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ABSTRACT
I study the effect of various types and amounts of North American
Business language data on the quality of the derived vocabulary, and
use my findings to derive an improved ranking of the words, using
only 19% of the NAB corpus. I then study the conflicting effects
of increased vocabulary size on a speech recognizer’s accuracy, and
use the result to pick an optimal vocabulary size. A similar analysis
of ngram coverage yields a very different outcome, with the best
system being the one based on the most data.

1. Vocabulary Optimization
1.1. OOV curve minimization
Since Out-Of-Vocabulary (OOV) rate directly affects Word Error
Rate, with every OOV word in the test data resulting in at least
one (and often more) recognition errors, I set out to minimize the
expected OOV rate of the test data. More generally, my goal was to
understand how availability of various types and amounts of training
data, from various time periods, affects the quality of the derived
vocabulary 1. Given a collection of training data, I sought to create
an ordered word list with the lowest possible OOV curve, such that,
for any desired vocabulary size V, a minimum-OOV-rate vocabulary
could be derived by taking the first V words in that list. Viewed this
way, the problem becomes one of estimating unigram probabilities of
the test distribution, and then ordering the words by these estimates.

The test set consisted of 1.4M words worth of North American
Business news. The training data was the 227M-word NAB corpus
(see [Roseneld 95] for details). In all studies, except where otherwise
noted, the word list was ordered by decreasing frequency in the
appropriate subset of the training data.

I first set out to measure the effect on OOV rate of the seasonality of
the training data, namely the time of year from which it is drawn. For
each month of the year, I created a word list based on some 9MW of
training data from that month. The test data was drawn from 4/94, so
a seasonal effect might reduce the OOV rate of training data from this
or adjacent months. As Figure 1 shows, no such effect was found.

Next I measured the correlation of OOV rate with the amount of
training data. I added training data in increments of 5MW, and
measured the impact on OOV rate. I added data in decreased order
of recency, so as not to confound the effect of the amount of data with
that of its recency. Figure 2 shows my findings. As expected, more
training data results in lower OOV rates. But improvement slows
down considerably after 30MW–50MW. Next, I studied the effect of

1The vocabulary thus derived is static. It can serve as the initial vocabu-
lary, to be optionally extended at runtime based on the words encountered in
the test data.
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Figure 1: Month from which training data is drawn has no effect on
OOV rates (test data is from April).

recency of the training data. Figure 3 shows OOV rates based on
similar amounts of training data (about 5MW), but from different
time periods. Time indeed makes a difference, albeit slowly. Over
a period of 2 years, the 20KW (60KW) OOV rate degraded by 5%
(15%). Over 4.5 years, it degraded by 11% (24%).

The difference that the source of the training data can make is evident
in Figure 4. An OOV curve based on the Wall-Street-Journal(1990)
part of the data (10MW), is lower than that based on the San-Jose-
Mercury(1991) part (11MW), even though the latter is larger and
more recent.

Next, I accumulated data starting from the most recent period and
going backwards in time. Given the inherent tradeoff between the
amount of data and its recency and source, I hypothesized a U-shape
OOV curve, which was indeed achieved as can be seen in Figure 5
(the last datapoint is based on the entire 227MW NAB training
corpus). The peak was achieved at about 40MW. It is interesting
that the best overall coverage was obtained using only 19% of the
available training data!

If recent data is more useful, can we benefit from emphasizing it?
Several such attempts failed. The only one that was mildly success-
ful was based on a “leaky capacitor” model of word probabilities.
Discounting the word counts by 1% every week reduced the OOV
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Figure 2: More training data results in lower OOV rates, but mostly
up to 30MW–50MW

rate very slightly for vocabulary sizes in the range 20KW–50KW,
but not at the 60KW level.

1.2. Vocabulary size optimization
Increasing the vocabulary of a speech recognition system has two
conflicting effects. On one hand, it reduces the OOV rate, thereby
helping to recover OOV related recognition errors. On the other hand,
the added lexical entries increase the average acoustic confusability
of words, resulting in new recognition errors.

To quantify these two effects, I ran two controlled experiments on
the CSR 1994 acoustic development test set. In the first, I compared
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Figure 3: More recent training data results in lower OOV rates.
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Figure 4: The source of the training data makes a big difference in
OOV rates.

two systems that differed only in their lexicon. The first system had
a lexicon of 58K words. The second was based on the top 20K words
of the 58K lexicon, supplemented with all the test set words that were
in the 58K lexicon. Thus the two lexicons had identical coverage
of the test set, but very different overall sizes. The 58KW system
resulted in 0.6 points higher WER. I interpreted the difference as
resulting solely from the increased acoustic confusability. Assuming
that acoustic confusability grows roughly linearly with vocabulary
size, I arrived at a slope of +0.16 WER points per 10KW increase in
the vocabulary. Alternatively, assuming that acoustic confusability
grows logarithmically with vocabulary size, I arrived at a slope of
+0.39 WER points per doubling of the vocabulary size.
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Figure 5: Best OOV rates are achieved with only 19% of the training
data!



