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ABSTRACT

Weintroduceanexponentialanguagenodelwhichmod-
elsawholesentencer utteranceasa singleunit. By avoid-
ing the chainrule,the modeltreatseachsentencesa “bag
of features” wherefeaturesarearbitrarycomputableprop-
ertiesof the sentence.The nev modelis computationally
moreefficient,andmorenaturallysuitedto modelingglobal
sententiabhenomenahantheconditionalexponentiale.g.
Maximum Entropy) modelsproposedto date. Using the
modelis straightforward Trainingthe modelrequiressam-
pling from an exponentialdistribution. We describethe
challengeof applyingMonte CarloMarkov Chain(MCMC)
andothersamplingtechniquego naturallanguageanddis-
cusssmoothingand step-sizeselection.We then presenta
novel procedurefor featureselection,which exploits dis-
crepanciedetweerthe existing modelandthetrainingcor
pus.We demonstrateur ideasby constructingandanalyz-
ing competitive modelsin the Switchboarddomain,incor-
poratinglexical andsyntacticinformation.

1. MOTIVATION AND OUTLINE

Corventionalstatisticalanguagenodelsestimatethe prob-
ability of asentence by usingthechainruleto decompose
it into a productof conditionalprobabilities:
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Pr(s) Pr(w; ... wy,)
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whereh; d:ef{«wl, ..., w;—1} Is the history when predict-

ing word w;. Thevastmajority of work in statisticallan-
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guagemodelingis devotedto estimatingtermsof the form
Pr(w|h).

The applicationof the chainrule is technicallyharm-
lesssinceit usesan exact equality not an approximation.
This practiceis alsounderstandabléom a historical per
spectve (statisticallanguagemodelinggrew out of the sta-
tistical approachto speechrecognition,wherethe search
paradigmrequiresestimatingthe probability of individual
words). Nonethelesst is not alwaysdesirable.Termslike
Pr(w|h) may not bethe bestway to think aboutestimating
Pr(s):

1. Global sentencenformationsuchas grammaticality
or semanticoherencés avkwardto encoden acon-
ditional framevork. Somegrammaticabtructurewas
capturedn the structuredanguagemodelof [1] and
in the conditionalexponentiaimodelof [2]. But such
structurehadto beformulatedn termsof partialparse
treesandleft-to-right parsestates.Similarly, model-
ing of semantiaccoherencevasattemptedn the con-
ditional exponentialmodel of [3], but hadto be re-
strictedto alimited numberof pairwiseword correla-
tions.

2. Externalinfluencesnthe sentencgfor example,the
effect of precedingutterancespr dialog level vari-
ables)areequallyhardto encodeefficiently. Further
more, suchinfluencesmustbe factoredinto the pre-
diction of every word in the currentsentencecaus-
ing smallbut systematibiasesn theestimatiorto be
compounded.

3. Pr(w|h) is typically approximatedy
Pr(w;|w;i—g+1,. - ., wi—1) for somesmallk (theMarkov
assumption).Even if sucha modelis improved by
including longer distanceinformation, it still makes
mary implicit independencassumptionslt is clear
from looking atlanguagelatathattheseassumptions
areoften patentlyfalse,andthat thereare significant
globaldependencidsothwithin andacrossentences.



As asimpleexampleof thelimitations of the chainrule
approachgconsideroneaspecbf a sentenceits length. In
ann-grambasednodeltheeffectof thenumberof wordsin
the utteranceon its probability cannotbe modeleddirectly.
Rather it is animplicit consequencef the n-grampredic-
tion. This is later correctedduring speechrecognitionby
a “word insertionpenalty’ the usefulnes®f which proves
thatlengthis animportantfeature.However, thewordinser
tion penaltycanonly modellengthasa geometriadistribu-
tion, which doesnot fit well with empiricaldata,especially
for shortutterances.

As an alternatve to the corventional conditionalfor-
mulation, this paperproposes new exponentiallanguage
modelwhich directly modelsthe probability of an entire
sentencer utterance . The nev modelis conceptuallysim-
pler, andmorenaturallysuitedto modelingwhole-sentence
phenomenathan the conditionalexponentialmodelspro-
posedearlier By avoiding the chainrule, the modeltreats
eachsentencer utteranceasa “bag of features”wherefea-
turesare arbitrary computablepropertiesof the sentence.
The single,universalnormalizingconstanicannotbe com-
putedexactly, but thisdoesnotinterferewith training(done
via sampling)or with use.Usingthemodelis computation-
ally straightforward.Training the modeldepend<rucially
on efficient samplingof sentencefrom anexponentialdis-
tribution.

In what follows, Section2 introducesthe model and
contrastsit with the conditional exponentialmodelspro-
posedto date. Section3 discussedraining the model: it
lists severaltechniquedor samplingfrom exponentialdis-
tributions,shavs how to apply themto the domainof nat-
ural languagesentencesandcomparegheir relative effica-
cies. Step-sizeselectionand smoothingare alsodiscussed
here. Section4 describesxperimentswe performedwith
this model,incorporatingexical andsyntacticinformation.
Section5 analyzegheresultsof the experimentsandSec-
tion 6 summarizesanddiscussesur ongoingeffort andfu-
ture directions.Variousportionsof this work werefirst de-
scribedin [4, 5, 6].

2. WHOLE SENTENCE EXPONENTIAL MODELS

A wholesentencexponentialanguagenodelhastheform:
p(s) = — - pols) - exp(D_ Nifi(s)) ey

wherethe {);}’s are the parameter®f the model, Z is a
universalnormalizatiorconstantvhichdepend®nly onthe
{Ai}'s, and the {f;(s)}'s are arbitrary computableprop-
erties, or features, of the sentences. pq(s) is ary arbi-
trary initial distribution, sometimedoosely referredto as
the “prior”. For example,po(s) might be the uniform dis-

tribution, or elseit might be derived (usingthe chainrule)
from a conditionaldistributionsuchasann-gram.

Thefeatures| fi(s)} areselectedy themodelerto cap-
ture thoseaspectof the datathey considerappropriateor
profitable.Thesecanincludecorventionaln-gramsJonger
distancedependenciegjlobal sentenceroperties,aswell
asmorecomple functionsbasedn part-of-speeckagging,
parsingor othertypesof linguistic processing.

