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ABSTRACT

Whole sentenceexponentiallanguagemodelsdirectly
modelthe probability of an entire sentencaisingarbitrary
computableropertieof thatsentenceWe presenaninter-
active methodologyfor featureinduction,anddemonstrate
it in the simplebut commoncaseof a trigrambaselinefo-
cusingon featuresthat capturethe linguistic notion of se-
manticcoherenceWe thenshav how parametriadegression
canbeusedin this setupto efficiently estimatehe models
parametersyhereasion-parametricegressiorcanbeused
to constructmore powerful exponentialmodelsfrom the
raw features.

1. INTRODUCTION

Corventionallanguagemodelssuchas n-gramstakelittle
adwantageof the natureof humanlanguage. There have
beenseveral attemptsto improve on thesemodelsby ex-
ploiting hypothesizedinguistic structure. Theseattempts
have not succeededor the mostpart: the difficulty of pa-
rameterestimationmadeit impossibleto find a good so-
lution, or elseimprovementsover the corventionalmodel
weretoo smallto justify the addedcompleity. We believe
thattheseattemptsverehamperedy at leastthefollowing
problems:

¢ Conditional framework: Languagenodelingto date
hasbeendoneby usingthe chainrule to decompose
theprobability of asentencer utteranceanto a prod-
uct of conditionalword probabilities.But this condi-
tionalformulationis notconducveto thinking about,
let aloneincorporating,global (sentencdevel) lin-
guisticinformation.

e Maximum entropy training: Whenintegrating di-
verseandoverlappingknowledgesourcesnto alan-
guagemodel themostsuccessfuinethodo datemakes
useof the exponentialfamily andthe maximumen-
tropy principle. However, training a conditionalex-
ponentialmodelis computationallyprohibitive. The

mostburdensomestepin thetrainingis the computa-
tion of the normalizingterm, which dependon the
conditioningevent(the history).

We have recentlybeenworkingonalanguagenodeling
framevork thataddressetheseproblems.Our solutionis a
whole-sentencexponentialmodel:

P = mls) e (DRG] @
wherethe );’s arethe parametersf themodel, 7 is a uni-
versalnormalizationconstantwhich dependsonly on the
Ai's,andthe f; (s)’s arearbitrarycomputablepropertiespr
features, of the sentence. pq(s) is anarbitraryprobability
distribution, whichcanbethoughtof asthestartingpoint, or
baselinefor further modelingimprovements.Often, pg(s)
will besimply dervedfrom atrigram.

Thefeatures| f;(s)} areselectedy themodelerto cap-
ture thoseaspectof the datathey considerappropriateor

profitable.Thesecanvaryfrom classn-gramsjongerdistance

dependenciesr simpleglobalsentenc@ropertiesto more
comple functionsbasedon part-of-speechiagging, pars-
ing, or othertypesof linguistic analysis(personand num-
beragreementsemanticcoherenceetc.). For eachfeature
fi(s), its expectatiorunderP(s) is constrainedo a specific
valueK;:

Efi = K; . (2)

Thesetarget valuesare typically setto the expectationof
thatfeatureunderthe empiricaldistribution p of the train-
ing corpus?' = {s1,...,sn} (For binaryfeaturesthisis
simply the prevalenceof thatfeaturein the corpus.) Then,
the constraintbecomes:
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If theconstraintg2) areconsistentthereexistsaunique
solution{; } within the exponentiafamily (1) which satis-
fiesthem.Amongall (notnecessarilgxponential)solutions
to equationg2), the exponentialsolutionis the one closest



to thebaselinepy(s) (in theKullback-Lieblersense)andis
thuscalledtheMinimum Divergenceor Minimum Discrim-
ination Information(MDI) solution. If the baselinep(s) is
flat (uniform), this becomeghe Maximum Entropy (ME)
solution. Furthermore|f the featuretarget valuesK; are
the empiricalexpectationsover sometraining corpus(asin
equationg(3)), the MDI or ME solutionis alsothe Max-
imum Likelihood solution of the exponentialfamily. For
moreaboutthe ME principle,se€[7]. Fortheapplicationof
ME to conditionallanguagemodels se€[2, 8].

The whole sentencexponentialmodel of equation(1)
wasfirst proposedn [9], wherewe discussedraining via
Monte Carlo Markov Chain(MCMC) and other sampling
methods. In [3] we studiedefficient sampling,smoothing
and automaticfeatureselectionfor suchmodels. In [10],
we usedthesetechniquego add parse-basetkaturesinto
a baselinetrigram, andshoved how to accuratelyestimate
the (universal)normalizingconstant.