In the second experiment, I again compared two systems differing
only in their lexicon. One system used the 58K lexicon; the other
used the same 20K lexicon as above (unsupplemented), and had a
1.79% higher OOV rate. Thus, this time the lexicons differed in
both size and test-set coverage. The 20KW system had a 1.55 points
higher WER. Factoring in the 0.6 points WER reduction due to the
reduced confusability, I corrected the effective difference to 2.15
WER points. Assuming that OOV-related errors are linear with the
OOV rate, I arrived at a slope of –1.2 WER points per OOV-point,
or an average of 1.2 word recognition errors per OOV word .

As we increase vocabulary size, OOV rate decreases at an ever slower
rate. For any OOV curve, there is a point at which the savings due
to reduced OOV rate are exactly offset by the additional errors due
to acoustic confusability. That point is the optimal vocabulary size.
Figure 6 combines the slopes estimated above to arrive at a pro-
jected WER as a function of vocabulary size, for this particular task.
Assuming acoustic confusability grows linearly, optimal vocabulary
size is about 66K words, but the slope is very mild in the range
55KW–80KW. Assuming acoustic confusability grows logarithmi-
cally, optimal vocabulary size is in the range 80KW–110KW, but the
slope is very mild starting at 70KW.
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Figure 6: Projected WER based on estimated slopes for OOV errors
and acoustic confusabilty. Increasing the vocabulary beyond 64KW
is likely to yield negligible improvement at best.

Note though that the estimates are not very accurate. Furthermore,
we do not know which of the two assumption is more correct, al-
though it is reasonable to assume that the true answer lies somewhere
in between them. I can only conclude that, for this task and with
our current recognition system, increasing the vocabulary beyond
the 64KW point is likely to yield negligible improvement at best.

1.3. Lexical coverage: summary
From the studies reported above I conclude that, at least in this
domain:

� Lexical coverage is strongly affected by the amount of training
data used to construct the lexicon, but the effect attenuates

around 30MW–50MW.
� Month from which the data is drawn is insignificant.
� Source of the data is very important.
� Recency is also important: over 2 years there is a 5%–15%

degradation in OOV rate. Over 4.5 years, a 11%–24% degra-
dation..

� Best lexical coverage is achievedwith only 19% of the available
training data!

� With an optimized 60KW lexicon, the occurrence profile of
the remaining OOV words is very unremarkable, leaving little
hope for further improvement.

� Every OOV word results on average in some 1.2 word recog-
nition errors.

� As the vocabulary grows, increased acoustic confusability is a
non-negligible source of recognition errors. Since OOV rate
declines at a slowing rate, there is a point of optimal vocab-
ulary size. For this task and our current system, that point is
in the range 55KW–80KW (assuming acoustic confusability
grows linearly) or 80KW–110KW (assuming it grows logarith-
mically).

Given the last conclusion, and the limit of 64K pronunciations in
our current implementation of the decoder, I settled on a vocabulary
of some 59,000 words. These resulted in 64,500 pronunciations,
leaving room for 1000 more to be added dynamically. The OOV
rate of the 1994 eval test set with regard to this vocabulary was
0.5% (42/8186), compared to 2.4% (194/8186) relative to the official
20KW vocabulary used in the C1 run. Using the slope of 1.2 WER
points for every point in OOV rate reduction, I arrive at an estimated
WER reduction of 2.2% on the eval set due to the expanded and
optimized vocabulary.

The extent of reduction in OOV rate due to word-order optimization
depends on the vocabulary size. The larger the vocabulary, the
smaller the difference, since OOV rates themselves decline rapidly.
With the 59KW vocabulary, the reduction in OOV rate over the
baseline (a simple top-frequency list based on the entire training
corpus) was moderate (12%). But more importantly, the OOV studies
revealed the dependence of lexical coverage on various aspects of the
training data. This will help us determine how much (and what kind
of) data we need in order to get sufficient coverage in other tasks.
Moreover, the same technique can be used to study (and subsequently
optimize) coverage of bigrams and trigrams. See Section for the
beginning of such investigation.

1.4. Lexical coverage: analysis
In North American Business English (as defined by the 1994 NAB
corpus), the least frequent among the most frequent 60K words
have a frequency of about 1:7M. In optimizing a 60KW vocabulary
we are thus trying to distinguish words with frequency of 1:7M
from those that are slightly less frequent. To differentiate somewhat
reliably between a 1:7MW word and, say, a 1:8MW word, we need
to observe them enough times for the difference in their counts to
be statistically reliable, i.e. we must have at least 100MW–200MW
of training data. Fortunately, for constructing a decent vocabulary,
it is enough that most such words are ranked correctly. For this,
50MW–100MW might be sufficient (since the expected difference
between the counts will be 1–2). This agrees with the empirical
results reported above, according to which the OOV curve improves



rapidly as more training data is used up to 50MW, and then continues
to improve more slowly beyond that point.

