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ABSTRACT

Weintroduceanexponentiallanguagemodelwhichmod-
elsawholesentenceor utteranceasasingleunit. By avoid-
ing thechainrule, themodeltreatseachsentenceasa “bag
of features”,wherefeaturesarearbitrarycomputableprop-
ertiesof the sentence.The new model is computationally
moreefficient,andmorenaturallysuitedto modelingglobal
sententialphenomena,thantheconditionalexponential(e.g.
Maximum Entropy) modelsproposedto date. Using the
modelis straightforward.Trainingthemodelrequiressam-
pling from an exponentialdistribution. We describethe
challengeof applyingMonteCarloMarkov Chain(MCMC)
andothersamplingtechniquesto naturallanguage,anddis-
cusssmoothingandstep-sizeselection.We thenpresenta
novel procedurefor featureselection,which exploits dis-
crepanciesbetweentheexisting modelandthetrainingcor-
pus.We demonstrateour ideasby constructingandanalyz-
ing competitive modelsin the Switchboarddomain,incor-
poratinglexical andsyntacticinformation.

1. MOTIVATION AND OUTLINE

Conventionalstatisticallanguagemodelsestimatetheprob-
ability of asentence� by usingthechainruleto decompose
it into a productof conditionalprobabilities:

Pr����� def� Pr�
	���
�
�
�	����� ����� � Pr��	 ��� 	���
�
�
�	 �
� ���
def� ����� � Pr��	 � � � � �

where � � def��� 	 ��� 
�
�
 � 	 �
� � � is the history whenpredict-
ing word 	 � . The vastmajority of work in statisticallan-!
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guagemodelingis devotedto estimatingtermsof the form
Pr�
	 � � � .

The applicationof the chain rule is technicallyharm-
lesssinceit usesan exact equality, not an approximation.
This practiceis alsounderstandablefrom a historicalper-
spective (statisticallanguagemodelinggrew out of thesta-
tistical approachto speechrecognition,wherethe search
paradigmrequiresestimatingthe probability of individual
words).Nonetheless,it is not alwaysdesirable.Termslike
Pr�
	 � � � maynot bethebestway to think aboutestimating
Pr�
��� :

1. Global sentenceinformationsuchasgrammaticality
or semanticcoherenceis awkwardto encodein acon-
ditional framework. Somegrammaticalstructurewas
capturedin thestructuredlanguagemodelof [1] and
in theconditionalexponentialmodelof [2]. But such
structurehadto beformulatedin termsof partialparse
treesandleft-to-right parsestates.Similarly, model-
ing of semanticcoherencewasattemptedin thecon-
ditional exponentialmodelof [3], but hadto be re-
strictedto a limited numberof pairwisewordcorrela-
tions.

2. Externalinfluenceson thesentence(for example,the
effect of precedingutterances,or dialog level vari-
ables)areequallyhardto encodeefficiently. Further-
more,suchinfluencesmustbe factoredinto the pre-
diction of every word in the currentsentence,caus-
ing smallbut systematicbiasesin theestimationto be
compounded.

3. Pr�
	 � � � is typically approximatedby
Pr�
	 �"� 	 �
�$#&% � � 
�
�
 � 	 �
� �'� for somesmall ( (theMarkov
assumption).Even if sucha model is improved by
including longerdistanceinformation, it still makes
many implicit independenceassumptions.It is clear
from lookingat languagedatathattheseassumptions
areoftenpatentlyfalse,andthat therearesignificant
globaldependenciesbothwithin andacrosssentences.



As a simpleexampleof thelimitationsof thechainrule
approach,consideroneaspectof a sentence:its length. In
an ) -grambasedmodel,theeffectof thenumberof wordsin
theutteranceon its probabilitycannotbemodeleddirectly.
Rather, it is an implicit consequenceof the ) -grampredic-
tion. This is later correctedduring speechrecognitionby
a “word insertionpenalty,” the usefulnessof which proves
thatlengthis animportantfeature.However, thewordinser-
tion penaltycanonly modellengthasa geometricdistribu-
tion, whichdoesnot fit well with empiricaldata,especially
for shortutterances.

As an alternative to the conventional conditional for-
mulation,this paperproposesa new exponentiallanguage
model which directly modelsthe probability of an entire
sentenceor utterance.Thenew modelis conceptuallysim-
pler, andmorenaturallysuitedto modelingwhole-sentence
phenomena,than the conditionalexponentialmodelspro-
posedearlier. By avoiding thechainrule, the modeltreats
eachsentenceor utteranceasa“bagof features”,wherefea-
turesare arbitrary computablepropertiesof the sentence.
Thesingle,universalnormalizingconstantcannotbecom-
putedexactly, but thisdoesnot interferewith training(done
via sampling)or with use.Usingthemodelis computation-
ally straightforward.Training themodeldependscrucially
on efficient samplingof sentencesfrom anexponentialdis-
tribution.

In what follows, Section2 introducesthe model and
contrastsit with the conditionalexponentialmodelspro-
posedto date. Section3 discussestraining the model: it
lists several techniquesfor samplingfrom exponentialdis-
tributions,shows how to apply themto the domainof nat-
ural languagesentences,andcomparestheir relative effica-
cies. Step-sizeselectionandsmoothingarealsodiscussed
here. Section4 describesexperimentswe performedwith
this model,incorporatinglexical andsyntacticinformation.
Section5 analyzestheresultsof theexperiments,andSec-
tion 6 summarizesanddiscussesourongoingeffort andfu-
turedirections.Variousportionsof this work werefirst de-
scribedin [4, 5, 6].

2. WHOLE SENTENCE EXPONENTIAL MODELS

A wholesentenceexponentiallanguagemodelhastheform:* �
��� �,+-/. *$0 �
��� . 1 243 ��5 �76 �98�� ������� (1)

wherethe
� 6 � � ’s are the parametersof the model,

-
is a

universalnormalizationconstantwhichdependsonly onthe� 6 � � ’s, and the
� 8�� �
��� � ’s are arbitrary computableprop-

erties,or features, of the sentence� . *$0 ����� is any arbi-
trary initial distribution, sometimesloosely referredto as
the “prior”. For example,*$0 �
��� might be the uniform dis-

tribution, or elseit might bederived(usingthe chainrule)
from a conditionaldistributionsuchasan ) -gram.

Thefeatures
� 8 � �
��� � areselectedby themodelerto cap-

ture thoseaspectsof the datathey considerappropriateor
profitable.Thesecanincludeconventional) -grams,longer-
distancedependencies,global sentenceproperties,aswell
asmorecomplex functionsbasedonpart-of-speechtagging,
parsing,or othertypesof linguisticprocessing.