2.1. Using the Whole Sentence M odel

To usethewholesentencexponentiaimodelto estimatehe
probability of a given sentences, one needonly calculate
po(s) andthevaluesof the variousfeaturesf;(s), anduse
Equationl. Thususingthemodelis straightforwardand(as
long asthe featuresare not too comple) computationally
trivial. Becausehe featurescould dependon ary part of
thesentencethey canin generabnly becomputedafterthe
entiresentencés known. Thereforewhenusedfor speech
recognitionthemodelis notsuitablefor thefirst passof the
recognizer and shouldinsteadbe usedto re-scoreN-best
lists.

2.2. Whole Sentence Maximum Entropy M odels

The term “exponentialmodel” refersto any model of the

form (1). A particulartype of sucha modelis the so-called
“Maximum Entropy” (ME) model, where the parameters
are chosenso that the distribution satisfiescertainlinear

constraints.Specifically for eachfeaturef;(s), its expec-

tationunderp(s) is constrainedo a specificvalue K;:

Efi = K; . (2)

Thesetarget valuesare typically setto the expectationof

thatfeatureundertheempiricaldistributionp of sometrain-

ing corpus{si, ..., sy} (for binary features,this simply
meangheir frequeng in the corpus). Then,the constraint
becomes:

S b)) = Ffi= £ Yo hls) - @)

If theconstraintg2) areconsistentthereexistsaunique
solution within the exponentialfamily (1) which satisfies
them. Amongall (not necessarilyxponential)solutionsto
equationg?), the exponentialsolutionis the oneclosesto
theinitial distribution py(s) in the Kullback-Lieblersense,
andis thus called the Minimum Divergenceor Minimum
Discriminationinformation(MDI) solution.If py(s) is uni-
form, this becomesimply the MaximumEntropy(ME) so-
lution'. Furthermorejf the featuretarget valuesK; are

1in theliterature,theterm“Maximum Entropy” or ME is usedioosely
to referto bothsituationsj.e. regardlessf whethertheinitial distribution
po is uniform. We will follow this practicehere.



the empiricalexpectationsover sometraining corpus(asin
equationg(3)), the MDI or ME solutionis alsothe Max-
imum Likelihood solution of the exponentialfamily. For
moreinformation,see[7, 8, 3].

The MDI or ME solutioncanbe found by an iterative
proceduresuchasthe Generalizedterative Scaling(GIS)
algorithm[9]. GIS startswith arbitrary A;’s. At eachitera-
tion, thealgorithmimprovesthe { \; } valuesby comparing
the expectationof eachfeatureunderthe currentp to the
targetvalue,andmodifying the associated. In particular
we take ) X

1%
Ai— A+ 7 log AT
wherel; determineshestepsize(seeSection3.2).

In traininga whole-sentenc®aximumEntropymodel,
computingthe expectationsE, [fi] = >, p(s) - fi(s) re-
guiresa summatiorover all possiblesentences, aclearly
infeasibletask. Instead,we estimateE,[f;] by sampling
from the distribution p(s) and using the sampleexpecta-
tion of f;. Samplingfrom an exponentialdistributionis a
non-trivial task. Efficient samplingis crucialto successful
training. Samplingtechniquewvill bediscussedn detailin
Section3.1. As will be shavn lateron in this paper with
thesetechniquest is possibleto train whole-sentenc®E
modelsusingvery large corporaandvery mary features.

As mentionedearlier the term “exponential models”
refersto all modelsof theform (1), whereaghe term“ME
models’refersto exponentiaimodelswherethe parameters
aresetto satisfyequation2). Most of this paperdealswith
ME models.For a differenttraining criterion for exponen-
tial models seeSection2.5.

(4)

2.3. Comparison to Conditional ME M odels

It is instructive to comparethe whole-sentenc®E model

with conditionalME models which have seerconsiderable
successecentlyin languagemodeling[10, 11, 8, 3]. The

conditionalmodelusuallyhastheform:

Z(h)

wherethe featuresare functionsof a specificword-history
pair, andso is the baselinep,. More importantly Z here
is not a true constant— it dependn ~ andthusmustbe
recomputedduring training for eachword positionin the
training data. Namely for eachtraining datapoint(h, w),
onemustcompute

plwlh) = o po(wlh) -exp [ Y Aifi(hw) ] (6)

Z(h) def > po(wlh) exp[>_ X fi(h, w)]

weV i

whereV is the vocalulary. This computationaburdenis
quitesevere:traininga modelthatincorporates.-gramand

long-distancavord correlationfeatureson some40 million
wordscantakehundredf daysof computatio3, p.210].
It is this bottleneckthathashinderedhewidespreadiseof
the ME framewvork in languagemodeling. In comparison,
in our newv modeltheuniversalnormalizatiorconstanneed
not be calculated(seeSection2.4). This not only speeds
up training, but it also significantly speedsup using the
modelin applicationssuchasspeechrecognition. In fact,
whenusedwith simplefeaturesour modelcanbe applied
with roughlythe sameamountof computatiorasann-gram
modelemployinga comparablenumberof parameters.

The main drawvbacksof the conditionalME modelare
thusthe severe computationabottleneckof training (espe-
cially of computingZ(h)), and the difficulties in model-
ing whole-sentenc@henomena.The whole-sentencE
modeladdressebothof theseissues.

A final noteof comparisonA whole-sentenc®E model
incorporatingthe samefeaturesasa conditionalME model
is in fact not identical to the latter This is becausehe
trainingproceduraisedfor conditionalME modelsrestricts
the computatiorof the featureexpectationgo historiesob-
senedin thetrainingdata(see[8] or [3, section4.4]). This
biasesthe solutionin aninterestingand sometimesappro-
priateway. For example,considemword trigger featuresof
theform

1 fXehw=Y
0 otherwise

Ix—y (h,w) = {

and specifically considerthe two featuresA — 7 and
B — Z for somewords A4, B, andZ. If A andB are
correlatedin the training data, this will affect the solution
of the conditionalME model. In fact, if they areperfectly
correlatedalwaysco-occurringn thesamesentencethere-
sulting A’swill likely be onehalf of whattheirvaluewould
have beenif only oneof thefeaturesvereused.Thisis ben-
eficial to the model, sinceit capturescorrelationsthat are
likely to recurin new data.However, awhole-sentenc®E

modelincorporatingthe samefeatureswill notusethe cor

relationbetweenA and B, unlessit is explicitly instructed
to do sovia a separatdeature. This is becausehe train-
ing datais not actuallyusedin whole-sentenc®IE training,
exceptinitially to derive thefeaturestargetvalues.

