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ABSTRACT

Whole sentenceexponentiallanguagemodelsdirectly
modelthe probabilityof anentiresentenceusingarbitrary
computablepropertiesof thatsentence.Wepresentaninter-
active methodologyfor featureinduction,anddemonstrate
it in thesimplebut commoncaseof a trigrambaseline,fo-
cusingon featuresthat capturethe linguistic notion of se-
manticcoherence.Wethenshow how parametricregression
canbeusedin this setupto efficiently estimatethemodel’s
parameters,whereasnon-parametricregressioncanbeused
to constructmore powerful exponentialmodelsfrom the
raw features.

1. INTRODUCTION

Conventionallanguagemodelssuchas � -gramstakelittle
advantageof the natureof humanlanguage. Therehave
beenseveral attemptsto improve on thesemodelsby ex-
ploiting hypothesizedlinguistic structure. Theseattempts
have not succeededfor the mostpart: the difficulty of pa-
rameterestimationmadeit impossibleto find a good so-
lution, or elseimprovementsover the conventionalmodel
weretoo small to justify theaddedcomplexity. We believe
thattheseattemptswerehamperedby at leastthefollowing
problems:� Conditional framework: Languagemodelingtodate

hasbeendoneby usingthechainrule to decompose
theprobabilityof asentenceor utteranceinto a prod-
uct of conditionalwordprobabilities.But this condi-
tional formulationis notconduciveto thinkingabout,
let alone incorporating,global (sentencelevel) lin-
guisticinformation.� Maximum entropy training: Whenintegratingdi-
verseandoverlappingknowledgesourcesinto a lan-
guagemodel,themostsuccessfulmethodto datemakes
useof the exponentialfamily andthe maximumen-
tropy principle. However, training a conditionalex-
ponentialmodelis computationallyprohibitive. The

mostburdensomestepin thetrainingis thecomputa-
tion of the normalizingterm, which dependson the
conditioningevent(thehistory).

Wehaverecentlybeenworkingona languagemodeling
framework thataddressestheseproblems.Oursolutionis a
whole-sentenceexponentialmodel:�������
	��
�� ��������� �������������! �#"�� �����%$ (1)

wherethe  � ’s aretheparametersof themodel,



is a uni-
versalnormalizationconstantwhich dependsonly on the � ’s,andthe

" � ����� ’s arearbitrarycomputableproperties,or
features, of thesentence� . �&�'����� is anarbitraryprobability
distribution,whichcanbethoughtof asthestartingpoint,or
baseline,for furthermodelingimprovements.Often, ���'�����
will besimply derivedfrom a trigram.

Thefeatures( "�� ������) areselectedby themodelerto cap-
ture thoseaspectsof the datathey considerappropriateor
profitable.Thesecanvaryfromclass� -grams,longer-distance
dependencies,or simpleglobalsentenceproperties,to more
complex functionsbasedon part-of-speechtagging,pars-
ing, or othertypesof linguistic analysis(personandnum-
beragreement,semanticcoherence,etc.). For eachfeature"�� ����� , its expectationunder* ����� is constrainedto aspecific
value + � : ,
- "�� 	 + �/.

(2)

Thesetarget valuesare typically set to the expectationof
that featureunderthe empiricaldistribution 0� of the train-
ing corpus 1 	 ( �'2'3 .�.�. 34�657) (For binary features,this is
simply theprevalenceof that featurein thecorpus.)Then,
theconstraintbecomes:

��8 ������� � "�� �����
	 ,:9- "���; �< 5�=�> 2 "�� ��� = � .
(3)

If theconstraints(2) areconsistent,thereexistsaunique
solution (  � ) within theexponentialfamily (1) whichsatis-
fiesthem.Amongall (notnecessarilyexponential)solutions
to equations(2), theexponentialsolutionis theoneclosest



to thebaseline� � ����� (in theKullback-Lieblersense),andis
thuscalledtheMinimum Divergenceor Minimum Discrim-
ination Information(MDI) solution. If thebaseline�?����� is
flat (uniform), this becomesthe Maximum Entropy(ME)
solution. Furthermore,if the featuretarget values + � are
theempiricalexpectationsover sometrainingcorpus(asin
equations(3)), the MDI or ME solution is also the Max-
imum Likelihood solutionof the exponentialfamily. For
moreabouttheME principle,see[7]. For theapplicationof
ME to conditionallanguagemodels,see[2, 8].