2.1. Using the Whole Sentence Model

To usethewholesentenceexponentialmodelto estimatethe
probability of a given sentence� , oneneedonly calculate*:0 ����� andthevaluesof the variousfeatures8�� �
��� , anduse
Equation1. Thususingthemodelis straightforwardand(as
long asthe featuresarenot too complex) computationally
trivial. Becausethe featurescould dependon any part of
thesentence,they canin generalonly becomputedafterthe
entiresentenceis known. Therefore,whenusedfor speech
recognition,themodelis notsuitablefor thefirst passof the
recognizer, andshouldinsteadbe usedto re-scoreN-best
lists.

2.2. Whole Sentence Maximum Entropy Models

The term “exponentialmodel” refersto any modelof the
form (1). A particulartypeof sucha modelis theso-called
“Maximum Entropy” (ME) model, where the parameters
are chosenso that the distribution satisfiescertain linear
constraints.Specifically, for eachfeature 8�� ����� , its expec-
tationunder* ����� is constrainedto a specificvalue ; � :<>= 8 � � ; � 
 (2)

Thesetarget valuesare typically set to the expectationof
thatfeatureundertheempiricaldistribution ?* of sometrain-
ing corpus

� �@� � 
�
�
 � � A � (for binary features,this simply
meanstheir frequency in thecorpus).Then,theconstraint
becomes:54B * �
��� . 8�� ����� � <DC= 8�� � +E A5F�� � 8�� ��� F �G
 (3)

If theconstraints(2) areconsistent,thereexistsaunique
solution within the exponentialfamily (1) which satisfies
them. Amongall (not necessarilyexponential)solutionsto
equations(2), theexponentialsolutionis theoneclosestto
the initial distribution *$0 �
��� in the Kullback-Lieblersense,
and is thus called the Minimum Divergenceor Minimum
DiscriminationInformation(MDI) solution.If *:0 �
��� is uni-
form, thisbecomessimply theMaximumEntropy(ME) so-
lution1. Furthermore,if the featuretarget values ; � are

1In theliterature,theterm“Maximum Entropy”or ME is usedloosely
to referto bothsituations,i.e. regardlessof whethertheinitial distributionH�I is uniform.We will follow thispracticehere.



theempiricalexpectationsover sometrainingcorpus(asin
equations(3)), the MDI or ME solution is also the Max-
imum Likelihood solutionof the exponentialfamily. For
moreinformation,see[7, 8, 3].

The MDI or ME solutioncanbe found by an iterative
proceduresuchas the GeneralizedIterative Scaling(GIS)
algorithm[9]. GIS startswith arbitrary 6 � ’s. At eachitera-
tion, thealgorithmimprovesthe

� 6 � � valuesby comparing
the expectationof eachfeatureunderthe current * to the
targetvalue,andmodifying theassociated6 . In particular,
we take 6 �>J 6 �$K +L �NMPORQ ; �<>=:S 8 �UT (4)

where
L � determinesthestepsize(seeSection3.2).

In traininga whole-sentenceMaximumEntropymodel,
computingthe expectations

<V=$S 8 �WT �GX B * ����� . 8 � �
��� re-
quiresa summationover all possiblesentences� , a clearly
infeasibletask. Instead,we estimate

<V=$S 8 �WT by sampling
from the distribution * �
��� and using the sampleexpecta-
tion of 8 � . Samplingfrom an exponentialdistribution is a
non-trivial task. Efficient samplingis crucial to successful
training.Samplingtechniqueswill bediscussedin detail in
Section3.1. As will be shown later on in this paper, with
thesetechniquesit is possibleto train whole-sentenceME
modelsusingvery largecorporaandvery many features.

As mentionedearlier, the term “exponentialmodels”
refersto all modelsof theform (1), whereasthe term“ME
models”refersto exponentialmodelswheretheparameters
aresetto satisfyequation(2). Mostof thispaperdealswith
ME models.For a differenttrainingcriterionfor exponen-
tial models,seeSection2.5.

2.3. Comparison to Conditional ME Models

It is instructive to comparethe whole-sentenceME model
with conditionalME models,whichhave seenconsiderable
successrecentlyin languagemodeling[10, 11, 8, 3]. The
conditionalmodelusuallyhastheform:* �
	 � � � � +- � � � . *$0 ��	 � � � .'1 243 S 5 �Y6 �Z8�� � � � 	[� T (5)

wherethe featuresarefunctionsof a specificword-history
pair, andso is the baseline* 0 . More importantly,

-
here

is not a true constant— it dependson � andthusmustbe
recomputedduring training for eachword position in the
training data. Namely, for eachtraining datapoint � � � 	[� ,
onemustcompute- � � � def� 5\^]&_ *$0 ��	 � � � 1 243 S 5 � 6 �`8�� � � � 	[� T
where a is the vocabulary. This computationalburdenis
quitesevere: traininga modelthatincorporates) -gramand

long-distancewordcorrelationfeaturesonsome40million
wordscantakehundredsof daysof computation[3, p.210].
It is this bottleneckthathashinderedthewidespreaduseof
the ME framework in languagemodeling. In comparison,
in ournew modeltheuniversalnormalizationconstantneed
not be calculated(seeSection2.4). This not only speeds
up training, but it also significantly speedsup using the
modelin applicationssuchasspeechrecognition. In fact,
whenusedwith simplefeatures,our modelcanbeapplied
with roughlythesameamountof computationasan ) -gram
modelemployinga comparablenumberof parameters.

The main drawbacksof the conditionalME modelare
thustheseverecomputationalbottleneckof training (espe-
cially of computing

- � � � ), and the difficulties in model-
ing whole-sentencephenomena.The whole-sentenceME
modeladdressesbothof theseissues.

A finalnoteof comparison:A whole-sentenceME model
incorporatingthesamefeaturesasa conditionalME model
is in fact not identical to the latter. This is becausethe
trainingprocedureusedfor conditionalME modelsrestricts
thecomputationof thefeatureexpectationsto historiesob-
servedin thetrainingdata(see[8] or [3, section4.4]). This
biasesthe solutionin an interestingandsometimesappro-
priateway. For example,considerword trigger featuresof
theform 8�bdcNe � � � 	�� �/f + if gih � , 	 �kjl

otherwise

and specificallyconsiderthe two featuresmon$p -
andq n$p -

for somewords m ,
q

, and
-

. If m and
q

are
correlatedin the training data,this will affect the solution
of the conditionalME model. In fact, if they areperfectly
correlated,alwaysco-occurringin thesamesentence,there-
sulting 6 ’s will likely beonehalf of whattheirvaluewould
havebeenif only oneof thefeatureswereused.This is ben-
eficial to the model,sinceit capturescorrelationsthat are
likely to recurin new data.However, a whole-sentenceME
modelincorporatingthesamefeatureswill not usethecor-
relationbetweenm and

q
, unlessit is explicitly instructed

to do so via a separatefeature. This is becausethe train-
ing datais notactuallyusedin whole-sentenceME training,
exceptinitially to derive thefeatures’targetvalues.