2.4. Normalization and Per plexity

Justasit is infeasibleto calculateexactly featureexpec-
tationsfor whole-sentencenodels,it is equally infeasible
to computethe normalizationconstantZ = 3" po(s) -

exp(>_; Aifi(s)). Fortunatelythisis notnecessarfor train-
ing: sampling(and henceexpectationestimation)can be
donewithout knowing Z, aswill be shavn in Section3.

Usingthemodelaspartof a classifier(e.g., aspeechrecog-
nizer) doesnot requireknowledgeof 7 either becauséhe
relative rankingof the differentclassess not changedy a



single,universalconstantNoticethatthisis notthecasefor
conditionalexponentialmodels.

Nonethelessttimesit maybedesirabld¢o approximate
7, perhapsn orderto computeperpleity. With thewhole-
sentencenodelthis canbedoneasfollows.

Let R(s) = exp(D_; Ai fi(s)) betheunnormalizednod-
ification madeto the initial model py(s). Thenp(s) =
+po(s)R(s). By thenormalizationconstraintve have:

S2p(e) = 7 o mle) Rls) = 7 B[RS = 1

Fromwhichwe get:
Z = Ep,[R(S)].

ThusZ canbeapproximatedo ary desiredaccurag froma
suitablylargesamplel; of sentencedravn from pg. Often,
po is basedbn ann-gram. A reasonablyefficient sampling
techniqudor n-gramsis describedater.

To estimatereductionin perword perpleity (PP) over
thepg baselinelet T, beatestset,andlet #S. and#W.
bethenumberof sentenceandwordsin it, respectiely. By
definition

PP(T.) = p(T.)” #7=

It followsthenthatthe perpleity reductionratio is:

#5e
#We

PPeolT.) z
PRI\ #og/Ter, R(s)

Substitutingn the estimationof Z, the estimatederpleity
reductionis:

#5Se

PPeyo(Te) N arithmeticmeanR(s)] \ #%<
PPy(T.) ~ \ geometrianeanR(s)]

wherethe arithmeticmeanis takenwith respecto po and
the geometricmeanwith respectto 7. Interestingly if

T, = Ty, i.e. if thetestsetis alsosampledrom thebaseline
distribution, it follows from the law of inequality of aver-

agesthatthe new perplity will alwaysbe higher This,

however, is appropriatebecauseary “correction”to anini-

tial probability distribution will assigna lower likelihood

(andhencehigherperpleity) to datageneratedby thatdis-

tribution.

2.5. Discriminative Training

Until now we discussedprimarily Maximum Entropy or
Maximum Likelihood training. However, whole-sentence
exponentialmodelscanalsobetrainedto directly minimize
the errorratein anapplicationsuchasspeechrecognition.
Thisis knownasMinimum ClassificatiorError (MCE) train-
ing, or Discriminative Training. The log-likelihood of a

whole-sentencexponentialmodelwith & featureds given
by

k
log p(s) = —log Z +logpo(s) + > _[Aifi(s)]

i=1

Thelasttermis a weightedsum,which canbe directly
(albeit only locally) optimizedfor MCE using a heuristic
grid searchsuchasPawell’s algorithm,which searcheghe
spacalefinedby theA’s. In fact,theseconderm(log po(s))
can also be assigneda weight, and scoresnot relatedto
languagemodeling can be addedto the mix aswell, for
joint optimization.Thisis ageneralizatiorof the“language
weight” and“word insertionpenalty” parametergurrently
usedin speectrecognition.For anattemptin thisdirection,
see[12)].

2.6. Conditional Whole-Sentence M odels

So far we have discussedhon-conditionalmodelsof the
formp(s). In orderto modelcross-sentencffects,onecan
re-introducehe conditionalform of the exponentialmodel,
albeitwith somemodifications.Let / referto the sentence
history, namelythe sequencef sentencefrom the bagin-
ning of thedocumenbr corversationup to (but notinclud-
ing) thecurrentsentenceThemodelthenbecomes:

Although the normalizationconstantis no longer uni-
versal,it is still not neededor N-bestrescoringof a speech
recognizers output. This is becauseaescoringis typically
doneonesentenceat atime, with all competinghypotheses
sharingthe samesentencdistory.

We will not pursuemodelsof this type ary furtherin
this paper exceptto notethatthey canbe usedto exploit
sessionwide information, suchastopics and other dialog
level features.

3. MAXIMUM ENTROPY MODEL TRAINING

3.1. Sampling

Sinceexplicit summatiorover all sentences is infeasible,
we will estimatethe expectationsE, [f;] by sampling. In
this section,we describesereral statisticaltechniquedor
samplingfrom exponentialdistributions,and evaluatetheir
efficagy for generatingnaturallanguagesentences.

Gibbs Sampling [13] is a well known techniquefor
samplingfrom exponentialdistributions.It wasusedn [14]
to samplefrom the populationof charactestrings.We will
now describenow to useit to generatevholesentenceBom



anunnormalizedoint exponentialdistribution, thenpresent

alternatve methodswvhich aremoreefficientin thisdomain.
To generatea singlesentencdrom p(s), startfrom ary

arbitrarysentence, anditerateasfollows:

1. Choosea word position: (eitherrandomlyor by cy-
cling throughall word positionsin someorder).

2. Lets!, bethesentence@roducedy replacingheword
in positioni in sentences with the word w. For
eachword w in thevocalulary V, calculatep(si,) =

Po(se) exp(32; Aifi(s,))-

3. Choosea word at randomaccordingto the distribu-
tion {p(s%,) }wey. Placethatwordin positioni in the
sentenceThis constitutes singlestepin therandom
walkin theunderlyingMarkov field.

To allow transitionsinto sentencesf ary length,we do
thefollowing:

e The end-of-sentenceositionis also consideredor
replacemenby an ordinaryword, which effectively
lengthenghe sentencdy oneword.

¢ Whenthelastword positionin thesentencés picked,

theend-of-sentencgymbol</ s> is alsoconsidered.

If chosen,this effectively shortensthe sentenceby
oneword.

