
TOPIC ADAPTATION FOR LANGUAGE MODELING USING UNNORMALIZED
EXPONENTIAL MODELS

Stanley F. Chen,Kristie Seymore,RonaldRosenfeld

Schoolof ComputerScience
Carnegie Mellon University

Pittsburgh,Pennsylvania15213�
sfc,kseymore,roni � @cs.cmu.edu

ABSTRACT

In thispaper,wepresentnovel techniquesfor performingtopic
adaptationon an � -gramlanguagemodel. Given trainingtext la-
beledwith topic information,we automaticallyidentify the most
relevanttopicsfor new text. Weadaptour languagemodeltoward
thesetopicsusinganexponentialmodel,by adjustingprobabilities
in ourmodelto agreewith thosefoundin thetopicalsubsetof the
trainingdata.For efficiency, we do not normalizethemodel;that
is, wedonotrequirethatthe“probabilities”in thelanguagemodel
sumto 1. With thesetechniques,wewereableto achieveamodest
reductionin speechrecognitionword-errorratein the Broadcast
Newsdomain.

1. INTR ODUCTION

A languagemodelis a probabilitydistribution �����	� 
�� estimating
how frequentlya word � occursgiven that the history (or pre-
vious wordsin the sentence)is 
 . Languagemodelshave many
applications,mostnotablyin speechrecognitionin helpingto dis-
ambiguateacousticallyambiguousutterances.

The dominanttechnologyin languagemodelingare � -gram
models. In speechrecognition,typically a single � -grammodel
(usuallya trigram model) is built on the training data. The task
of topicadaptationis concernedwith identifyingthetopicof new
dataandadaptingthelanguagemodeltowardthattopic. For exam-
ple, if a speechdocumentis recognizedasdescribingO.J.Simp-
son’s trial, thentheprobabilityof thewordKato occurringshould
beboosted.

Therehasbeenmuchpreviouswork in topic adaptation.1 Nu-
merouseffortshavedemonstratedlargeimprovementsin themea-
sureof perplexity [2, 4, 9]; however, perplexity hasbeenshown
to correlatepoorly with speechrecognitionperformance. Sev-
eral papershave reportedmodestspeechrecognitionword-error
rate (WER) improvementsof about0.5% absolute: Sekineand
Grishman[14] addadhoc topicandcachescoresto their language
modelscorein log probability space,andIyer andOstendorf[3]
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1Here,we only discussresearchwhereit is necessaryto identify the
topic of the currenttext automatically. This contrastswith the situation
wherea topic-specificadaptationtext is explicitly given,asin Spoke2 of
the1994ARPA CSRevaluation[6].

andSeymoreandRosenfeld[16] uselinear interpolationto com-
binetopic � -grammodelswith ageneral� -grammodel.

In this work, we extendthe researchin [16] by usingunnor-
malizedexponentialmodelsto combinetopic information.In [16],
afirst-passtranscriptionhypothesisis generatedfor eacharticlein
the testsetusingan unadaptedtrigram model. The twenty most
relevant topics for eachhypothesisare identified using a Bayes
classifier. Then, a trigram model is built for eachof thesetop-
icsby just usingthosearticlesin thetrainingdatalabeledwith the
giventopic. (Eacharticlein thetrainingdataismanuallyannotated
with topic information.)Finally, thesetwentymodelsarelinearly
interpolatedwith atrigrammodelbuilt on theentiretrainingsetto
yield thelanguagemodelusedfor speechrecognition.

Recently, therehasbeenevidencethatexponentialmodelsare
superiorto linearinterpolationin combiningmultiple information
sources[13, 5, 4]. Exponentialmodelshavethefollowing form�
���	� 
���� �� ��
�������� ���
��� � ��

�����! �#" �%$����	� 
�� (1)

where
� ��
��&�('*) ����� ��'

� � � ��
������! � �+�%$����	� 
�� is anormaliza-
tion term,�,$-���.� 
�� is aprior probability,

� � ��

����� arethefeatures
of themodel,and  � areparametersassociatedwith thesefeatures.

As an example,considerthe casewherewe take �,$-���	� 
�� to
beatrigrammodel.If therearenofeatures

� �
, thenwewill simply

havethat �
���.� 
/���0�%$1���.� 
/� . However, let ussaythatwewantto
modelthephenomenonthatthewordKato is morecommonwhen
thetopic is O.J. Simpson. Wecandothis by creatinga feature�12 ��

�������43 1 topic(
 ) = O.J. Simpson, � = Kato

0 otherwise

andby setting 2 suchthat 5-687 equalshow many timesmoreprob-
ablethewordKatobecomes.Thiswill havetheeffect of boosting
theprobabilityof Kato whenthe topic is O.J. Simpson(andcon-
sequentlydepressingotherprobabilitiesthroughthenormalization
term

� ��
�� ), andleavingprobabilitiesunchangedwhenthetopic is
not O.J. Simpson. This procedureis thebasisof how we perform
topicadaptationon � -grammodels.

Unfortunately, theevaluationof exponentialmodelsis expen-
sive dueto thecalculationof thenormalizationfactor

� ��
�� ; this
calculationgenerallymakesexponentialmodelsordersof magni-
tudeslower than trigram models. In this research,we omit the
normalizationterm

� ��
/� . As a result,we no longerhave proba-
bilities in our modelbut insteadscores, andwe canno longercal-
culateperplexities. On theotherhand,our modelsarevirtually as



fastastrigrammodelsandcaneasilybeusedto calculateWER’s
in expensivetaskssuchaslatticerescoring.Topreventscoresfrom
risingabove1, weusethefollowing formulation�����	� 
���� � aux���	� 
���:9 � aux���	� 
��
where� aux���.� 
���� ����� � �
� � � ��

�����! �#" �,$-���	� 
���<; �%$-���	� 
��
The useof the term =?>�@ )�A B�C2!D =8>�@ )�A B�C insteadof � $ ���	� 
�� maintainsthe
propertythat �
���	� 
����E�,$-���	� 
�� whenthereareno features.