2.4. Normalization and Perplexity

Justas it is infeasibleto calculateexactly featureexpec-
tationsfor whole-sentencemodels,it is equally infeasible
to computethe normalizationconstant

- �rX B *$0 ����� .1s2`3 � X � 6 �Z8�� ������� . Fortunately, thisis notnecessaryfor train-
ing: sampling(and henceexpectationestimation)can be
donewithout knowing

-
, as will be shown in Section3.

Usingthemodelaspartof a classifier(e.g., a speechrecog-
nizer)doesnot requireknowledgeof

-
either, becausethe

relative rankingof thedifferentclassesis not changedby a



single,universalconstant.Noticethatthis is notthecasefor
conditionalexponentialmodels.

Nonetheless,at timesit maybedesirableto approximate-
, perhapsin orderto computeperplexity. With thewhole-

sentencemodelthis canbedoneasfollows.
Let tu�
��� � 1 243 � X � 6 � 8 � �
���v� betheunnormalizedmod-

ification madeto the initial model *:0 �
��� . Then * ����� ��w *$0 ������tu����� . By thenormalizationconstraintwehave:5 B * ����� � +- 5 B *$0 �
��� . tu����� � +- < =&x S tu��y^� T � +
Fromwhichweget: - � < =&x S tu��y^� T 

ThusZ canbeapproximatedto any desiredaccuracy from a
suitablylargesamplez 0 of sentencesdrawn from * 0 . Often,* 0 is basedon an ) -gram. A reasonablyefficient sampling
techniquefor ) -gramsis describedlater.

To estimatereductionin per-wordperplexity ( {N{ ) over
the *:0 baseline,let zd| bea testset,andlet }Dy~| and }���|
bethenumberof sentencesandwordsin it, respectively. By
definition {�{���z~|�� � * ��z~| � �o��:���
It followsthenthattheperplexity reductionratio is:{�{ EXP ��z | �{�{ 0 ��z~|�� ���� -���s�� � B ]�� � tu����� ��

��� ��:���
Substitutingin theestimationof Z, theestimatedperplexity
reductionis:{N{ EXP ��z | �{N{ 0 ��z~| ���i� arithmeticmean

S tu����� T
geometricmean

S t��
��� T�� ��� ��d���
wherethe arithmeticmeanis takenwith respectto *:0 and
the geometricmeanwith respectto zd| . Interestingly, ifz~| � z 0 , i.e. if thetestsetis alsosampledfrom thebaseline
distribution, it follows from the law of inequalityof aver-
agesthat the new perplexity will alwaysbe higher. This,
however, is appropriatebecauseany “correction” to an ini-
tial probability distribution will assigna lower likelihood
(andhencehigherperplexity) to datageneratedby thatdis-
tribution.

2.5. Discriminative Training

Until now we discussedprimarily Maximum Entropy or
Maximum Likelihood training. However, whole-sentence
exponentialmodelscanalsobetrainedto directlyminimize
theerror ratein anapplicationsuchasspeechrecognition.
ThisisknownasMinimumClassificationError(MCE)train-
ing, or Discriminative Training. The log-likelihood of a

whole-sentenceexponentialmodelwith ( featuresis given
by

MPORQ * ����� � n MWORQ - K MPORQ *$0 ����� K #5 ��� � S 6 ��8�� ����� T
The last termis a weightedsum,which canbedirectly

(albeit only locally) optimizedfor MCE usinga heuristic
grid searchsuchasPowell’s algorithm,which searchesthe
spacedefinedby the 6 ’s. In fact,thesecondterm( MWORQ * 0 �
��� )
can also be assigneda weight, and scoresnot relatedto
languagemodelingcan be addedto the mix as well, for
joint optimization.This is ageneralizationof the“language
weight” and“word insertionpenalty”parameterscurrently
usedin speechrecognition.For anattemptin thisdirection,
see[12].

2.6. Conditional Whole-Sentence Models

So far we have discussednon-conditionalmodelsof the
form * �
��� . In orderto modelcross-sentenceeffects,onecan
re-introducetheconditionalform of theexponentialmodel,
albeitwith somemodifications.Let �� refer to the sentence
history, namelythe sequenceof sentencesfrom thebegin-
ningof thedocumentor conversationup to (but not includ-
ing) thecurrentsentence.Themodelthenbecomes:

* ��� � �� � � +- ���� � . * 0 �
� � �� � . 1 243 ��5 �76 � 8 � ���� � �����
Although the normalizationconstantis no longeruni-

versal,it is still not neededfor N-bestrescoringof a speech
recognizer’s output. This is becauserescoringis typically
doneonesentenceat a time,with all competinghypotheses
sharingthesamesentencehistory.

We will not pursuemodelsof this type any further in
this paper, except to note that they canbe usedto exploit
sessionwide information,suchastopicsandotherdialog
level features.

3. MAXIMUM ENTROPY MODEL TRAINING

3.1. Sampling

Sinceexplicit summationover all sentences� is infeasible,
we will estimatethe expectations

< = S 8�� T by sampling. In
this section,we describeseveral statisticaltechniquesfor
samplingfrom exponentialdistributions,andevaluatetheir
efficacy for generatingnaturallanguagesentences.

Gibbs Sampling [13] is a well known techniquefor
samplingfrom exponentialdistributions.It wasusedin [14]
to samplefrom thepopulationof characterstrings.We will
now describehow touseit togeneratewholesentencesfrom



anunnormalizedjoint exponentialdistribution, thenpresent
alternativemethodswhicharemoreefficient in thisdomain.

To generatea singlesentencefrom * �
��� , startfrom any
arbitrarysentence� , anditerateasfollows:

1. Choosea word position � (eitherrandomlyor by cy-
cling throughall wordpositionsin someorder).

2. Let � �\ bethesentenceproducedbyreplacingtheword
in position � in sentence� with the word 	 . For
eachword 	 in thevocabulary a , calculate* ��� �\ � �*$0 �
� �\ � 1 243 � X � 6 �Z8�� ��� �\ �v� .

3. Choosea word at randomaccordingto the distribu-
tion � * ��� �\ � � \^]&_ . Placethatword in position � in the
sentence.Thisconstitutesa singlestepin therandom
walk in theunderlyingMarkov field.

To allow transitionsinto sentencesof any length,wedo
thefollowing:� The end-of-sentenceposition is also consideredfor

replacementby an ordinaryword, which effectively
lengthensthesentenceby oneword.� Whenthelastwordpositionin thesentenceis picked,
theend-of-sentencesymbol</s> is alsoconsidered.
If chosen,this effectively shortensthe sentenceby
oneword.