After enoughiterationsof the abore procedurethere-
sulting sentenceds guaranteedo be an unbiasedsample
from the Gibbsdistributionp(s).2

Generatingsamplesentencefrom a Gibbsdistribution
asdescribedabore is quite slow. To speedthingsup, the
following variationsareuseful:

o Draw theinitial sentence from a“reasonabledistri-
bution, suchasa unigrambasedn the training data,
or from pg. Thistendsto reducethe necessaryjum-
berof iterationsperstep.

e For aninitial sentences usethe final (or somein-
termediate)sentencdrom a previous randomwalk.
This againtendsto reducethe necessarywumberof
iterations. However, the resultingsentencemay be
somavhatcorrelatedvith the previoussamplé.

¢ At eachiteration, consideronly a subsetof the vo-
calulary for replacementAny subsettanbe chosen

2|t is not theoreticallyknown how manyiterationsareneededo prac-
tically guaranteainbiasedsamples.In our experimentsve usedseveral
thousands.

3This is known as the “long chain” approach. Thereis an ongoing
andheatediebaten thecomputationastatisticccommunitybetweerflong
chain”and“short chain” supporters.

aslong asthe underlyingMarkov Chainremainser
godic. This tradesoff the computationatostperit-
erationagainstthe mixing rate of the Markov chain
(thatis, therateat which therandomwalk convemges
to theunderlyingequilibriumdistribution).

Even with theseimprovements,Gibbs samplingis not
the mostefficient for this domain, asthe probability of a
greatmary sentencesnustbe computedto generateeach
sample.Metropolis sampling [15], anotheMarkov Chain
Monte Carlo technique appearamore appropriatefor this
situation. An initial sentencés choserasbefore.For each
chosenword position, a new word v is proposedrom a
distribution ¢(v) to replacethe original word w in that po-
sition, resultingin a proposedhew sentences. This new
sentencés accepted with probability

p(sy) - q(‘w)]
p(si,) -q(v)”

Otherwise the original word w is retained. After all word
positionshave beenexaminedtheresultingsentencés added
tothesampleandthis processs repeated. Thedistribution
¢(v) usedto generateen word candidategor eachposition
affectsthe samplingefficiengy; in theexperimentseported
in this paperwe useda unigramdistribution.

As in Gibbs sampling,adaptingthe Metropolis algo-
rithm to sentencesf variable-lengtirequirescare. In one
solution,we padeachsentencevith end-of-sentencekens
</ s> upto afixedlengthl. A sentencéecomeshorterif
thelastnon</ s> tokenis changedo </ s>, longerif the
first </ s> tokenis changedo somethingglse.

In applyingMetropolissamplinginsteadof replacinga
singlewordatatimeit is possibleto replacdargerunits. In
particular in independence sampling we considerreplac-
ing thewhole sentenceén eachiteration. For efficiengy, the
distribution ¢(s) usedto generatenew sentenceandidates
mustbesimilarto thedistributionp(s) we areattemptingo
samplefrom.

Inimportancesampling, asamples, ..., sy }isgen-
eratedaccordingto somesentencelistribution ¢(s), which
similarly mustbe closeto p(s) for efficient sampling. To
correctthe biasintroducedby samplingfrom ¢(s) instead
of from p(s), eachsamples; is counted”% times,sothat
we have ’

min[1,

M 55
S B fi(sg) ©
M p(s;) '
=1 (o)
Whichsamplingmethods bestdependsnthenatureof
p(s) andq(s). We evaluatedthesemethods(exceptGibbs
samplingwhich provedtoo slow) on someof themodelsto

Eplfi] =

4The samplingproceduras still correctif the currentsentencés added
to the sampleafter each word positionis examinedhowever, this process
becomedesswell-definedwhenwe considewvariable-lengttsentences.



samplingalgorithm
Metropolis | independence| importance
Jia 0.38+0.07 0.438+0.001 0.439+0.001
f58 0.10+0.02 | 0.1001:0.0004 | 0.100H-0.0006
fo12 0.08+0.01 | 0.0834t0.0006| 0.083H-0.0006
fiz.16 | 0.073£0.008 | 0.0672t0.0005| 0.0676:0.0007
fir,0 | 0.3740.09 0.311+:0.001 0.310+0.002

Tablel: Meanandstandarddeviation (of mean)of feature
expectationestimatedor sentence-lengtfeaturedor three
samplingalgorithmsovertenruns

be describedn Section4. Thesemodelsemploya trigram
astheinitial distributionpg (s). (Generatingsentencefom
a n-gram model can be donequite efficiently: one starts
from thebeginning-of-sentenceymbol,anditeratively gen-
eratesa singleword accordingo the n-grammodelandthe
specificcontet, until the end-of-sentenceymbolis gen-
erated. Generatinga single word from an n-gram model
requireso(|V|) steps. While this computationis not triv-
ial, it is far more efficient than samplingdirectly from an
exponentialdistribution.) Thereforetakingq¢(s) to beatri-
grammodelfor independencandimportancesamplingis
very effective. To measurehe effectivenesf thedifferent
samplingalgorithms,we did the following. Usinganexpo-
nentialmodelwith a baselinetrigramtrainedon 3 million
wordsof Switchboardext ([16]) andavocalulary of some
15,000words, for eachof the samplingmethodswe gen-
eratedten independensamplesof 100,000sentencesWe
estimatedhe expectationf a setof featureson eachsam-
ple, and calculatedthe empirical variancein the estimate
of theseexpectationsover the ten samples.More efficient
samplingalgorithmsshouldyield lower variances.

In our experiments,we found thatindependencsam-
pling andimportancesamplingboth yieldedexcellentper
formancewhile word-based/etropolissamplingoerformed
substantiallyworse.As anexample,we estimatedxpecta-
tionsfor sentence-lengtfeaturesof theform

1 ifllglentsglg
fuu1a(5) = { 0 otherwiseg i
over ten samplesof size 100,000. In Table 1, we display
the meansand standarddeviations of the ten expectation
estimategor eachof thefive sentence-lengtfeaturesunder
threesamplingalgorithms.