Oncethe above frameavork hasbeenproven practical,
thereremainsthe importantchallengeof feature induction.
Namely we needa methodologyfor searchingor andse-
lectingprofitablefeatures.

Joint (i.e. non-conditional)exponentialmodelingwas
first appliedto a naturallanguageprocessingoroblemby
[4]. They usedajoint exponentiaformto modelthespelling
of individual words. Becauseof the relatively small space
of this problem,featureinduction could be doneby itera-
tively consideringa small setof atomicfeaturesandtheir
combinationwith existing features.Whenmodelingwhole
sentencedjowever, thespaceof possiblefeaturess consid-
erablylarger, andsuchcompletelyautomatiomethodsmay
no longersufice.

In whatfollows, sectior2 presentsininteractve method-
ology for featureinduction. Section3 demonstrateshe
methodologyin the simple but commoncaseof a trigram
baseline.This leadsto a focuson featureshat capturethe
linguistic notion of semanticcoherencewhich is takenup
in section4. Finally, section5 shavs how parametricre-
gressioncan be usedin this setupto efficiently estimate
themodel’s parametersivhereasion-parametricegression
canbeusedto construcimorepowerful exponentialmodels
from theraw features.

2. INTERACTIVEMETHODOLOGY FOR
FEATURE INDUCTION

Our goalis to choosefeaturesf; (s) thatcaptureaspectof
languagevhich arenot capturedor inadequatelgaptured)
by the currentbaselinemodelingtechnique To thisend,we
have developedthefollowing interactive methodology
Given a corpusT' of naturallanguagesentencesvith
empirical distribution p, presumablyrepresentaie of the
unknown tamget distribution p, we useit to train our best

baselinemodelpy. Next, we usep, to generatea corpus
T, of ‘pseudosentences. We thenmanuallycompareTy
with 7' (or someotherdatasefrom thesamedistributionp).
We ask humansubjectsto look for systematiadifferences
betweenthe two corpora. Any suchdifferencepointsto a
deficieng in the way p, modelsthe unknowvn target distri-
bution p. Any suchdeficieng cannow be readily fixed,
by definingan appropriatesetof featuresfi (s), ..., fx(s)
which have differentexpectationsunderp and py (as ev-
idencedby their respectie samples/” and 7). The new
featuresarethenaddedyesultingin anew model:
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Oncep; istrained theappropriateonstrain{equatiorB)
guaranteethatit consistentlycaptureghenew feature,and
the previously obsened differencebetweenour modeland
thetamgetdistribution hasbeeneliminated.

Theproceszannow berepeatedy generatingacorpus
T of ‘pseudosentencesfrom theimproved modelp;, and
comparingit to the original corpus?’, looking for new dif-
ferencesThelatterwill becapturedwith new featuresand
soon. Notethat, in contrastwith [4], the emphasisn our
methodologyis on manualinspectionof two corporaand
thelinguistic analysisand‘detective work’ of searchindor
andevaluatingfamiliesof linguistically motivatedfeatures.

3. WHAT'SWRONG WITH A TRIGRAM?

To demonstratehe methodologypresentegbore, we ap-
plied it to the simple but commoncaseof a trigram base-
line. Let T" be the 1992—-199@roadcastNews corpus[5].
ExamplesentenceBom T aregivenin tablel. Letpy(s) be
derived by chainrule from a well-smoothedrigram model
trainedonT', andlet T be a corpusof “pseudosentences”
generatecccordingto pg. Exampledrom T aregivenin
table2.

How inherentlydifferentarethesewo sentencsources?
Even thoughsomeof the true sentencesre by no means
grammaticalor complete,thereis somethingaboutthem
which seemdo “make sense”.In contrastthe pseudosen-
tencegexceptthe very shortones)do not generally*make
sense”.

How well canthe two sourcedetold apart?In anin-
formal experiment,we presentea blind mixture of 40 av-
eragdengthsentenceffom 7" and7y to 17 member®f the
Sphinxresearchgroup at Carngie Mellon University An
exampleof suchamixtureis givenin table3.