After enoughiterationsof the above procedure,there-
sulting sentenceis guaranteedto be an unbiasedsample
from theGibbsdistribution * ����� .2

Generatingsamplesentencesfrom a Gibbsdistribution
asdescribedabove is quite slow. To speedthingsup, the
following variationsareuseful:� Draw theinitial sentence� froma“reasonable”distri-

bution,suchasa unigrambasedon thetrainingdata,
or from * 0 . This tendsto reducethenecessarynum-
berof iterationsperstep.� For an initial sentence� usethe final (or somein-
termediate)sentencefrom a previous randomwalk.
This againtendsto reducethe necessarynumberof
iterations. However, the resultingsentencemay be
somewhatcorrelatedwith theprevioussample3.� At eachiteration,consideronly a subsetof the vo-
cabulary for replacement.Any subsetcanbechosen

2It is not theoreticallyknown how manyiterationsareneededto prac-
tically guaranteeunbiasedsamples.In our experimentswe usedseveral
thousands.

3This is known as the “long chain” approach. Thereis an ongoing
andheateddebatein thecomputationalstatisticscommunitybetween“long
chain”and“short chain”supporters.

aslong asthe underlyingMarkov Chainremainser-
godic. This tradesoff the computationalcostper it-
erationagainstthe mixing rateof the Markov chain
(that is, therateat which therandomwalk converges
to theunderlyingequilibriumdistribution).

Even with theseimprovements,Gibbssamplingis not
the mostefficient for this domain,as the probability of a
greatmany sentencesmustbe computedto generateeach
sample.Metropolis sampling [15], anotherMarkov Chain
Monte Carlo technique,appearsmoreappropriatefor this
situation.An initial sentenceis chosenasbefore.For each
chosenword position � , a new word � is proposedfrom a
distribution �4����� to replacetheoriginal word 	 in thatpo-
sition, resultingin a proposednew sentence� �� . This new
sentenceis accepted with probability���P� S + � * ��� �� � . �4��	��* ��� �\ � . �4�
��� T 

Otherwise,the original word 	 is retained.After all word
positionshavebeenexamined,theresultingsentenceisadded
to thesample,andthisprocessis repeated.4 Thedistribution�4�
��� usedto generatenew wordcandidatesfor eachposition
affectsthesamplingefficiency; in theexperimentsreported
in this paper, weuseda unigramdistribution.

As in Gibbs sampling,adaptingthe Metropolis algo-
rithm to sentencesof variable-lengthrequirescare. In one
solution,wepadeachsentencewith end-of-sentencetokens
</s> up to a fixedlength   . A sentencebecomesshorterif
thelastnon-</s> tokenis changedto </s>, longerif the
first </s> tokenis changedto somethingelse.

In applyingMetropolissampling,insteadof replacinga
singlewordata timeit is possibleto replacelargerunits.In
particular, in independence sampling we considerreplac-
ing thewholesentencein eachiteration.For efficiency, the
distribution �4����� usedto generatenew sentencecandidates
mustbesimilar to thedistribution * �
��� weareattemptingto
samplefrom.

In importance sampling, asample
� � �&� 
�
�
 � �s¡ � is gen-

eratedaccordingto somesentencedistribution �4�
��� , which
similarly mustbe closeto * ����� for efficient sampling. To
correctthe bias introducedby samplingfrom �4����� instead
of from * �
��� , eachsample� F is counted

=R¢ B9£�¤¥ ¢ B £ ¤ times,sothat
wehave < = S 8�� T � X ¡F�� � =R¢ B £ ¤¥ ¢ B £ ¤ 8 � ��� F �X ¡F�� � =R¢ B9£�¤¥ ¢ B9£�¤ 
 (6)

Whichsamplingmethodis bestdependsonthenatureof* ����� and �4����� . We evaluatedthesemethods(exceptGibbs
sampling,whichprovedtooslow) onsomeof themodelsto

4Thesamplingprocedureis still correctif thecurrentsentenceis added
to thesampleaftereach word positionis examined;however, this process
becomeslesswell-definedwhenweconsidervariable-lengthsentences.



samplingalgorithm
Metropolis independence importance8 �'¦ § 0.38̈ 0.07 0.438̈ 0.001 0.439̈ 0.0018&© ¦ ª 0.10̈ 0.02 0.1001̈ 0.0004 0.1001̈ 0.00068&« ¦¬��­ 0.08̈ 0.01 0.0834̈ 0.0006 0.0831̈ 0.00068 �9®�¦¬�°¯ 0.073̈ 0.008 0.0672̈ 0.0005 0.0676̈ 0.00078 ��±s¦ ² 0.37̈ 0.09 0.311̈ 0.001 0.310̈ 0.002

Table1: Meanandstandarddeviation (of mean)of feature
expectationestimatesfor sentence-lengthfeaturesfor three
samplingalgorithmsover tenruns

bedescribedin Section4. Thesemodelsemploya trigram
astheinitial distribution * 0 �
��� . (Generatingsentencesfrom
a ) -gram model can be donequite efficiently: one starts
fromthebeginning-of-sentencesymbol,anditerativelygen-
eratesa singlewordaccordingto the ) -grammodelandthe
specificcontext, until the end-of-sentencesymbol is gen-
erated. Generatinga single word from an ) -grammodel
requires ³4� � a � � steps. While this computationis not triv-
ial, it is far moreefficient thansamplingdirectly from an
exponentialdistribution.) Therefore,taking �4�
��� to bea tri-
grammodelfor independenceandimportancesamplingis
very effective. To measuretheeffectivenessof thedifferent
samplingalgorithms,wedid thefollowing. Usinganexpo-
nentialmodelwith a baselinetrigramtrainedon 3 million
wordsof Switchboardtext ([16]) anda vocabulary of some
15,000words, for eachof the samplingmethodswe gen-
eratedten independentsamplesof 100,000sentences.We
estimatedtheexpectationsof a setof featuresoneachsam-
ple, and calculatedthe empirical variancein the estimate
of theseexpectationsover the ten samples.More efficient
samplingalgorithmsshouldyield lowervariances.

In our experiments,we found that independencesam-
pling andimportancesamplingboth yieldedexcellentper-
formance,whileword-basedMetropolissamplingperformed
substantiallyworse.As anexample,we estimatedexpecta-
tionsfor sentence-lengthfeaturesof theform8�´ � ¦ ´¶µ ����� � f 1 if  
�¸· length������·¹ º­

0 otherwise

over ten samplesof size 100,000. In Table1, we display
the meansand standarddeviations of the ten expectation
estimatesfor eachof thefivesentence-lengthfeaturesunder
threesamplingalgorithms.

