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ABSTRACT

Whole sentence maximum entropy models directly
model the probability of a sentence using features
— arbitrary computable properties of the sentence.
We investigate whether linguistic features that
capture the underlying linguistic structure of a
sentence can improve modeling. We use a shallow
parser to parse sentences into linguistic constitu-
ents in two corpora; one is the original training
corpus, and the other is an artificial corpus gener-
ated from an initial trigram model. We define
three sets of candidate linguistic features based on
these constituents, and compute the prevalence of
each feature in the two data sets. We select fea-
tures with significantly different frequencies.
These correspond to phenomena poorly modeled
by traditional trigrams, and reveal interesting lin-
guistic deficiencies of the initial model. We found
6798 linguistic features in the Switchboard domain
and achieved small improvements in perplexity
and speech recognition accuracy with these fea-
tures.
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1. INTRODUCTION

Previous language models typically apply the
chain rule to decompose the probability of a sen-
tence into a product of conditional word probabili-
ties. For example, trigram language models com-
pute P(w3 | wl, w2), where the probability of a
word is conditioned on its two preceding words.
Successful as these conditional models are, they
lack the flexibility to incorporate global informa-
tion. For instance, it is awkward for a trigram lan-
guage model to express information about sentence
length.

In [1], we introduced a non-conditional Whole
Sentence Maximum Entropy model that directly
models the probability of an entire sentence s: '
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Py(s) is an initial probability distribution over sen-
tences. We can obtain Py(s) from a traditional
word trigram language model. The f's are fea-
tures, or arbitrary computable properties of a sen-
tence. The A/'s are the parameters of the maximum
entropy language model, to be estimated from
training data. The value Z is a normalization factor
to make P(s) a probability distribution. The
model Py(s) satisfies these properties: 1. It is con-
sistent with the training data in terms of feature
expectations

S P ()= P()fi (), T,

where }N’(s) = (#s /#total sentences) is the em-

pirical distribution of the training data. 2. Among
all of the probability distributions which satisfy 1,
it is the one most similar to the initial model Py(s)
in terms of Kullback-Leibler divergence. In [2],
we presented efficient methods for training and
applying such models, and constructed a model for
Switchboard data using word n-grams (up to #n=4),
distance-two word n-grams (up to n=3), and class
n-grams (up to #n=5).

However, we believe that significant improvement
in language modeling can be obtained by using
linguistic features, namely features that capture
underlying linguistic phenomena. These features
typically correspond to hidden (and often global)
linguistic structure, as opposed to n-grams, which
capture localized, surface phenomena.

In this paper, we present a method of automatically
finding certain linguistic features for a whole sen-
tence maximum entropy model. Section 2 de-
scribes the linguistic features we are interested in.
Section 3 details the feature selection method. In

"In fact, it is the Minimum Discrimination Information
(MDI) model relative to P,.



Section 4, we apply the method to the Switchboard
task and discuss its performance.

2. LINGUISTIC FEATURES

In order to use linguistic features, we need a lin-
guistic module to process input sentences and out-
put certain linguistic information. Due to the na-
ture of our domain (Switchboard), we derive lin-
guistic features using a shallow parser [3] that pro-
duces constituent sequences given an input utter-
ance. The linguistic features are defined on the
output constituent sequences.

2.1 The Shallow Parser

The shallow parser is designed to parse spontane-
ous, conversational speech in unrestricted do-
mains. It is very robust and fast for such sentences.
Due to the high irregularity of spontaneous speech,
a series of preprocessing steps are carried out first.
These include eliminating word repetitions, ex-
panding contractions, and cleaning dysfluencies,
etc. In addition, the parser assigns a Penn Tree-
bank and Brown Corpus style part-of-speech tag to
each word. For example, the input sentence
Okay I uh you know I think it might be correct
is processed as
I/NNP think/VBP it/PRPA might/AUX
be/VB correct/J]
Next, the parser breaks the preprocessed sentence
into one or more simplex clauses, which are
clauses that contain an inflected verbal form and a
subject. This simplifies the input sentence and
makes parsing more robust. In our example above,
the parser generates two simplex clauses:
simplex 1: /NNP think/VBP
simplex 2: it/PRPA might/AUX be/VB correct/JJ
Finally, with a set of handwritten grammar rules,
the parser parses each simplex clause into con-
stituents. The parsing is shallow since it doesn’t
generate embedded constituents; i.e., the parse tree
is flat. In the example, simplex 1 has two constitu-
ents:
[ np] ( [NP_head] I/NNP )
[ vb] ([VP head] think/VBP )
and simplex 2 has three constituents:
[ np] ( [NP_head] it/PRPA )
[ vb] ( might/AUX [VP head] be/VB )
[ _prdadj] ( correct/JJ )
The parser sometimes leaves a few function words
(e.g. to, of, in) unparsed in the output. From a
feature selection point of view, we regard each of
these function words as a special constituent in it-

self. In this way, there are a total of 110 constitu-
ent types.