Theon-the-spoindividualclassificatioraccuracieschieved

by this groupwere90%+5%. It is likely thatbetterperfor
mancecanbeachieed givenmoredeliberatiortime and/or
experience. But in ary case,humanperformances nei-
theranupperboundnor alowerboundonautomatigperfor



Tablel: Examplesentencefom the BroadcasiNews Corpus

THAT' S YOUR NEWS ON THE DAY BEFORE CHRI STMAS THI RTY FI VE PAST THE HOUR </ s>

BUT WHAT ABQUT THE FLAWLESS SYMVETRY OF THE | MAGE ON THOSE W NDOWS </ s>

STEVE GREEN WTH THE U. S. POSTAL SERVI CE A SPOKESMAN </ s>

RELATI ONSHI PS AND ALLI ANCES QUOTE WE ALSO HAVE A NUMBER OF DEVELOPI NG RELATI ONSHI PS AND ALLI ANCES </ s>

TOYNX HAS THE CHRI STMAS SPIRI T ALL YEAR ROUND QUOTE </ s>

THERE ARE PEOPLE ALL THESE CHRI STMAS MOVI ES ARE | N A SENSE ABOUT THE SECULAR CHRI STMAS </ s>

HE' S GO NG TO ARGUE THAT THE JURY' S VERDI CT SUGGESTS THAT NI CHOLS' PARTI Cl PATI ON WAS SO M NOR I N THI' S CONSPI RACY
THAT | T WOULD BE UNCONSTI TUTI ONAL TO EVEN ALLOW THE JURY TO | MPOSE THE DEATH PENALTY </s>

THE SI NGLE EUROPEAN CURRENCY </ s>

Table2: Example‘pseudosentencesfjeneratedby atrigram

I T WAS A HUMAN RI GHTS AND RESPONSI BI LI TI ES WASN' T SAFE FOR MY CAPI TAL GAINS ARE JO NI NG US FROM GETTI NG GUNS
BECAUSE THERE WAS NO CRI M NAL WRONGDO NG THI S TREATY </ s>

SO OF COURSE UNLESS THEY' VE DI VI DED MUNCHAUSEN PAYNE </ s>

THAT' S AWFULLY | NFLAMMATORY ATTENDI NG U. TWO TO ONE | N FI VE YEARS BACK YOU KNOW ALL THE OTHER THI NG ROYCE HAS
MORE ON THI'S SU T </s>

YEAH SURE </ s>

CLARK Cl RCUS COPS FEET AND PREPARE TO PUT BI BLE STORI ES FROM THE GAME </ s>

W TH THE CHANGES WOULD COST </ s>

AND FRANKLY | FIND TO PECPLE ALL OVER THE UNI TED STATES FROM THE FEDERAL | NTI M DATI ON CAN BE SEEN AS A NON
MARRI ED CHOOSES TO FI GHT | NFLATI ON </ s>

mance.Thesenumbersshouldthereforebetakenasmerely
a roughindication of the potential of automaticdiscrimi-
nationmethodgsuchmethodscanin turn be automatically
convertedinto featuresaswill beshavn in sectionb).
What“features”did thehumansubjectaisein discrimi-
nating7 from 7 ? We mentionedhatthe pseudsentences
did not “makesense”.In fact, they violate just aboutall of
our linguistic notions(with the not surprisingexceptionof
short-termword correlations) Theseancludenotionsof lex-
ical relations,syntax,semanticstopic coherencandprag-
matics. Canwe captureary of theseglaring differences
computationally?We decidedto focuson a singleaspect:
the semanticcoherenceof the I sentencesasopposedo

4. MODELING SEMANTIC COHERENCE

Therearetensof thousand®f “contentwords” in natural
language. Eachsentencecontainsa very small subsetof
them(from zeroto, say twenty). Clearly, somesubsetsare
muchmorelikely thanothers.Modelingthe distribution of
suchsubsetsn naturallanguages a non-trivial challenge.
Onemight considerhidden-ariablemodels,or dimension
reductiontechniquessuch as Singular Value Decomposi-
tion, recentlyappliedto languagemodelingby [1].

As a first and admittedly crude attempt,we choseto
collecta setof raw features,one for eachpossiblepair of
contentwords. Our hopewas that significantdifferences

the apparensemantiancoherencef 7, sentencesTo do
so, we repeatedhe classificationexperimentafter remov-
ing all non-contentwords'. Thetestsetthenlookedasin
table4?.