The efficiency of importanceand independencesam-
pling dependson the distancebetweenthe generatingdis-
tribution �4�
��� andthe desireddistribution * �
��� . If �4����� �*$0 ����� , that distancewill grow with eachtraining iteration.
Oncethedistancebecomestoo large,Metropolissampling
can be usedfor one iteration,say iteration ( , and the re-

sulting sampleretained. Subsequentiterationscan re-use
thatsamplevia importanceor independencesamplingwith�4�
��� � *$» # ¼ ����� . Note that, even if training wereto stopat
iteration ( , *$» # ¼ is arguablya bettermodel thanthe initial
model* 0 , sinceit hasmovedconsiderably(by ourassump-
tion) towardssatisfyingthefeatureconstraints.

Usingthetechniqueswediscussabove,trainingawhole-
sentenceME modelis feasibleevenwith largecorporaand
many features. And yet, training time is not negligible.
Someideasfor reducingthe computationalburdenwhich
wehave notyetexploredinclude:� Useonly roughestimation(i.e. smallsamplesize)in

thefirst few iterations(we only needto know thedi-
rectionandroughmagnitudeof thecorrectionto the6 ’s); increasesamplesizewhenapproachingconver-
gence.� Determinethesamplesizedynamically, basedon the
numberof timeseachfeaturewasobservedsofar.� Add featuresgradually (this hasalreadyproven it-
self effective at leastanecdotally, asreportedin Sec-
tion 4.1).

3.2. Step Size

In GIS,thestepsizefor featureupdateis inverselyrelatedto
thenumberof active features.As sentencestypically have
many features,this may result in very slow convergence.
ImprovedIterative Scaling(IIS) [14] usesa largereffective
stepsizethanGIS,but requiresagreatdealmorebookkeep-
ing.

However, whenfeatureexpectationsareneartheir target
value, IIS can be closely approximatedwith equation(4)
where

L � is takento be a weightedaverageof the feature
sumover all sentences;i.e., if the setof sentences� were
finite, wewouldtakeL � � +X B * �
��� 8�� ����� 5�B * ����� 8�� �
��� 5 ��½ 8�� ½ �����G
 (7)

In our implementation,we approximated
L � by summing

only over thesentencesin thesampleusedto calculateex-
pectations.This techniqueresultedin convergencein all of
ourexperiments.

3.3. Smoothing

From equation(4) we canseethat if
<DC= S 8�� T � l

thenwe
will have 6 � p n¿¾ . To smooth our model, we usethe
fuzzymaximumentropymethodfirst describedby [17]: We
introducea Gaussianprior on 6 � valuesandsearchfor the
maximuma posterior modelinsteadof themaximumlike-
lihood model.This hastheeffect of changingEquation(2)



to < = 8�� � ; � n 6 �À ­�
for somesuitablevarianceparameterÀ ­� . With this tech-
nique,we foundthatover-training(overfitting) wasnever a
problem.For adetailedanalysisof thisandothersmoothing
techniquesfor MaximumEntropymodels,see[18].

4. FEATURE SETS AND EXPERIMENTS

In this sectionwe describeseveral experimentswith the
new model,usingvariousfeaturesetsandsamplingtech-
niques.We startwith thesimplereconstructionof ) -grams
using Gibbs sampling,proceedwith longer distanceand
classbasedlexical relationsusingimportancesampling,and
end with syntacticparse-basedfeatures. For subsequent
work usingsemanticfeatures,see[19].

4.1. Validation

To testthefeasibility of Gibbssamplingandgenerallyval-
idateour approach,we built a whole-sentenceME model
usinga small (10K word) training setof BroadcastNews
[20] utterances5. We set*:0 �
��� to beuniform,anduseduni-
gram,bigramandtrigramfeaturesof theform8&Á ����� � # of times ) -gram Â occursin �o

The featureswerenot introducedall at the sametime. In-
stead,the unigramfeatureswere introducedfirst, and the
modelwasallowed to converge. Next the bigramfeatures
wereintroduced,andthemodelagainallowedto converge.
Finally the trigramfeatureswereintroduced.This resulted
in fasterconvergencethanin thesimultaneousintroduction
of all featuretypes. Trainingwasdoneby Gibbssampling
throughout.

Below weprovidesamplesentencesgeneratedby Gibbs
samplingfrom variousstagesof thetrainingprocedure.Ta-
ble 2 lists samplesentencesgeneratedby theinitial model,
beforeany trainingtookplace.Sincetheinitial 6 ’s wereall
setto zero,this is theuniform model. Tables 3 through5
list samplesentencesgeneratedby theconvergedmodelaf-
tertheintroductionof unigram,bigramandtrigramfeatures,
respectively. It canbeseenfrom theexamplesentencesthat
themodelindeedsuccessfullyincorporatedtheinformation
providedby therespective features.

Themodeldescribedabove incorporatesonly “conven-
tional” featureswhich areeasyto incorporatein a simple

5Throughoutthis paperwe havebeenreferringto theunit of modeling
as a “sentence”. But of course,our methodcan be usedto model any
word sequenceor utterance,whetheror not it is consistentwith linguistic
boundaries.Naturally, linguistically inducedfeaturesmayor may not be
applicableto non-sentences.

conditionallanguagemode. This wasdonefor demonstra-
tive purposesonly. Themodelis unawareof the natureor
complexity of thefeatures.Arbitrary featurescanbeaccom-
modatedwith virtually nochangein themodelstructureor
thecode.

<s> ENOUGHCAREGREGGETTINGIF O. ANSWERNEVER</s>

<s> DEATH YOU’VE BOTH THEM RIGHT BACK WELL BOTH </s>

<s> MONTH THAT’S NEWSANY YOU’VE WROTE MUCH MEAN </s>

<s> A. HONORWE’VE ME GREGLOOK TODAY N. </s>

Table2: Sentencesgeneratedby Gibbssamplingfrom an
initial (untrained)model. Sinceall 6 ’s were initialized to
zero,this is theuniform model.

<s> WELL VERY DON’T A ARE NOT LIVE THE </s>

<s> I RIGHT OF NOT SOANGELESIS DONE</s>

<s> I ARE FOURTHIS KNOW DON’T ABOUT OF</s>

<s> C. GO ARE TO A IT HAD SO</s>

<s> OFFTHE MOREJUSTPOINTWANT MADE WELL </s>

Table 3: Sentencesgeneratedby Gibbs sampling from
a whole-sentenceME model trainedon unigramfeatures
only.

<s> DO YOU WANT TO DON’T C. WAS YOU</s>

<s> THE I DO YOU HAVE A A US</s>

<s> BUT A LOSANGELESASK C. NEWSARE </s>

<s> WE WILL YOU HAVE TO BE AGENDA AND </s>

<s> THE WAY IS THE DO YOU THINK ON </s>

Table4: Addingbigramfeatures.