The efficiengy of importanceand independencesam-
pling dependon the distancebetweerthe generatingdis-
tribution ¢(s) andthe desireddistribution p(s). If ¢(s) =
po(s), thatdistancewill grow with eachtrainingiteration.
Oncethe distancebecomedgoo large, Metropolissampling
can be usedfor oneiteration, say iteration £, andthe re-

sulting sampleretained. Subsequeniterationscan re-use
thatsamplevia importanceor independenceamplingwith
q(s) = p¥*1(s). Notethat, evenif trainingwereto stopat
iteration k, p*] is amuably a bettermodel thanthe initial
modelpy, sinceit hasmoved considerablyby ourassump-
tion) towardssatisfyingthefeatureconstraints.

Usingthetechniquesvediscussabove, trainingawhole-
sentencdME modelis feasibleevenwith large corporaand
mary features. And yet, training time is not nagligible.
Someideasfor reducingthe computationaburdenwhich
we have notyetexploredinclude:

¢ Useonly roughestimation(i.e. smallsamplesize)in
thefirst few iterations(we only needto know the di-
rectionandroughmagnitudeof the correctionto the
A’s); increasesamplesizewhenapproachingorver
gence.

¢ Determinethe samplesizedynamically basednthe
numberof timeseachfeaturewasobseredsofar.

¢ Add featuresgradually (this has alreadyproven it-
self effective at leastanecdotallyasreportedn Sec-
tion 4.1).

3.2. Step Size

In GIS,thestepsizefor featureupdatds inverselyrelatedto
the numberof active features.As sentencetypically have
mary features,this may resultin very slow convemgence.
Improved lterative Scaling(l1S) [14] usesalargereffective
stepsizethanGlS, butrequiresagreatdealmorebookkeep-
ing.

However, whenfeatureexpectationgareneartheirtarget
value, IS canbe closely approximatedvith equation(4)
where F; is takento be a weightedaverageof the feature
sumover all sentencesi.e, if the setof sentences were
finite, we wouldtake

1
Fz’:mgzp(s)fi(s);fﬂ(s) - (7

In our implementationwe approximatedr; by summing
only over the sentencef the sampleusedto calculateex-
pectationsThis techniqueesultedin corvergencein all of
ourexperiments.

3.3. Smoothing

From equation(4) we canseethatif Es[f;] = 0 thenwe
will have \; — —oco. To smooth our model, we usethe
fuzzy maximumentropymethodfirst describedy [17]: We
introducea Gaussiarprior on A; valuesandsearchfor the
maximuma posterior modelinsteadof the maximumlike-
lihood model. This hasthe effect of changingequation(2)



to
A
Epfi = Ai — ?

(3

for somesuitablevarianceparametewr?. With this tech-
nigue,we foundthat over-training (overfitting) wasnever a
problem.For adetailedanalysisof thisandothersmoothing
techniquegor MaximumEntropymodels see[18].

4. FEATURE SETSAND EXPERIMENTS

In this sectionwe describesereral experimentswith the
newv model, using variousfeaturesetsand samplingtech-
nigues.We startwith the simplereconstructiorof n-grams
using Gibbs sampling, proceedwith longer distanceand
classbasedexical relationsusingimportancesamplingand
end with syntacticparse-basedeatures. For subsequent
work usingsemantideaturessee[19].

4.1. Validation

To testthe feasibility of Gibbssamplingandgenerallyval-
idate our approachwe built a whole-sentenc®E model
usinga small (10K word) training setof BroadcasiNews
[20] utterances We setp, (s) to be uniform, anduseduni-
gram,bigramandtrigramfeaturesf theform

fa(s) = #of timesn-grama occursin s

The featureswverenot introducedall at the sametime. In-
stead,the unigramfeatureswere introducedfirst, andthe
modelwasallowedto corverge. Next the bigramfeatures
wereintroduced andthe modelagainallowedto converge.
Finally the trigramfeatureswvereintroduced.This resulted
in fastercorvergencethanin the simultaneousntroduction
of all featuretypes. Trainingwasdoneby Gibbssampling
throughout.

Below we provide samplesentencegeneratethy Gibbs
samplingfrom variousstage®f thetraining procedureTa-
ble 2 lists samplesentencegeneratedby theinitial model,
beforeary trainingtook place.Sincetheinitial A's wereall
setto zero,this is the uniform model. Tables 3 through5
list samplesentencegeneratedby the cornvergedmodelaf-
tertheintroductionof unigram bigramandtrigramfeatures,
respectiely. It canbeseernfrom theexamplesentencethat
themodelindeedsuccessfullyncorporatedheinformation
providedby therespectie features.

The modeldescribedabore incorporateonly “conven-
tional” featureswhich are easyto incorporatein a simple

5Throughouthis paperwe have beenreferringto the unit of modeling
as a “sentence”. But of course,our methodcan be usedto model any
word sequencer utterancewhetheror notit is consistentvith linguistic
boundaries.Naturally, linguistically inducedfeaturesmay or may not be
applicableto non-sentences.

conditionallanguagenode. This wasdonefor demonstra-
tive purposenly. The modelis unavareof the natureor
compleity of thefeatures Arbitrary featuresanbeaccom-
modatedwith virtually no changean the modelstructureor
thecode.

<s> ENOUGHCARE GREGGETTINGIF O. ANSWERNEVER</ s>
<s> DEATH YOU'VE BOTH THEM RIGHT BACK WELL BOTH </ s>

<s>MONTH THAT'S NEWSANY YOU'VE WROTE MUCH MEAN </ s>

<s>A. HONORWE'VE ME GREGLOOK TODAY N. </ s>

Table2: Sentencegeneratedy Gibbssamplingfrom an
initial (untrained)model. Sinceall X’s wereinitialized to
zero,thisis the uniform model.

<s>WELL VERY DON'T A ARENOT LIVE THE </ s>

<s> | RIGHT OF NOT SOANGELESIS DONE</ s>

<s>| ARE FOURTHIS KNOW DON'T ABOUT OF </ s>
<s>C.GOARETOA IT HAD SO</ s>

<s> OFFTHE MORE JUSTPOINTWANT MADE WELL </ s>

Table 3: Sentencegjeneratedby Gibbs sampling from
a whole-sentenc®E modeltrained on unigramfeatures
only.

<s> DO YOUWANT TO DON'T C.WAS YOU </ s>
<s>THE| DO YOUHAVE A AUS</ s>

<s>BUT A LOSANGELESASK C.NEWSARE </ s>
<s>WE WILL YOU HAVE TO BE AGENDA AND </ s>
<s> THE WAY IS THEDO YOU THINK ON </ s>

Table4: Adding bigramfeatures.