2.2 Feature Form

As mentioned above, the shallow parser breaks an

input sentence into one or more simplex clauses.

For each simplex clause, it generates a flat se-

quence of constituents. We define three types of

features based solely on the types of constituents;

i.e., we ignore the identities of words within the

constituents:

1. Constituent Sequence features: for any con-
stituent sequence x and simplex clause s,
f«(s)=1 if and only if the constituent sequence
of simplex clause s exactly matches x. Other-
wise fy(s)=0. For instance, f ,, ,(“I think”)=1,
S np vb praag(“it might be correct”)=1, f,, ,»(“it
might be correct™)=0, and so forth.

2. Constituent Set features: for any set x of con-
stituents, f;(s)=1 if and only if the constituent
set of sentence s exactly matches x. Otherwise
fi(s)=0. This set of features is a relaxation of
Constituent Sequence features, since it doesn’t
require the position and number of constituents
to match exactly. As an example, both f; ,,

wy(“T laugh™)=1 and f; ,, w;(“I see a bird”)=1,

although the constituent sequence of “I laugh”
is “ np _vb” while that of “I see a bird” is
“ np_vb np”.

3. Constituent Trigram features: for any ordered
constituent triplet (c/, c2, ¢3), fr1c2e3(5)=1 if
and only if sentence s contains that contiguous
sequence at least once. Otherwise
Jrere2e3(s)=0.  This set of features resembles
traditional class trigram features.

3. FEATURE SELECTION

We follow the procedure in [2] to find salient fea-
tures for the whole sentence maximum entropy
model. We have a training corpus and an initial
distribution Py(s). We generate an artificial cor-
pus, roughly the same size as the training corpus,
by sampling from Py(s). We run both corpora
through the shallow parser and investigate the be-
havior of each candidate feature. If the number of
times a feature is ‘on’ (equals 1) in the training
corpus differs significantly from that in the artifi-
cial corpus, the feature is considered important and
will be incorporated into the model. The rationale
is that the difference is due to the deficiency of the
initial model Py(s), and adding such a feature will
bring the model closer to reality.



3.1 Significance Test

We assume that our features occur independently,
and are therefore binomially distributed. More
precisely, we have two independent sets of Ber-
noulli trials. One is the set of n simplex clauses of
the training corpus. The other is the set of m sim-
plex clauses of the artificial corpus. Let x be the
number of times a feature occurs in the training
corpus trials and y that in the artificial corpus tri-
als. Let P, and P, be the true occurrence prob-
abilities associated with each set of trials. We test
the hypothesis

H,:P =P, versus H,:P #P
at the significance level @. Approximating the
Generalized Likelihood Ratio Test, we reject [ at
confidence level a if

x/n—y/m
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(see [4]). We include into the whole sentence
maximum entropy model those features whose H;
is rejected.
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3.2 Estimating Perplexity Reduction

After multiple features are added to the initial
model and trained, the test set perplexity reduction
can be estimated as follows. Let

R(s) =exp(y A, £,(s)

be the unnormalized modification made to the ini-
tial model for sentence s. By the normalization
constraint, we have

Z Prr(s) = % Z Po(s) [R(s) = %EoéR(s)Ez 1

The expectation is over the initial model P,. Thus
the normalization factor is Z = E, [R(S)] We can

estimate it from a large text 7, drawn from Py:

A

Z= arithmeDtyic mean[R(s)]

The estimation is very accurate since the number
of sentences in T is large. Let T, be the test set on
which we want to compute perplexity. By defini-
tion

1

PP(T2) = P(T) ™

where #W, is the number of words in 7,. It can be
shown that the perplexity reduction ratio is

4S,
: "
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where #S, is the number of sentences in 7,. Sub-
stituting the estimation of Z in, the estimate of per-
plexity reduction is

#S,
pry(ry _Gritmetiemean[Re]
PR(T) Egeometric mean [R(s)] F
sdT,

where #S,/#W, is the average number of words per
sentence in the test set. Interestingly, if 7,=7), i.e.
if the test set is also sampled from the prior distri-
bution, it follows from the law of inequality of av-
erages that the new perplexity will always be
higher. This, however, is appropriate because any
correction to the prior probability distribution will
assign a lower likelihood (and hence higher per-
plexity) to the prior-generated data.