As we mentionedearlier, Gibbssamplingturnedout to
bethe leastefficient of all samplingtechniqueswe consid-
ered.As we will show next, muchlargercorporaandmany
morefeaturescanbefeasiblytrainedwith themoreefficient
techniques.

4.2. Generalized ) -grams and Feature Selection

In ournext experimentweuseda muchlargercorpusanda
richersetof features.Ourtrainingdataconsistedof 2,895,000
words(nearly187,000sentences)of Switchboardtext (SWB)
[16]. First,weconstructedaconventionaltrigrammodelon
this datausinga variationof Kneser-Ney smoothing[21],
andusedit asour initial distribution *$0 ����� . We thenem-
ployedfeaturesthat constrainedthe frequency of word ) -
grams(up to ) =4), distance-two(i.e. skippingoneword)
word ) -grams(up to ) =3) [3], and class ) -grams(up to) =5) [22]. We partitionedour vocabulary (of some15,000
words)into 100,300,and1000classesusingthewordclass-
ing algorithmof [23] onour trainingdata.



<s> WHAT DO YOU HAVE TO LIVE LOSANGELES</s>

<s> A. B. C. N. N. BUSINESSNEWSTOKYO </s>

<s> BE OFSAYS I’M NOT AT THIS IT </s>

<s> BILL DORMAN BEENWELL I THINK THE MOST</s>

<s> DO YOU HAVE TO BE IN THE WAY </s>

Table5: Adding trigramfeatures.

training trigram
corpus corpus

feature count count Ã ­
TALKING TO YOU KNOW 0 148 43512.50
TALKING TO KNOW 0 148 43512.50
TALKING/CHATTING TO

YOU KNOW

0 148 43512.50

NICE/HUMONGOUS

TALKING/CHATTING

TO YOU KNOW

0 60 7080.50

HOW ABOUT YOU KNOW 0 56 6160.50
HOW ABOUT KNOW 0 56 6160.50Ä
s Å HAVE KNOW 0 42 3444.50

KIND OF A

WHILE/SUDDEN

0 42 3444.50

VAGUELY/BLUNTLY 15389 22604 3382.69

Table 6: ) -gramswith largestdiscrepancy (accordingtoÃ ­ statistic)betweentrainingcorpusandtrigram-generated
corpusof samesize; ) -gramswith “ ” tokenaredistance-
two ) -grams;	 ��Æ 	 ­ notationrepresentsa classwhosetwo
mostfrequentmembersare 	 � and 	 ­

To selectspecificfeatureswedevisedthefollowingpro-
cedure.First,wegeneratedanartificial corpusby sampling
from our initial trigram distribution * 0 ����� . This “trigram
corpus”was of the samesize as the training corpus. For
each) -gram,wecomparedits countin the“trigramcorpus”
to that in the training corpus. If thesetwo countsdiffered
significantly(usinga Ã ­ test),we addedthecorresponding
featureto ourmodel.6 We tried thresholdson the Ã ­ statis-
tic of 500,200,100,30,and15, resultingin approximately
900,3,000,10,000,20,000and52,000) -gramfeatures,re-
spectively. ) -gramswith zero countswereconsideredto
have 0.5countsin thisanalysis.

In Table6, we displaythe ) -gramswith thehighestÃ ­
scores. The majority of these ) -gramsinvolve a 4-gram
or 5-gramthatoccurszerotimesin thetrainingcorpusand
occursmany timesin the trigram corpus. Theseareclear
examplesof longer-distancedependenciesthatarenotmod-
eledwell with a trigrammodel.However, thelastfeatureis

6Theideaof imposinga constraintthat is mostviolatedby thecurrent
modelwasfirst proposedby RobertMercer, who calledit “nailing down”.

Ã ­ threshhold baseline 300 30 15
# features 0 3,500 19,000 52,000

WER 36.53 36.49 36.37 36.29
LM only 40.92 40.95 40.68 40.46

avg. rank 27.29 27.26 26.34 26.42
LM only 35.20 35.28 34.59 33.93

Table7: Top-1 WER andaveragerank of besthypothesis
usingvaryingfeaturesets.

a classunigram,andindicatesthat the trigrammodelover-
generateswordsfrom this class. On further examination,
theclassturnedout to containa large fractionof therarest
words.This indicatesthatperhapsthesmoothingof thetri-
grammodelcouldbeimproved.

For eachfeatureset,wetrainedthecorrespondingmodel
after initializing all 6 � to 0. We usedimportancesampling
to calculateexpectations.However, insteadof generatingan
entirelynew samplefor eachiteration,wegeneratedasingle
corpusfrom our initial trigrammodel,andre-weightedthis
corpusfor eachiterationusingimportancesampling.(This
techniquemay result in mutually inconsistentconstraints
for rare features,but convergencecan still be assuredby
reducingthe stepsize

L � with eachiteration.) We trained
eachof our featuresetsfor 50 iterationsof iterativescaling;
eachcompletetraining run took lessthanthreehourson a
200MHz PentiumProcomputer.

We measuredthe impactof thesefeaturesby rescoring
speechrecognition

E
-bestlists(

E ·¹Ç l�l ) whichweregen-
eratedby theJanussystem[24] onaSwitchboard/CallHome
testsetof 8,300words.Thetrigram * 0 ����� servedasabase-
line. For eachmodel,we computedboththetop-1worder-
ror rateandtheaveragerankof theleasterrorfulhypothesis.
Thesefigureswerecomputedfirst by combiningthe new
languagescoreswith theexisting acousticscores,andagain
by consideringthe languagescoresonly. Resultsfor the
threelargestfeaturesetsaresummarizedin Table7 (for the
smallerfeaturesetsimprovementwassmallerstill). While
thespecificfeaturesweselectedheremadeonly asmalldif-
ferencein N-bestrescoring,they serve to demonstratethe
extremegeneralityof ourmodel:Any computableproperty
of the sentencewhich is currentlynot adequatelymodeled
can(andshould)beaddedinto themodel.

4.3. Syntactic Features

In the last setof experiments,we usedfeaturesbasedon
variable-lengthsyntacticcategories to improve on an ini-
tial trigram model in the Switchboarddomain. Our train-
ing datasetwasthesameSwitchboardcorpususedin Sec-
tion 4.2.



Due to the often agrammaticalnatureof Switchboard
language(informal, spontaneoustelephoneconversations),
we choseto usea shallow parserthat, givenan utterance,
producesonly aflat sequenceof syntacticconstituents.The
syntacticfeatureswerethendefinedin termsof thesecon-
stituentsequences.