The on-the-spotndividual classificationaccuraciegor
thisconditionwasdown to 66%+9%. Again, it is likely that
betterperformanceanbeachievedgivenmoredeliberation
time and/orexperience.lt is clearthoughthat, althougha
greatdeal of informationhasbeenlost, muchinformation
still remainsin the content-bearingvords. Thus, the lin-
guistic notion of “semanticcoherence’could prove quite
useful. In the next sectionwe derive raw featuresbasedon
thatnotion.

1Thesewereheuristicallydefinedasthe 200 mostcommonwordsin 7'
2In practice this lattertestsetwasof coursepresentedirst.

between" and7y will be obserable even with relatively
simplefeaturesGivenapair of contentwords,(w, wg), a
2x2contingenyg tablecanbeconstructeavith thefollowing
counts:

e ('11: thenumberof sentences T' in whichw 4 and
wp CO-occurredl.

o ('15: thenumberof all othersentences 7" in which
w4 occurred.

o (51: thenumberof all othersentences 7' in which
wp occurred.

3To exclude*trigram effects”, which canbe overwhelmingwe only
consideredv 4, wp to have co-occurredf theywereseparatetyy atleast
5 words.



Table3: Examplemixture of real-andpseudo-sentencgmesentedo humansubjectdor classification

I TS DI FFI CULT REALLY | THI NK FOR ANY OF US TO YET ENTI RELY COVWPREHEND WHAT THI S MEANS </ s>
YOU VVERE GO NG TO TAKE THEI R CUE FROM ANCHORAGE LI FTED OFF EVERYTH NG W LL WORK SI TE VERDI

</ s>

HE URGES RESTAURANTS SYNAGOGUES AND SCHOOLS TO SET UP THE CELLULAR EQUI VALENT OF NO SMXXI NG SECTI ONS </ s>
I"D LIKE TO BE | DENTI FI ED WTH A DAY THEY' RE FULL OF FLAMVABLE HYDROGEN | N REAL LI FE </ s>

ANN | F | COULD ASK YOU TO JUST HOLD I T THERE FOR A SECOND JONATHAN ALSO </ s>

LOOK | UNDERSTAND THE WAY SUCH AS DAVI D SAID LI TTLE | NCUMBENCY FOUR TELEVI SION YOU LIKE I T </s>

I'N NEWYORK CI TY TEAMS OF PLOAS PUSHED AWAY UP TO HALF A FOOT OF SNOW </ s>

IT"S A REALLY SURE VOTE THAT POP UP A SVALL BUT | MPORTANT CORN AND SOYBEAN FI ELDS </ s>

Table4: Samemixtureof real-andpseudo-sentencesith non-contentvordsremoved

- DIFFI CULT - - - - - - - - YET ENTIRELY COWREHEND - - MEANS

- - - - - - CUE - ANCHORAGE LI FTED - EVERYTH NG - - SI TE VERDI

- URGES RESTAURANTS SYNAGOGUES - SCHOOLS - SET - - CELLULAR EQUI VALENT - - SMOKI NG SECTI ONS
I"D- - - IDENTIFIED - - - - FULL - FLAMMABLE HYDROGEN - REAL LIFE

ANN - - - ASK - - - HOLD - - - - SECOND JONATHAN -

- - UNDERSTAND - - SUCH - DAVID - - | NCUMBENCY - TELEVISION - - -

- - YORK CITY TEAMS - PLOAS PUSHED AVAY - - HALF - FOOT - SNOW

- - - SURE VOTE - POP - - SMALL - | MPORTANT CORN - SOYBEAN FI ELDS

o (95: the numberof sentences 7' in which neither
w4 NOrwpg occurred.

Let the maginals of this table be designatedy C 4,
Cay, Cy1 andCyq, andlet C44 = N bethe sizeof the
corpus.We have consideredhe following measuresf as-
sociation:

011C22—C12021

W/Cl+Cz+C+1C+2

e Yule'smeasuref association

o correlationcoeficient: p =

— C11C33=C15C0
C11C224C12C21

Cis Cis
ij=1, N logN (c,+cj+)

o mutualinformation:/ = 3

All thesemeasureareof coursestronglycorrelatedBut
someare more appropriatethan othersin this setup. For
example,p hasa very narrov dynamicrangefor this data,
whereaghe estimateof 7 is undefinedor zerocounts.For
thesereasonsve choseto focuson ¢) for now.