To optimize the vocabulary for coverage of a specific time period,
we must use training data from that period, or as close to it as
possible. But for, say, 70MW of training data, at the DJIS wire
feed data rate, we need 4 years, during which the language shifts
considerably, and 60KW OOV-rate degrades by some 22% (see study
of recency above). Thus we are inherently unable to fully optimize
the vocabulary.

One can further generalize the last observation. Viewing language
as a non-stationary stochastic source, and generalizing the word
probabilities to any time-dependent linguistic phenomenon (e.g., a
rise in the probability of an ngram above its static level), I arrive at
the following principle:

One can never determine accurately both the
extent and the time frame of a linguistic phe-
nomenon.

There is an inherent tradeoff between the accuracy of an estimate
and the time period it is based on. More precisely, it is not the time
period but the amount of training data that is the limiting factor. But
since there is only a limited amount of data from each time period,
the two are related by a constant.

Thus if a phenomenon is both transient and rare, we are inherently
incapable of detecting it. Note that rare phenomena are not neces-
sarily unimportant, since there may be many of them. Estimating
an event as having Probability 10

� 7 rather than 10
� 6 can have a

devastating effect on the log-probability, and hence recognition, of a
sentence. Yet such events are commonly modelled in most existing
language models and commonly encountered in test data.

The amount of LM training data available until recently was small
enough that the benefit from acquiring more data dominated over the
disadvantage due to language shift. But with the larger amounts of
data made available recently, this is changing. With the 1994 NAB
corpus of 227M words, I have already found that better vocabularies
are constructed by using only a fifth of the available data. As will be
seen in the next section, similar results do not yet apply to ngram lists.
But with several billion words of training data, I believe they will.
Language modeling is close to the point where the time-honored
maxim “there’s no data like more data” no longer holds.

2. Ngram Coverage and
Language Model Size

In a recent work ([Chase et. al 94]) we found that recognition errors
are much more likely to occur within trigrams and (especially) bi-
grams which have not been observed in the training data. In these
cases, the language model typically relies on lower order statistics.
If the bigram is missing, predictions are made based on unigram
statistics, which are notoriously unreliable. Thus increased ngram
coverage may translate directly into improved recognition accuracy.

But increased ngram coverage usually comes at the cost of increased
memory requirements. To study the tradeoffs involved, we compared
several systems on the 1994 development test. All systems used a
58KW vocabulary (different than the optimized vocabulary reported
in Section ) and conventional trigram backoff language models. The

models differed in the amount of data they were trained on, and in
their bigram and trigram cutoffs. Table summarizes the results,
in decreasing order of Word Error Rate2. ’t94’ refers to the entire
official 1994 NAB training corpus (227MW). ’-m-n’ means that
bigrams occurring � or fewer times and trigrams occurring � or
fewer time were excluded. The ’coverage’ columns reports the rate
at which the backoff language model relied on its trigram, bigram,
and unigram components to produce scores (1.4% of the words were
OOVs).

system # of (M) coverage(%) PP WER
2g 3g 3g 2g 1g

wsj93-0-0 3 7.5 57 31 11 197
t94-1-2 6 10 63 29 6.8 156 14.7
wsj91-94-0-1 6 5 59 32 7.3 163 14.55
wsj87-94-0-1 9 8.5 63 29 6.4 153 14.35
t94-0-2 14 10 63 30 5.2 153 14.3
t94-1-1 6 18 67 25 6.8 152 14.25
t94-0-1 14 18 67 27 5.2 150 14.1

�

Table 1: Ngram coverage, perplexity and Word Error Rate for
LMs based on various amounts of data and different ngram cutoffs.
“There’s no data like more data” still holds.

A few observations:

� Given the same training data, adding bigrams or trigrams (by
lowering their respective cutoffs) improves both perplexity and
recognition. Interestingly, ’t94-0-2’ and ’t94-1-1’ performed
similarly, even though one had 8M more bigrams while the
other had 8M more trigrams.

� In the case of lexical coverage, older and less relevant training
data actually hurt performance. But with ngram coverage,
this does not seem to be the case. My hypothesis is that this
difference is due to the much lower frequency of the ngrams
(as compared to the least frequent words in the vocabulary).
See discussion in Section . The largest system (’t94-0-1’)
performed best on the dev data, and was consequently used in
our evaluaton system.

It is hard to draw further conclusions from comparing models based
on different training sets. For example, ’wsj91-94-0-1’ has fewer
trigrams, worse test-set ngram coverage and worse test-set perplexity
than ’t94-1-2’, and yet it performed better. Perhaps the differences in
WER are not large enough to be significant. Clearly, more carefully
controlled studies are called for.

References
[Roseneld 95] Ronald Rosenfeld, “The CMU Statistical Language

Modeling Toolkit, and its application to the 1994 ARPA NAB
Corpus”, submitted to Eurospeech 95.

[Chase et. al 94] Lin Chase, Ron Rosenfeld, and Wayne Ward,
“Error-Responsive Modifications to Speech Recognizers: Neg-
ative N-grams”, in Proc. International Conference on Spoken
Language Processing, Yokohama, Japan, September 1994.

2The last WER result is approximate, since it involves corrections to
account for other system components.