4. EXPERIMENT RESULT

Our training corpus is Switchboard (SWB) conver-
sational telephone speech with nearly 187,000
sentences and 2,895,000 words. An artificial cor-
pus of similar size was generated from a trigram
model. We investigate the three sets of features
discussed in section 2.2 with the test in section 3.1.

4.1 Features Discovered

1. There are 186,903 candidate Constituent
Sequence features that occur at least once in the
two corpora. Of those, 1,935 show a significant
difference between the two corpora at a 95% con-
fidence level (two-tailed). The feature
f np vb np pp() has the most significant standard
score 21.9 in the test, with x=2968 occurrences in
the SWB corpus and y=1548 in the artificial cor-
pus. More interesting is the feature
f conj np _aux prdadi() with z-score 4.3, and x=0,
y=19. This means there are 19 simplex clauses in
the artificial corpus with the constituent sequence
“ conj np aux prdadj”, but none in the SWB
corpus. One may suspect that this is where the
initial trigram model ‘makes up’ some nonsense
sentence. Looking at the 19 simplex clauses con-
firms our suspicion:
“so I have never really interesting”



“and they might practical”

“that we have good”

“that you could last”

“but I would sure”

“and you can convenient” ...
standard score -4.0, x=16 and y=0. This stands for
a perfectly legal simplex clause form that has
never been generated in the artificial corpus. Here
are the simplex clauses in SWB:

“what area do you work in”

“what area do you live in”

“what home do you live in”

“what exercise do you get involved in” ...
2. As expected, Constituent Set features are
more general than Constituent Sequence features
and thus there are fewer of them. A total of 61,741
candidate Constituent Set features occur in either
corpus, while 1310 show a significant difference.
The one with the most significant z-score, 27.8, is
ft conj, np, pp, vb}() with x=10420 and y=6971.
Like Constituent Sequence features, there are some
Constituent Set features that occur only in the arti-
ficial corpus. For example, ff adv, conj, a}() has a
z-score of 4.0 with x=0 and y=16:

“or a totally”

“and a properly”

“if a whatsoever” ...
There are also features that only occur in the SWB
corpus, such as ff np, pp, vb, wh, from}() with z-
score 3.8, x=14 and y=0.
3. 36,448 candidate Constituent Trigram
features appear in the corpora. 3535 are signifi-
cant. The feature f{ np, adv, some)() with z-score
4.9, x=0 and y=25 is another good example of how
the initial trigram model generates bad sentences:

“but he never some”

“we the gym even some”

“it really some really bad”
“myself sometimes some on channel 8 dollars”

4.2 Perplexity and WER

We added the 1953 Constituent Sequence features,
1310 Constituent Set features, and 3535 Constitu-
ent Trigram features to the whole sentence maxi-
mum entropy language model, and trained the pa-
rameters with the GIS algorithm [5].

The perplexity of a 90,600-word test set was cal-
culated under the initial model P,, and was found
to be 81.37. The perplexity under the new maxi-
mum entropy model was estimated as §0.49+0.02,
a relative improvement of 1%.

We tested speech recognition word error rate by N-
best list rescoring. A 200-best list with 8,300
words was used. The WER was 36.53% with the
initial model, and 36.38% with all the linguistic
features added, a 0.4% relative improvement.

5. CONCLUSION

We presented an approach of combining linguistic
and statistical methods to model natural language
and showed the improvement obtained in the
Switchboard domain. It demonstrates the general-
ity of the whole sentence maximum entropy para-
digm; i.e., any computable property of natural lan-
guage can be included in such a model.

The improvement we achieved was very small.
We hypothesize that it is mainly because most of
our features are infrequent. An ideal feature
should occur frequently enough, yet display a sig-
nificant difference between the two corpora.
“Does the sentence make sense to a human
reader?” is such a feature, although it is hard to
approximate it computationally. In addition, the
SWB domain is also too unstructured to allow
deep parsing. New types of linguistic features,
more structured domains (like Broadcast News),
and a more sophisticated parser may have a bigger
impact.
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