The whole sentenceexponentialmodelof equation(1)
wasfirst proposedin [9], wherewe discussedtrainingvia
Monte Carlo Markov Chain(MCMC) andothersampling
methods. In [3] we studiedefficient sampling,smoothing
andautomaticfeatureselectionfor suchmodels. In [10],
we usedthesetechniquesto addparse-basedfeaturesinto
a baselinetrigram,andshowedhow to accuratelyestimate
the(universal)normalizingconstant.

Oncethe above framework hasbeenproven practical,
thereremainsthe importantchallengeof feature induction.
Namely, we needa methodologyfor searchingfor andse-
lectingprofitablefeatures.

Joint (i.e. non-conditional)exponentialmodelingwas
first appliedto a natural languageprocessingproblemby
[4]. They usedajoint exponentialformtomodelthespelling
of individual words. Becauseof the relatively small space
of this problem,featureinductioncould be doneby itera-
tively consideringa small setof atomic featuresandtheir
combinationwith existing features.Whenmodelingwhole
sentences,however, thespaceof possiblefeaturesis consid-
erablylarger, andsuchcompletelyautomaticmethodsmay
no longersuffice.

In whatfollows,section2 presentsaninteractivemethod-
ology for featureinduction. Section3 demonstratesthe
methodologyin the simplebut commoncaseof a trigram
baseline.This leadsto a focuson featuresthatcapturethe
linguistic notionof semanticcoherence,which is takenup
in section4. Finally, section5 shows how parametricre-
gressioncan be usedin this setupto efficiently estimate
themodel’sparameters,whereasnon-parametricregression
canbeusedto constructmorepowerful exponentialmodels
from theraw features.

2. INTERACTIVE METHODOLOGY FOR
FEATURE INDUCTION

Our goal is to choosefeatures
"�� ����� thatcaptureaspectsof

languagewhicharenot captured(or inadequatelycaptured)
by thecurrentbaselinemodelingtechnique.To thisend,we
have developedthefollowing interactivemethodology.

Given a corpus 1 of natural languagesentenceswith
empirical distribution 0� , presumablyrepresentative of the
unknown target distribution � , we useit to train our best

baselinemodel � � . Next, we use � � to generatea corpus1 � of ‘pseudosentences’. We thenmanuallycompare1 �
with 1 (or someotherdatasetfrom thesamedistribution � ).
We askhumansubjectsto look for systematicdifferences
betweenthe two corpora. Any suchdifferencepoints to a
deficiency in theway �&� modelstheunknown targetdistri-
bution � . Any suchdeficiency can now be readily fixed,
by defininganappropriatesetof features

" 2�������3 .�.�. 3 "�@ �����
which have differentexpectationsunder � and � � (as ev-
idencedby their respective samples1 and 1 � ). The new
featuresarethenadded,resultingin anew model:�A2'�����
	��
�� � � ����� ��������� � �B � " � �����%$ (4)

Once� 2 is trained,theappropriateconstraint(equation3)
guaranteesthatit consistentlycapturesthenew feature,and
thepreviously observeddifferencebetweenour modeland
thetargetdistributionhasbeeneliminated.