As we mentionecearlier Gibbssamplingturnedout to
bethe leastefficient of all samplingtechniquesve consid-
ered.As we will shav next, muchlargercorporaandmary
morefeaturescanbefeasiblytrainedwith the moreefficient
techniques.

4.2. Generalized n-gramsand Feature Selection

In our next experimentwe useda muchlarger corpusanda
richersetof features Ourtrainingdataconsisteaf 2,895,000
words(nearly187,000sentences)f Switchboardext (SWB)
[16]. First,we constructec corventionaltrigrammodelon
this datausing a variation of KnesefNey smoothing[21],
andusedit asour initial distribution pg(s). We thenem-
ployedfeaturesthat constrainedhe frequenyg of word n-
grams(up to n=4), distance-twq(i.e. skippingoneword)
word n-grams(up to n=3) [3], and classn-grams(up to
n=5) [22]. We partitionedour vocahulary (of somel5,000
words)into 100,300,and1000classesisingthewordclass-
ing algorithmof [23] on ourtrainingdata.



<s> WHAT DO YOU HAVE TO LIVE LOSANGELES</ s>
<s>A. B.C.N. N. BUSINESSNEWSTOKYO </ s>

<s>BE OFSAYSI'M NOT AT THISIT </ s>

<s>BILL DORMAN BEENWELL | THINK THE MOST</ s>
<s> DO YOU HAVE TO BE IN THEWAY </ s>

Table5: Adding trigramfeatures.

training | trigram
corpus| corpus

feature count| count X2
TALKI NG TO YOU KNOW 0 148 | 43512.50
TALKI NG TO _ KNOW 0 148 | 43512.50
TALKI NG/ CHATTI NG TO 0 148 | 43512.50
YOU KNOW
NI CE/ HUMONGOUS 0 60 | 7080.50
TALKI NG CHATTI NG
TO YOU KNOW
HOW ABOUT YOU KNOW 0 56 | 6160.50
HOW ABOUT _ KNOW 0 56 | 6160.50
<s> HAVE _ KNOW 0 42 | 3444.50
KIND OF A 0 42 | 3444.50
VHI LE/ SUDDEN
VAGUELY/ BLUNTLY 15389 | 22604 | 3382.69

Table 6: n-gramswith largestdiscrepang (accordingto
x? statistic)betweertraining corpusandtrigram-generated
corpusof samesize; n-gramswith “_" tokenaredistance-
two n-grams;w; /w, notationrepresents classwhosetwo
mostfrequentmembersarew; andw-

To selectspecificfeaturesve devisedthefollowing pro-
cedure First,we generatecn artificial corpusby sampling
from our initial trigram distribution po(s). This “trigram
corpus”was of the samesize asthe training corpus. For
eachn-gram,we comparedts countin the“trigram corpus”
to thatin the training corpus. If thesetwo countsdiffered
significantly(usinga x? test),we addedthe corresponding
featureto our model® We tried thresholdon the y? statis-
tic of 500,200,100, 30, and15, resultingin approximately
900, 3,000,10,000,20,000and52,000n-gramfeaturesre-
spectvely. n-gramswith zero countswere consideredo
have 0.5 countsin thisanalysis.

In Table6, we displaythe n-gramswith the highesty?
scores. The majority of thesen-gramsinvolve a 4-gram
or 5-gramthatoccurszerotimesin thetraining corpusand
occursmary timesin the trigram corpus. Theseare clear
examplesf longerdistancalependenciethatarenotmod-
eledwell with atrigrammodel. However, the lastfeatureis

6Theideaof imposinga constrainthatis mostviolatedby the current
modelwasfirst proposedy RobertMercer, who calledit “nailing down”.

x?2 threshhold| baseline | 300 30 15
# features 0| 3,500| 19,000| 52,000
WER 36.53| 36.49| 36.37| 36.29
LM only 40.92| 40.95| 40.68| 40.46
avg. rank 27.29| 27.26| 26.34| 26.42
LM only 35.20| 35.28| 34.59| 33.93

Table7: Top-1 WER andaveragerank of besthypothesis
usingvaryingfeaturesets.

aclassunigram,andindicatesthatthe trigrammodelover-
generatesvordsfrom this class. On further examination,
the classturnedout to containa large fraction of therarest
words. This indicateghat perhapghe smoothingof thetri-
grammodelcouldbeimproved.

For eachfeatureset,wetrainedthecorrespondingnodel
afterinitializing all A; to 0. We usedimportancesampling
to calculateexpectationsHowever, insteadof generatingan
entirelynew sampldor eachiteration,we generatedsingle
corpusfrom our initial trigrammodel,andre-weightedhis
corpusfor eachiterationusingimportancesampling.(This
techniqguemay resultin mutually inconsistentconstraints
for rare features,but cornvergencecan still be assuredoy
reducingthe stepsize F; with eachiteration.) We trained
eachof ourfeaturesetsfor 50iterationsof iterative scaling;
eachcompletetraining run took lessthanthreehourson a
200MHz PentiumProcomputer

We measuredheimpactof thesefeatureshy rescoring
speechrecognitionN -bestists (N < 200) whichweregen-
eratedby theJanussysten]24] onaSwitchboard/CallHome
testsetof 8,300words. Thetrigrampg(s) senedasabase-
line. For eachmodel,we computedoththetop-1word er
ror rateandtheaveragerankof theleasterrorfulhypothesis.
Thesefigureswere computedfirst by combiningthe new
languagescoreswith theexisting acousticscoresandagain
by consideringthe languagescoresonly. Resultsfor the
threelargestfeaturesetsaresummarizedn Table7 (for the
smallerfeaturesetsimprovementwassmallerstill). While
thespecificfeatureave selectecheremadeonly a smalldif-
ferencein N-bestrescoringthey sene to demonstratehe
extremegeneralityof our model: Any computableroperty
of the sentenceavhich is currentlynot adequatelynodeled
can(andshould)beaddednto themodel.

4.3. Syntactic Features

In the last setof experiments,we usedfeaturesbasedon
variable-lengthsyntacticcatgoriesto improve on an ini-
tial trigram modelin the Switchboarddomain. Our train-
ing datasetvasthe sameSwitchboardcorpususedin Sec-
tion4.2.



