in

explains the observed data better than we would expect by chance. many cases selection exerts pressure on multiple properties simul-
However, it is often the case that more than one property scale is taneously. In particular, there are many cases where we find a
determined to provide a significant fit to the data. This usually property that is more conserved than would be expected by
occurs because there are many highly correlated scales that are just chance, but this property still has unavoidable ‘holes’, which could
different experimental measurements of the same underlying prop- be explained by the intersection of two property pressures. We
erty (such as hydrophobicity or size). In this case, we do not expect would like to extend our approach to use multidimensional fitting
to be able to discriminate between these highly correlated scales. of properties in these cases where a single property is insufficient
In the less common case, where two properties that are not highly to explain the observed data. Although testing for combinations of

S291 Q363

Q352

N

C V1/V2
loop stem

Fig. 6. Crystal structure model of gp120 in complex with CD4 and neutralizing antibody (PDB code 1G9M[51]). Gp120 is shown in blue, CD4 is shown in
dark green (behind gp120), and the antibody is shown in green (light chain) and yellow (heavy chain). N- and C-terminals are labelled. Three amino acids
with conserved properties are modelled in this structure, shown as stick representations. The structures were drawn using the noncovalent bond finder
(MDL).
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