Theprocesscannow berepeatedby generatingacorpus1 2 of ‘pseudosentences’from theimprovedmodel �C2 , and
comparingit to theoriginal corpus1 , looking for new dif-
ferences.Thelatterwill becapturedwith new features,and
so on. Note that, in contrastwith [4], the emphasisin our
methodologyis on manualinspectionof two corporaand
thelinguisticanalysisand‘detectivework’ of searchingfor
andevaluatingfamiliesof linguisticallymotivatedfeatures.

3. WHAT’S WRONG WITH A TRIGRAM?

To demonstratethe methodologypresentedabove, we ap-
plied it to the simplebut commoncaseof a trigram base-
line. Let 1 be the 1992–1996BroadcastNews corpus[5].
Examplesentencesfrom 1 aregivenin table1. Let � � ����� be
derivedby chainrule from a well-smoothedtrigrammodel
trainedon 1 , andlet 1 � bea corpusof “pseudosentences”
generatedaccordingto �&� . Examplesfrom 1 � aregivenin
table2.

How inherentlydifferentarethesetwosentencesources?
Even thoughsomeof the true sentencesareby no means
grammaticalor complete,there is somethingabout them
which seemsto “makesense”.In contrast,thepseudosen-
tences(exceptthevery shortones)do not generally“make
sense”.

How well canthe two sourcesbe told apart? In an in-
formal experiment,we presenteda blind mixtureof 40 av-
eragelengthsentencesfrom 1 and 1 � to 17membersof the
Sphinxresearchgroupat Carnegie Mellon University. An
exampleof suchamixtureis givenin table3.

Theon-the-spotindividualclassificationaccuraciesachieved
by this groupwere90%D 5%. It is likely thatbetterperfor-
mancecanbeachievedgivenmoredeliberationtimeand/or
experience. But in any case,humanperformanceis nei-
theranupperboundnora lowerboundonautomaticperfor-



Table1: Examplesentencesfrom theBroadcastNews Corpus
THAT’S YOUR NEWS ON THE DAY BEFORE CHRISTMAS THIRTY FIVE PAST THE HOUR </s>

BUT WHAT ABOUT THE FLAWLESS SYMMETRY OF THE IMAGE ON THOSE WINDOWS </s>

STEVE GREEN WITH THE U. S. POSTAL SERVICE A SPOKESMAN </s>

RELATIONSHIPS AND ALLIANCES QUOTE WE ALSO HAVE A NUMBER OF DEVELOPING RELATIONSHIPS AND ALLIANCES </s>

TOYNX HAS THE CHRISTMAS SPIRIT ALL YEAR ROUND QUOTE </s>

THERE ARE PEOPLE ALL THESE CHRISTMAS MOVIES ARE IN A SENSE ABOUT THE SECULAR CHRISTMAS </s>

HE’S GOING TO ARGUE THAT THE JURY’S VERDICT SUGGESTS THAT NICHOLS’ PARTICIPATION WAS SO MINOR IN THIS CONSPIRACY

THAT IT WOULD BE UNCONSTITUTIONAL TO EVEN ALLOW THE JURY TO IMPOSE THE DEATH PENALTY </s>

THE SINGLE EUROPEAN CURRENCY </s>

Table2: Example“pseudosentences”generatedby a trigram
IT WAS A HUMAN RIGHTS AND RESPONSIBILITIES WASN’T SAFE FOR MY CAPITAL GAINS ARE JOINING US FROM GETTING GUNS

BECAUSE THERE WAS NO CRIMINAL WRONGDOING THIS TREATY </s>

SO OF COURSE UNLESS THEY’VE DIVIDED MUNCHAUSEN PAYNE </s>

THAT’S AWFULLY INFLAMMATORY ATTENDING U. TWO TO ONE IN FIVE YEARS BACK YOU KNOW ALL THE OTHER THING ROYCE HAS

MORE ON THIS SUIT </s>

YEAH SURE </s>

CLARK CIRCUS COPS FEET AND PREPARE TO PUT BIBLE STORIES FROM THE GAME </s>

WITH THE CHANGES WOULD COST </s>

AND FRANKLY I FIND TO PEOPLE ALL OVER THE UNITED STATES FROM THE FEDERAL INTIMIDATION CAN BE SEEN AS A NON

MARRIED CHOOSES TO FIGHT INFLATION </s>

mance.Thesenumbersshouldthereforebetakenasmerely
a rough indication of the potentialof automaticdiscrimi-
nationmethods(suchmethodscanin turn beautomatically
convertedinto features,aswill beshown in section5).