Due to the often agrammaticahatureof Switchboard
languagg(informal, spontaneoutelephonecorversations),
we choseto usea shallav parserthat, given an utterance,
producenly aflat sequencef syntacticconstituentsThe
syntacticfeaturesverethendefinedin termsof thesecon-
stituentsequences.

4.3.1. The Shallow Switchboard Parser

Theshallav Switchboardparsel[25] wasdesignedo parse
spontaneougornversationakpeecthin unrestrictedlomains.
It is veryrobustandfastfor suchsentenced=irst,aseriesof

preprocessingtepsarecarriedout. Thesencludeeliminat-

ing word repetitions ,expandingcontractionsand cleaning
disfluenciesNext, theparserassigns part-of-speeckagto

eachword. For example,theinput sentence

Okay | uh you know I think it might be correct
will beprocessethto

[/NNP think/VBP it/PRPA might/ AUX be/VB cor-
rect/JJ

As thenext step,the parsetbreakshe preprocessednd
taggedsentencénto oneor moresimplex clauses, whichare
clausescontainingan inflectedverbal form and a subject.
This simplifies the input and makesparsingmore robust.
In our exampleabore, the parsemwill generatéwo simplex
clauses:

simple< 1: I/NNP think/VBP
simplex 2: it/PRPA might/AUX be/VB correct/JJ

Finally, with a set of handwrittengrammarrules, the
parserparseseachsimplec clauseinto constituents. The
parsingis shallov sinceit doesnt generatembeddedon-
stituents;i.e., the parsetreeis flat. In the example,simplex
1 hastwo constituents:

[_np] ([NP_head] I/NNP )
[_vb] ([VP_head] think/VBP)

andsimplex 2 hasthreeconstituents:

[-np] ([NP-head] it/PRPA)
[vb] ( might/AUX[VP_head] be/VB)
[-prdadj] ( correct/dJ)

The parsersometimedeavesa few functionwords(e.g.
to, of, in) unparsedn the output. For the purposeof fea-
ture selectionwe regardedeachof thesefunctionwordsas
a constituent. Countedthis way, thereare a total of 110
constituentypes.

4.3.2. Feature Types

As mentionedabore,theshallon parsebreaksaninputsen-
tenceinto oneor moresimplex clauseswhich arethenfur-
therbrokendown into flat sequencesf constituentsWe de-
finedthreetypesof featuresasedsolely onthe constituent
types;i.e.,weignoredtheidentitiesof wordswithin thecon-
stituents:

1. ConstituentSequencdeatures: for ary constituent
sequence andsimplex clauses, f;(s)=1if andonly
if the constituentsequencef simplex clauses ex-
actly matchesz. Otherwisef;(s)=0. For instance,
f_np_vb(' THINK) = 1,
f_np_vb_prdadj('T MIGHT BE CORRECT) = 1,
f_np_vb(IT MIGHT BE CORRECT) = 0, andsoforth.

2. ConstituenSetfeaturesfor ary setz of constituents,
fz(s)=1if andonly if theconstituentet of sentence
s exactly matchese. Otherwisef,(s)=0. This setof
featureds arelaxationof ConstituentSequencéea-
tures,sinceit doesnt requirethe positionandnumber
of constituentso matchexactly. As anexample,both
f-np,vb(l LAUGH) = 1 and
f-np,.vb(l SEe A BIRD) = 1, althoughtheconstituent
sequencef | LAUGH is _np_vb while thatof | SEE A
BIRD is _np_vb_np.

3. ConstituentTrigram features: for ary orderedcon-
stituenttriplet(c1, c2, c3), fic1,c2,e3)(s)=1if andonly
if sentence containghatcontiguousequencatleast
once. Otherwisef.1 .z 3)(s)=0. This setof fea-
turesresemblegraditionalclasstrigramfeatures ex-
ceptthatthey correspondo avariablenumberof words.

4.3.3. Feature Selection

We followedthe proceduredescribedn Section4.2to find
usefulfeatures.We generatedn artificial corpus,roughly
thesamesizeasthetrainingcorpus py samplingfrom pg(s).
We ranbothcorporahroughtheshallov parserandcounted
theoccurrencesf eachcandidatdeature.If the numberof
timesafeaturewasactivein thetrainingcorpusdifferedsig-
nificantly from thatin the artificial corpus,the featurewas
consideredmportantandwasincorporatednto the model.
Ourreasoningvasthatthe differences dueto a deficieny
of the initial modelpq(s), andthataddingsucha feature
will fix thatdeficieng.

We assumedhat our featuresoccurindependentlyand
arethereforebinomiallydistributed.More preciselywe had
two independensetsof Bernoulli trials. Oneis the setof
n simplex clausesf thetraining corpus. The otheris the
setof m simplex clausesof the artificial corpus. Let = be
the numberof timesa featureoccursin thetraining corpus
andy thatin the artificial corpus. Let P, and P, be the



true occurrenceprobabilitiesassociatedvith eachcorpus.
We testedthe hypothesed?, : P, = P,. Approximating
the Generalized_ikelihood Ratio test, we rejectedH, at
confidencdevel « if
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(seefor example[26, page335]). We incorporatednto our
modelthosefeaturesvhosel; wasrejected.

4.3.4. Results

Constituent Sequence features: Therewere 186,903candi-
datefeaturesof this type that occurredat leastoncein the
two corpora. Of those,1,935shaw a significantdifference
betweenthe two corporaat a 95% confidencdevel (two-
tailed). Thefeaturef_,,_vs_np_pp Nadthe mostsignificant
standardscore21.9in thetest,with z=29680occurrence
the SWB corpusandy=1548in the artificial corpus.More
interestingis thefeaturef .., ; np_aue_prdadj,» With z-score
4.3, and =0, y=19. One may suspecthat this is where

theinitial trigrammodel“makesup” someunlikely phrases.

Looking atthe 19 simplex clausesonfirmsthis:

SO | HAVE NEVER REALLY INTERESTING
AND THEY MIGHT PRACTICAL

THAT WE HAVE GOOD

THAT YOU COULD LAST

BUT | WOULD SURE

AND YOU CAN CONVENIENT

Similarly, the feature f_w, »_np_vb_np_vb_in hasstandard
score-4.0,2=16andy=0. Thisfeaturestandgor aperfectly
plausiblesimplex clauseform that hasnever beengener
atedin the artificial corpus,probablybecausét containsa
long-distancalependencelndeed,the correspondingim-
plex clausesn SWB are:

WHAT AREA DO YOU WORK IN

WHAT AREA DO YOU LIVE IN

WHAT HOME DO YOU LIVE IN

WHAT EXERCISE DO YOU GET INVOLVED IN

Constituent Set features: Thesefeaturesaremoregen-
eral than ConstituentSequencédeaturesandthusthereare
fewer of them. A total of 61,741candidateConstituentSet
featureoccurredn eithercorpuswhile 1310shavedasig-
nificant difference. The one with the most significant z-
score27.8,iS f_conj, _np,_pp,_vb, With 2=10420andy=6971.