4.3.1. The Shallow Switchboard Parser

Theshallow Switchboardparser[25] wasdesignedto parse
spontaneous,conversationalspeechin unrestricteddomains.
It is veryrobustandfastfor suchsentences.First,aseriesof
preprocessingstepsarecarriedout. Theseincludeeliminat-
ing word repetitions,expandingcontractions,andcleaning
disfluencies.Next, theparserassignsapart-of-speechtagto
eachword. For example,theinputsentence

Okay I uh you know I think it might be correct

will beprocessedinto

I/NNP think/VBP it/PRPA might/AUX be/VB cor-
rect/JJ

As thenext step,theparserbreaksthepreprocessedand
taggedsentenceinto oneor moresimplex clauses, whichare
clausescontainingan inflectedverbal form anda subject.
This simplifies the input and makesparsingmore robust.
In our exampleabove, theparserwill generatetwo simplex
clauses:

simplex 1: I/NNP think/VBP
simplex 2: it/PRPA might/AUX be/VB correct/JJ

Finally, with a set of handwrittengrammarrules, the
parserparseseachsimplex clauseinto constituents. The
parsingis shallow sinceit doesn’t generateembeddedcon-
stituents;i.e., theparsetreeis flat. In theexample,simplex
1 hastwo constituents:

[ np] ( [NP head] I/NNP )
[ vb] ( [VP head] think/VBP )

andsimplex 2 hasthreeconstituents:

[ np] ( [NP head] it/PRPA )
[ vb] ( might/AUX [VP head] be/VB )
[ prdadj] ( correct/JJ )

Theparsersometimesleavesa few functionwords(e.g.
to, of, in) unparsedin the output. For the purposeof fea-
tureselection,we regardedeachof thesefunctionwordsas
a constituent. Countedthis way, thereare a total of 110
constituenttypes.

4.3.2. Feature Types

Asmentionedabove,theshallow parserbreaksaninputsen-
tenceinto oneor moresimplex clauses,whicharethenfur-
therbrokendowninto flat sequencesof constituents.Wede-
finedthreetypesof featuresbasedsolelyon theconstituent
types;i.e.,weignoredtheidentitiesof wordswithin thecon-
stituents:

1. ConstituentSequencefeatures: for any constituent
sequenceÈ andsimplex clause� , 8�É �
��� =1 if andonly
if the constituentsequenceof simplex clause � ex-
actly matchesÈ . Otherwise8�É ����� =0. For instance,8

np vb � I THINK � � + ,8
np vb prdadj� IT MIGHT BE CORRECT � � + ,8
np vb � IT MIGHT BE CORRECT � � l

, andsoforth.

2. ConstituentSetfeatures:for any set È of constituents,8�É �
��� =1 if andonly if theconstituentset of sentence� exactly matchesÈ . Otherwise8 É ����� =0. This setof
featuresis a relaxationof ConstituentSequencefea-
tures,sinceit doesn’t requirethepositionandnumber
of constituentsto matchexactly. As anexample,both8 np, vb � I LAUGH � � + and8 np, vb � I SEE A BIRD � � + , althoughtheconstituent
sequenceof I LAUGH is np vb while thatof I SEE A

BIRD is np vb np.

3. ConstituentTrigram features: for any orderedcon-
stituenttriplet ��Ê&Ë � ÊsÌ � ÊsÍ�� , 8 ¢¶Î �'¦ Î ­s¦ Î ® ¤ ����� =1if andonly
if sentence� containsthatcontiguoussequenceatleast
once. Otherwise 8 ¢¶Î �'¦ Î ­ ¦ Î ® ¤ ����� =0. This set of fea-
turesresemblestraditionalclasstrigramfeatures,ex-
ceptthatthey correspondtoavariablenumberof words.

4.3.3. Feature Selection

We followedtheproceduredescribedin Section4.2 to find
usefulfeatures.We generatedan artificial corpus,roughly
thesamesizeasthetrainingcorpus,by samplingfrom *:0 ����� .
Weranbothcorporathroughtheshallow parserandcounted
theoccurrencesof eachcandidatefeature.If thenumberof
timesafeaturewasactivein thetrainingcorpusdifferedsig-
nificantly from that in theartificial corpus,the featurewas
consideredimportantandwasincorporatedinto themodel.
Our reasoningwasthatthedifferenceis dueto a deficiency
of the initial model * 0 ����� , and that addingsucha feature
will fix thatdeficiency.

We assumedthatour featuresoccurindependently, and
arethereforebinomiallydistributed.Moreprecisely, wehad
two independentsetsof Bernoulli trials. Oneis the setof) simplex clausesof the training corpus. The otheris the
setof Ï simplex clausesof the artificial corpus. Let È be
thenumberof timesa featureoccursin thetrainingcorpus
and Ð that in the artificial corpus. Let { É and {�Ñ be the



true occurrenceprobabilitiesassociatedwith eachcorpus.
We testedthe hypothesesÒ 0ÔÓ { É � { Ñ . Approximating
the GeneralizedLikelihood Ratio test, we rejected Ò 0 at
confidencelevel Â ifÕÕÕÕÕÕÕÕ É� n ÑÖ× Ø ÉÙ% ÑÖ % �ÛÚ . Ø + n É&% ÑÖ % �NÚ .ÝÜ � % Ö� ÖßÞ

ÕÕÕÕÕÕÕÕ�àYá Á`â ­
(seefor example[26, page335]). We incorporatedinto our
modelthosefeatureswhoseÒ 0 wasrejected.

4.3.4. Results

Constituent Sequence features: Therewere186,903candi-
datefeaturesof this type that occurredat leastoncein the
two corpora.Of those,1,935show a significantdifference
betweenthe two corporaat a 95% confidencelevel (two-
tailed). The feature 8 � = � ã � = ='=

hadthe mostsignificant
standardscore21.9in thetest,with È =2968occurrencesin
theSWB corpusand Ð =1548in theartificial corpus.More
interestingis thefeature8 Î�ä � F � = å'æ É =�ç'è�åsè F , with á -score
4.3, and È =0, Ð =19. One may suspectthat this is where
theinitial trigrammodel“makesup” someunlikelyphrases.
Lookingat the19simplex clausesconfirmsthis:

SO I HAVE NEVER REALLY INTERESTING

AND THEY MIGHT PRACTICAL

THAT WE HAVE GOOD

THAT YOU COULD LAST

BUT I WOULD SURE

AND YOU CAN CONVENIENT
�
�

Similarly, the feature 8 \�é � = �sã � = � ã � � hasstandard

score-4.0, È =16and Ð =0. Thisfeaturestandsfor aperfectly
plausiblesimplex clauseform that hasnever beengener-
atedin the artificial corpus,probablybecauseit containsa
long-distancedependence.Indeed,thecorrespondingsim-
plex clausesin SWB are:

WHAT AREA DO YOU WORK IN

WHAT AREA DO YOU LIVE IN

WHAT HOME DO YOU LIVE IN

WHAT EXERCISE DO YOU GET INVOLVED IN
�
�

Constituent Set features: Thesefeaturesaremoregen-

eral thanConstituentSequencefeaturesandthusthereare
fewer of them. A total of 61,741candidateConstituentSet
featuresoccurredin eithercorpus,while 1310showedasig-
nificant difference. The one with the most significant á -
score,27.8,is 8 Î�ä � F ¦ � = ¦ =�= ¦ � ã , with È =10420and Ð =6971.