What“features”did thehumansubjectsusein discrimi-
nating 1 from 1 � ? Wementionedthatthepseudosentences
did not “makesense”.In fact, they violate just aboutall of
our linguistic notions(with the not surprisingexceptionof
short-termwordcorrelations).Theseincludenotionsof lex-
ical relations,syntax,semantics,topic coherenceandprag-
matics. Can we captureany of theseglaring differences
computationally?We decidedto focuson a singleaspect:
the semanticcoherenceof the 1 sentences,asopposedto
the apparentsemanticincoherenceof 1 � sentences.To do
so, we repeatedthe classificationexperimentafter remov-
ing all non-contentwords1. The testset thenlookedasin
table42.

The on-the-spotindividual classificationaccuraciesfor
thisconditionwasdown to 66%D 9%.Again,it is likely that
betterperformancecanbeachievedgivenmoredeliberation
time and/orexperience.It is clearthoughthat, althougha
greatdealof informationhasbeenlost, muchinformation
still remainsin the content-bearingwords. Thus, the lin-
guistic notion of “semanticcoherence”could prove quite
useful. In thenext sectionwe derive raw featuresbasedon
thatnotion.

1Thesewereheuristicallydefinedasthe200mostcommonwordsin E
2In practice,this lattertestsetwasof coursepresentedfirst.

4. MODELING SEMANTIC COHERENCE

Therearetensof thousandsof “contentwords” in natural
language. Eachsentencecontainsa very small subsetof
them(from zeroto, say, twenty). Clearly, somesubsetsare
muchmorelikely thanothers.Modelingthedistribution of
suchsubsetsin naturallanguageis a non-trivial challenge.
Onemight considerhidden-variablemodels,or dimension
reductiontechniquessuch as SingularValue Decomposi-
tion, recentlyappliedto languagemodelingby [1].

As a first and admittedlycrudeattempt,we choseto
collect a setof raw features,onefor eachpossiblepair of
contentwords. Our hopewas that significantdifferences
between1 and 1 � will be observableeven with relatively
simplefeatures.Givenapairof contentwords, ��FHGI3�FHJ
� , a
2x2contingency tablecanbeconstructedwith thefollowing
counts:�LKM2�2 : thenumberof sentencesin 1 in which F G andF J co-occurred3.�LKM2ON : thenumberof all othersentencesin 1 in whichF G occurred.�LKIN62 : thenumberof all othersentencesin 1 in whichF J occurred.

3To exclude“trigram effects”, which canbe overwhelming,we only
consideredP�Q?R�P�S to haveco-occurredif theywereseparatedby at least
5 words.



Table3: Examplemixtureof real-andpseudo-sentences,presentedto humansubjectsfor classification