Like ConstituentSequencéeaturesthereweresomeCon-
stituentSetfeatureghat occurredonly in the artificial cor
pus. For example, f_44v,_conj,« hada z-scoreof 4.0 with
r=0andy=16:

OR A TOTALLY
AND A PROPERLY
IF A WHATSOEVER

Therewerealsofeatureghatonly occurredn the SWB
corpussuchasy ,p pp _vb,_wh,from With z-score3.8,z=14
andy=0.

Constituent Trigram features: 36,448candidatdeatures
of this type appearedn the corpora,of which 3,535were
significant. The feature f_,, _adv,some With z-score4.9,
2=0 andy=25 is anothergood exampleof the deficiencies
of theinitial trigrammodel:

BUT HE NEVER SOME

WE THE GYM EVEN SOME

IT REALLY SOME REALLY BAD

MY SELF SOMETIMES SOME ON CHANNEL 8
DOLLARS

4.3.5. Perplexity and Word Error Rate

We incorporatedthe 1953 ConstituentSequencdeatures,
1310 ConstituentSet features,and 3535 ConstituentTri-

gramfeaturesnto awhole-sentencemaximumentropylan-
guagemodel,andtrainedits parametersvith the GIS algo-
rithm. The baselineperpleity of a 90,600-wordSWB test
set calculatedunderthe initial modelp, was81.37. The
perplity underthe nev maximumentropymodelwases-
timatedas80.49+0.02,arelative improvementof only 1%.

Next, we testedspeechrecognitionword error rate by

N-bestlist rescoring.A 200-bestist with 8,300wordswas
used. The WER was 36.53%with the initial model and
36.38%with all of thesyntactideaturesaddedamere0.4%
relative improvement.

5. ANALYSIS

In trying to understandhe disappointingesultsof the last
section,we analyzedhe likely effect of featureson the fi-

nal model. Theupperboundonimprovementfrom a single
binaryfeaturef; is the Kullback Liebler distancebetween
thetruedistribution of f; (asestimatedy theempiricaldis-

tribution 5(f;)) andp(f;) (the distribution of f; according
to the currentmodel)[14, p. 4]. Theeffect of multiple fea-
turesis not necessarilyadditive (in fact, it could be supra-
or sub-additve). Nonethelesghe sumof the individual ef-

fectsmay still give someindicationof the likely combined



effect. For the syntacticfeaturesve usedwe computed:

> D)ol £:)) = 0.062

which translatesnto an expectedperpleity reductionof
0.43%(2*15~, where 10 is the averagenumberof words
in a sentence)The potentialimpactof thesefeatureds ap-
parentlyvery limited. We thereforeneedto seekfeaturesf
for which:

DE(Hllpo(f)) =

5(5) tog 20 1 5()

is significantlylarger The secondterm on the right-hand
side is usually nggligible. The two factors affecting this
numberarethusthe prevalenceof thefeature(p( f)) andthe

log discrepang betweerthetruthandthemodel(log pﬁo(%).
In the featureswe used,the latter was quite large, but the
former wasvery small. Thus,we needto concentrateon
morecommonfeatures.

An idealfeatureshouldoccurfrequentlyenoughyetex-
hibit a significantdiscrepang "Does the sentencemake
sensdo ahumanreader?’s suchafeature(wherep(f) =~ 1
andpo(f) = 0). It is, of course Al-hardto compute How-
ever, even a rough approximationof it may be quite use-
ful. Basedon this analysiswe have subsequentljocused
our attentionon deriving a smallernumberof frequent(and
likely morecompl«) featurespasedon the notion of sen-
tencecoherencd[27]).

Frequentfeaturesare also computationallypreferable.
Becausehetrainingbottleneckn whole-sentencklE mod-
elsis in estimatingfeatureexpectationsvia sampling,the
computationakostis determinedmostly by how rare the
featuresare and how accurately we wantto modelthem.
The more frequentthe features,the lessthe computation.
Notethatcomputationatostof trainingdependsnuchless
on thevocahulary, theamountof trainingdata,or the num-
berof features.

6. SUMMARY AND DISCUSSION

We presentednapproacho incorporatingarbitrarylinguis-
tic informationinto a statisticalmodelof naturallanguage.
We describedefficient algorithmsfor constructingwhole-
sentenceME models,offering solutionsto the questionf
sampling,stepsize and smoothing. We demonstrateaur
approachin two domains,using lexical and syntacticfea-
tures. We alsointroduceda procedurdor featureselection
which seeksandexploits discrepanciebetweeranexisting
modelandthetrainingcorpus.

Whole-sentenc®lE modelsaremoreefficientthancon-
ditional ME models,and can naturally expresssentence-
level phenomena.lt is our hopethat theseimprovements

will breakthe ME “usability barrier”which heretoforthhin-

deredexplorationandintegrationof multipleknowledgesources.

Thiswill hopefullyopenthefloodgatego experimentation,
by mary researchersyith variedknowledgesourcesvhich
they believe to carry significantinformation. Suchsources
mayinclude:

o Distribution of verbsandtensesn thesentence

¢ Variousaspect®f grammaticalitypersoragreement,
numberagreementparsability otherparsersupplied
information)

e Semanticoherence
¢ Dialog level information

¢ Prosodiandothertimerelatednformation(speaking
rate,pauses,.)

Sinceall knowledgesourcesareincorporatedn a uni-
form way, a languagemodelercanfocuson which proper
tiesof languageo modelasopposedo how to modelthem.
Attention canthusbe shiftedto featureinduction. Indeed,
we have startedworking on aninteractie featureinduction
methodologyrecastingit asa logistic regressionproblem
[27, 19]. Takentogether we hopethat theseefforts will
helpopenthe doorto “putting languagebackinto language
modeling”[28].
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