Like ConstituentSequencefeatures,thereweresomeCon-
stituentSetfeaturesthatoccurredonly in theartificial cor-
pus. For example, 8 åsè � ¦ Î�ä � F ¦ å hada á -scoreof 4.0 withÈ =0 and Ð =16:

OR A TOTALLY

AND A PROPERLY

IF A WHATSOEVER
�
�

Therewerealsofeaturesthatonly occurredin theSWB

corpus,suchas 8 � = ¦ ='= ¦ � ã ¦ \�é ¦ ê ç�ä Ö with z-score3.8, È =14
and Ð =0.

Constituent Trigram features: 36,448candidatefeatures
of this type appearedin the corpora,of which 3,535were
significant. The feature 8 � = ¦ å è � ¦ B ä Ö | with á -score4.9,È =0 and Ð =25 is anothergoodexampleof the deficiencies
of theinitial trigrammodel:

BUT HE NEVER SOME

WE THE GYM EVEN SOME

IT REALLY SOME REALLY BAD

MYSELF SOMETIMES SOME ON CHANNEL 8
DOLLARS
�
�


4.3.5. Perplexity and Word Error Rate

We incorporatedthe 1953 ConstituentSequencefeatures,
1310 ConstituentSet features,and 3535 ConstituentTri-
gramfeaturesinto awhole-sentencemaximumentropylan-
guagemodel,andtrainedits parameterswith theGIS algo-
rithm. Thebaselineperplexity of a 90,600-wordSWB test
setcalculatedunderthe initial model *$0 was 81.37. The
perplexity underthenew maximumentropymodelwases-
timatedas80.49̈ 0.02,arelative improvementof only 1%.

Next, we testedspeechrecognitionword error rateby
N-bestlist rescoring.A 200-bestlist with 8,300wordswas
used. The WER was 36.53%with the initial model and
36.38%with all of thesyntacticfeaturesadded,amere0.4%
relative improvement.

5. ANALYSIS

In trying to understandthedisappointingresultsof the last
section,we analyzedthe likely effect of featureson the fi-
nalmodel.Theupperboundon improvementfrom a single
binary feature 8�� is the Kullback Liebler distancebetween
thetruedistributionof 8�� (asestimatedby theempiricaldis-
tribution ?* � 8�� � ) and * � 8�� � (the distribution of 8�� according
to thecurrentmodel)[14, p. 4]. Theeffect of multiple fea-
turesis not necessarilyadditive (in fact, it couldbesupra-
or sub-additive). Nonetheless,thesumof theindividualef-
fectsmaystill give someindicationof the likely combined



effect. For thesyntacticfeaturesweused,wecomputed:5 �7ë ��?* � 8 � � ì * 0 � 8 � ��� � l 
 lRí Ç
which translatesinto an expectedperplexity reductionof
0.43%( Ç x°î x�ï µ� x , where10 is the averagenumberof words
in a sentence).Thepotentialimpactof thesefeaturesis ap-
parentlyvery limited. We thereforeneedto seekfeatures8
for which:ë ��?* � 8 � ì *$0 � 8 ��� �?* � 8 � . MWORQ ?* � 8 �*$0 � 8 � K � + n�?* � 8 ��� . MPORQ + n�?* � 8 �+ n *:0 � 8 �
is significantly larger. The secondterm on the right-hand
side is usually negligible. The two factorsaffecting this
numberarethustheprevalenceof thefeature( ?* � 8 � ) andthe
logdiscrepancy betweenthetruthandthemodel( MWO�Q C=ð¢ ê ¤=&xs¢ ê ¤ ).
In the featureswe used,the latter wasquite large, but the
former was very small. Thus,we needto concentrateon
morecommonfeatures.

An idealfeatureshouldoccurfrequentlyenough,yetex-
hibit a significantdiscrepancy. ”Does the sentencemake
senseto ahumanreader?”is suchafeature(where ?* � 8 � � +
and * 0 � 8 � � l

). It is, of course,AI-hard to compute.How-
ever, even a roughapproximationof it may be quite use-
ful. Basedon this analysis,we have subsequentlyfocused
ourattentiononderiving asmallernumberof frequent(and
likely morecomplex) features,basedon the notionof sen-
tencecoherence([27]).

Frequentfeaturesarealso computationallypreferable.
Becausethetrainingbottleneckin whole-sentenceME mod-
els is in estimatingfeatureexpectationsvia sampling,the
computationalcost is determinedmostly by how rare the
featuresareand how accurately we want to model them.
The more frequentthe features,the lessthe computation.
Notethatcomputationalcostof trainingdependsmuchless
on thevocabulary, theamountof trainingdata,or thenum-
berof features.

6. SUMMARY AND DISCUSSION

Wepresentedanapproachto incorporatingarbitrarylinguis-
tic informationinto a statisticalmodelof naturallanguage.
We describedefficient algorithmsfor constructingwhole-
sentenceME models,offeringsolutionsto thequestionsof
sampling,stepsizeandsmoothing. We demonstratedour
approachin two domains,using lexical andsyntacticfea-
tures.We alsointroduceda procedurefor featureselection
whichseeksandexploits discrepanciesbetweenanexisting
modelandthetrainingcorpus.

Whole-sentenceME modelsaremoreefficientthancon-
ditional ME models,and can naturally expresssentence-
level phenomena.It is our hopethat theseimprovements

will breaktheME “usability barrier”whichheretoforthhin-
deredexplorationandintegrationof multipleknowledgesources.
Thiswill hopefullyopenthefloodgatesto experimentation,
by many researchers,with variedknowledgesourceswhich
they believe to carrysignificantinformation. Suchsources
mayinclude:� Distributionof verbsandtensesin thesentence� Variousaspectsof grammaticality(personagreement,

numberagreement,parsability, otherparser-supplied
information)� Semanticcoherence� Dialog level information� Prosodicandothertimerelatedinformation(speaking
rate,pauses,.. . )

Sinceall knowledgesourcesareincorporatedin a uni-
form way, a languagemodelercanfocuson which proper-
tiesof languageto modelasopposedto how to modelthem.
Attentioncanthusbeshiftedto featureinduction. Indeed,
wehave startedworkingonaninteractive featureinduction
methodology, recastingit asa logistic regressionproblem
[27, 19]. Takentogether, we hopethat theseefforts will
helpopenthedoorto “putting languagebackinto language
modeling”[28].
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