IT’S DIFFICULT REALLY I THINK FOR ANY OF US TO YET ENTIRELY COMPREHEND WHAT THIS MEANS </s>

YOU WERE GOING TO TAKE THEIR CUE FROM ANCHORAGE LIFTED OFF EVERYTHING WILL WORK SITE VERDI </s>

HE URGES RESTAURANTS SYNAGOGUES AND SCHOOLS TO SET UP THE CELLULAR EQUIVALENT OF NO SMOKING SECTIONS </s>

I’D LIKE TO BE IDENTIFIED WITH A DAY THEY’RE FULL OF FLAMMABLE HYDROGEN IN REAL LIFE </s>

ANN IF I COULD ASK YOU TO JUST HOLD IT THERE FOR A SECOND JONATHAN ALSO </s>

LOOK I UNDERSTAND THE WAY SUCH AS DAVID SAID LITTLE INCUMBENCY FOUR TELEVISION YOU LIKE IT </s>

IN NEW YORK CITY TEAMS OF PLOWS PUSHED AWAY UP TO HALF A FOOT OF SNOW </s>

IT’S A REALLY SURE VOTE THAT POP UP A SMALL BUT IMPORTANT CORN AND SOYBEAN FIELDS </s>

Table4: Samemixtureof real-andpseudo-sentences,with non-contentwordsremoved
- DIFFICULT - - - - - - - - YET ENTIRELY COMPREHEND - - MEANS

- - - - - - CUE - ANCHORAGE LIFTED - EVERYTHING - - SITE VERDI

- URGES RESTAURANTS SYNAGOGUES - SCHOOLS - SET - - CELLULAR EQUIVALENT - - SMOKING SECTIONS

I’D - - - IDENTIFIED - - - - FULL - FLAMMABLE HYDROGEN - REAL LIFE

ANN - - - ASK - - - HOLD - - - - SECOND JONATHAN -

- - UNDERSTAND - - SUCH - DAVID - - INCUMBENCY - TELEVISION - - -

- - YORK CITY TEAMS - PLOWS PUSHED AWAY - - HALF - FOOT - SNOW

- - - SURE VOTE - POP - - SMALL - IMPORTANT CORN - SOYBEAN FIELDS

�TK N�N : thenumberof sentencesin 1 in which neitherFHG nor FHJ occurred.

Let the marginals of this tablebe designatedby KM2VU ,KIN�U , KIU?2 and KIUAN , and let KIUAUW	 <
be the sizeof the

corpus.We have consideredthe following measuresof as-
sociation:� correlationcoefficient: XYZ	 [C\�\#[&]�]�^A[A\_]O[�]#\` [ \_a [ ]�a [ ab\ [ a�]� Yule’smeasureof association: Xc 	d[C\�\e[�]�]f^g[C\h]i[&]V\[ \�\ [ ]�] U [ \_] [ ]V\� mutualinformation: Xj 	!k ��l =�> 2 l N [Cm n5porqts <vu [Cm n[ m a [ n�axw

All thesemeasureareof coursestronglycorrelated.But
someare moreappropriatethan othersin this setup. For
example, Y hasa very narrow dynamicrangefor this data,
whereastheestimateof

j
is undefinedfor zerocounts.For

thesereasonswechoseto focuson
c

for now.
We estimated

c
valuesfor all content-wordpairs in a

substantialfraction of the vocabulary. Thenfor eachsen-
tence� , thelist of contentwordspairsco-occuringin it can
be derived, resultingin a variablelength list of

c
values.

The distribution of theselists in naturallanguagecanthen
be studiedand contrastedwith that in * � -generatedsen-
tences.

For ourpreliminaryanalysis,wehave furthersimplified
themodelingtaskby extractingasmallsetof statisticsfrom
eachsentence-based

c
list: its maximum,minimum,mean,

Figure 1: The distribution of sentence-mean
c

valuesin
“real” (natural language)and “fake” (trigram-generated)
sentences.
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andmedian. In figure 1, the distribution of the sentence-
meanof

c
iscomparedbetween“real” sentencesand“fake”

(trigram generated)sentences.Although the shapeof the
two distributionsis similar, their modesandtheir variances
arequite distinct. Significantdifferenceswerealsofound
with theotherthreestatistics.

Giventhesecleardistributionaldifferences,how canwe



bestexploit them? In the next sectionwe try to provide a
generalanswer, by makinguseof existing statisticaltech-
niques.