We estimated?) valuesfor all content-wordpairsin a
substantiafraction of the vocalulary. Thenfor eachsen-
tences, thelist of contentwordspairsco-occuringn it can
be derived, resultingin a variablelengthlist of @ values.
The distribution of theselists in naturallanguagecanthen
be studiedand contrastedwith that in Py-generatedsen-
tences.

For our preliminaryanalysiswe have furthersimplified
themodelingtaskby extractinga smallsetof statisticsfrom
eachsentence-based list: its maximum,minimum, mean,

Figure 1: The distribution of sentence-mea) valuesin
“real” (natural language)and “fake” (trigram-generated)
sentences.
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and median. In figure 1, the distribution of the sentence-
meanof () iscomparedetweerfreal” sentenceand fake”
(trigram generatedpentences.Although the shapeof the
two distributionsis similar, their modesandtheir variances
are quite distinct. Significantdifferencesvere alsofound
with the otherthreestatistics.
Giventhesecleardistributionaldifferenceshow canwe



bestexploit them? In the next sectionwe try to provide a
generalanswey by making useof existing statisticaltech-
nigues.

5. EXPONENTIAL MODELING AND LOGISTIC
REGRESSION

In this sectionwe shawv that the discriminationsetup of

section2 leadsto an interestingrelationshipbetweenex-

ponentialmodelingand logistic regression. We first shav

that, given our setup,simple parametridogistic regression
canbe usedto estimatethe model's parameterginsteadof

the more computationallyexpensve iterative scalingalgo-
rithm). Next, we shav how non-parametridogistic regres-
sion can be usedto constructmore powerful exponential
modelsfrom theraw features.

5.1. Parameter Estimation via Parametric Regression

Givenafixedsetof featuresf; (s), . .., fx(s), letusassume
thatthe distribution of “real” (naturallanguageyentences
belongsto the exponentialfamily:

1
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Our goalis thento find the Maximum Likelihood esti-
matefor the A’s,basedbnsomecorpus?'. Let sy, .. ., s, be
asampleof “real” sentencedravnfrom’l’, andlet s, 1, . . .,
s2, beasampleof “fake” sentencedravn from pg. Define
Y =(Y1,...,Ya,) asfollows:Y; = 1fori=1,...,nand
Yi=0fori=n+1,...,2n. NotethatPr(s|Y =1) = p(s)
andPr(s|Y =0) = po(s). Also,PrY =0) = Pr(Y =1) =
1/2 by construction.

Defineh(s) = Pr(Y = 1|S = s). By Bayes'theorem,

h(s) = PrY=1|S=s)
B p(s|Y =1)Pr(Y=1)
 p(s|Y=1)Pr(Y=1) + p(s|Y =0)Pr(Y =0)
_ p(s)
~ p(s) +pols)
o pexp [N fi(s)]
Cozexp [N ()] + 1

Hence,

logit(s) =

s (+25tw)
= Z Ajfi(s) —log Z

Bo+ > Bifis)
J

wheref; = A; andfy = —log Z.

Now supposewe perform a logistic regressionof the
Y/s onthe f;s. This meanswe fit a regressionmodelof
the form logit(s) = fo + >, B f(s) yielding estimates
Bo, B1, - .., Bx. Theabore algebrasuggestshatwe canuse
j3; asanestimateof \; andwe canusef, asanestimateof
—log Z.

In addition,givena large setof candidatdeaturesary
of the myriad existing statisticaltools for variableselection
and significancetestingcan be employedto searchfor an
optimalsetof features Thisapproximatiorhasasignificant
computationahdwantageover the step-by-ste@pplication
of Iterative Scaling.

5.2. Powerful Features via Non Parametric Regression

Given the sameset of featuresf; (s),..., fx(s), we can
combinethemnon-linearlyby usinga more generalexpo-
nentialmodel:

pe) = Zools)esp [N a()]  ©

j=1

whereg; is anarbitrarysmoothfunctionof f;.
Maximizingthelikelihoodover all smoothfunctionsg ,
.., gk isanill-posedproblem.Onecoulduseregularization
techniquespr maximumpenalizedikelihood, to favor sim-
ple functions over more complicatedones. Alternatively,
stickingwith the regressionframevork, we canfit a gener
alizedadditive logistic regressior{6] of theform

logit(s) = o+ 3 4;(/;(5) )

usingary standardhon-parametricegressionsoftware. If
Bo and g; are the resultingestimatesthe estimateof the
exponentialmodelis thengivenby:

. k
B(s) = € po(s) - exp [Zﬁj(b‘j) ] (8)
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