5. EXPONENTIAL MODELING AND LOGISTIC
REGRESSION

In this sectionwe show that the discriminationsetupof
section2 leadsto an interestingrelationshipbetweenex-
ponentialmodelingandlogistic regression.We first show
that,givenour setup,simpleparametriclogistic regression
canbeusedto estimatethemodel’s parameters(insteadof
the morecomputationallyexpensive iterative scalingalgo-
rithm). Next, we show how non-parametriclogistic regres-
sion can be usedto constructmore powerful exponential
modelsfrom theraw features.

5.1. Parameter Estimation via Parametric Regression

Givena fixedsetof features
" 2 ������3 .�.�. 3 " @ ����� , let usassume

that the distribution of “real” (naturallanguage)sentences
belongsto theexponentialfamily:

�?���tz  �
	 �
 �  � ���'����� �6�����������! �#"�� �����{$ (5)

Our goal is thento find theMaximumLikelihood esti-
matefor the  ’s,basedonsomecorpus1 . Let � 2 3 .�.�. 3���| be
asampleof “real” sentencesdrawn from 1 , andlet �6| U?2 3 .�.�. 3� N | beasampleof “fake” sentencesdrawn from ��� . Define} 	~� } 2 3 .�.�. 3 } N |b� asfollows:

} � 	 � for � 	 � 3 .�.�. 34� and} � 	!� for � 	��M� � 3 .�.�. 3���� . NotethatPr����� } 	 � �
	L�?�����
andPr����� } 	����H	B� � ����� . Also, Pr� } 	����H	 Pr� } 	 � �I	��� � by construction.

Define � ������	 *�� � } 	 � � ��	!��� . By Bayes’theorem,� ������	 Pr� } 	 � � ��	����	 �?����� } 	 � � *�� � } 	 � �������� } 	 � � *7� � } 	 � �A���?����� } 	���� *�� � } 	����	 �?������������?���&�'�����	 2� ������� k =  = " = �����%$2� ������� k =  = " = �����?$Z� � .
Hence, orqts��r� ����� ; o�qts�� � ������H� � �����t�	 � =  = " = ����� � orq�s 
	 �&�
� � = � = " = �����

where� = 	  = and � � 	 � orq�s 
 .
Now supposewe perform a logistic regressionof the}7�� � on the

" �= � . This meanswe fit a regressionmodelof
the form orq�s��r� �����7	�� � �~k = � = " = ����� yielding estimatesX� � 3 X�A2�3 .�.�. 3 X� @ . Theabove algebrasuggeststhatwecanuseX� = asanestimateof  = andwecanuse X� � asanestimateof� orq�s 
 .

In addition,givena largesetof candidatefeatures,any
of themyriadexisting statisticaltoolsfor variableselection
andsignificancetestingcan be employedto searchfor an
optimalsetof features.Thisapproximationhasasignificant
computationaladvantageover the step-by-stepapplication
of IterativeScaling4.

5.2. Powerful Features via Non Parametric Regression

Given the sameset of features
" 2������63 .�.�. 3 "�@ ����� , we can

combinethemnon-linearlyby usinga moregeneralexpo-
nentialmodel:�������H	��
 ���'����� ������� @�=�> 2�� = � " = �����O�{$ (6)

where� = is anarbitrarysmoothfunctionof
" = .

Maximizingthelikelihoodoverall smoothfunctions� 2 ,.�.�.
, � @ is anill-posedproblem.Onecoulduseregularization

techniques,or maximumpenalizedlikelihood, to favor sim-
ple functionsover more complicatedones. Alternatively,
stickingwith theregressionframework, we canfit a gener-
alizedadditive logistic regression[6] of theformorq�s��r� �����
	 � � � � = � = � " = �����i� (7)

usingany standardnon-parametricregressionsoftware. IfX� � and X� = are the resultingestimates,the estimateof the
exponentialmodelis thengivenby:

X�������
	!¡�¢£'¤ � �&�'����� ��������� @�=�> 2 X� = ��� = �?$ . (8)
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