Weconsiderthreetypesof exponentialfeaturesfor performing
topicadaptation.F We considerfeaturesthatdepresstheprobabilitiesof topi-

calwordsthatareoff-topic, e.g., thewordKato if thetopic
is Libya. (Weusethetermtopical to describeawordwhose
frequency dependsstronglyontopic,e.g., thewordKatoas
opposedto theword that.)F We considerfeaturesthatboosttheprobabilitiesof topical
wordsand � -gramswhenthey areon-topic,e.g., theword
Katoor bigramKatoKaelin if thetopic is O.J. Simpson.F We considerfeaturesthat boostthe probabilitiesof words
and � -gramsthatoccurfrequentlyin thecurrentarticlebe-
ing evaluated.Thesefeaturesaresimilar in effect to a lan-
guagemodelcache[7].

In thenext sections,wediscusseachof thesefeaturetypesin turn.
Our training dataconsistsof 121,000articles of Broadcast

News datacontaininga total of 130M words, with eacharticle
manuallylabeledwith a setof topics.2 Eacharticle is labeledon
averagewith G 3.6topicsout of asetof about10,000.

2. DEPRESSINGOFF-TOPIC WORD PROBABILITIES

Thefrequency of a topicalword in off-topic articleswill oftenbe
muchlower thanits frequency calculatedover theentiretraining
set. For example, in 130M wordsof BroadcastNews text, the
word Kato occurs3111 times, yielding a unigramfrequency of
about H1I JLK ��M D,N . However, 2990of theseoccurrenceshappen
within articleslabeledwith the topic O.J. Simpson, thesearticles
comprisinga total of 16M words. Thus,theword Kato hasa fre-
quency of only O 2!2!2!D,P!Q!Q $@ 2 O $ D
2�R CTS 2 $�UWV � I � K ��M D,R whenthetopic is not
O.J. Simpson, which is morethanten times lessthanits general
frequency.

Modeling this phenomenonin an exponentialmodelis fairly
straightforward:referringto equation(1), we want to find a fac-
tor  ) for eachword � suchthat 5 68X expresseshow muchless
frequentlythat word occursin off-topic text thanin generaltext,
i.e., 5 6 X � � off-topic ���Y��%$1���Y� (2)

Thecorrespondingfeatures

� ) areof theform� ) ��

���YZ[�&�\3 1 � is off-topic w.r.t. 
 , � Z �]�
0 otherwise

2Thetextandtopic labelswereacquiredfrom PrimarySourceMedia.

CARRERE 178.55
RIBERA 101.49
MADYUN 71.33
HAILES 60.52
BRANDIS 49.72
GEMCO 43.89

...

Table1: Estimatesof how muchlessfrequentwords � arewhen
off-topic (i.e.,

2^!_ X )

To calculate� off-topic ����� for a word � , we needto determine
which topicsare off- and on-topic with respectto � . One rea-
sonableheuristicfor guessingthata topic is on-topicis if thefre-
quency of � in articleslabeledwith thattopic is muchhigherthan
its frequency over theentiretrainingset.However, thisheuristicis
notidealasindirectdependenciesmayexist. For example,if many
articleswith thetopicO.J. Simpsonarealsolabeledwith thetopic
DNA testing(recallthatarticlesusuallyhavemultipletopics),then
the topic DNA testingmay be consideredon-topic for the word
Katoaccordingto thisheuristic.

A methodfor modelingthesepartial dependenciesis to use
maximumentropy training for exponentialmodels[1]. Considera
topicunigrammodel,or modelwith featuresof theforms��`ba ) ��
�����Z[�c� 3 1 dfe topic(
 ), � Z �(�

0 otherwise� ) ��
�����Z[�c� 3 1 � Z �(�
0 otherwise

(3)

for eachtopic d andword � . (For � $ in equation(1), we usea
uniform distribution.) After maximumentropytraining,themag-
nitudeof eachparameter `ba ) will be, roughly speaking,an in-
dicationof how stronglycorrelatedthe word � is with topic d ,
taking into accountindirect dependencies. Furthermore,�
���	� 
��
for ahistory 
 wheretopic��
��g�ih is anestimateof thefrequency� off-topic ����� weneedin equation(2).

Thecompleteprocedureweusedto calculateouroff-topic de-
pressionfactorsis asfollows: webeganwith a 51k vocabularyof
themostcommonwordsin the BroadcastNews data. To reduce
thenumberof featuresin thetopicunigrammodelto amanageable
size,we only includedthe feature

� `ba ) if the word � occurred
muchmorefrequentlyin articleslabeledwith topic d thanin gen-
eral accordingto a j P test. This processyieldedabout200,000
features.Unlike the otherexponentialmodelsusedin this work,
thetopic unigrammodelwasnormalized.We usedoptimizations
as describedby Lafferty and Suhm[8] in the maximumentropy
training; eachiteration took lessthan10 minuteson a Pentium
II processor. The training yieldedpositive depressionfactorsfor
30,000words.An excerptof thesefactorsis displayedin Table1.

In evaluation,we usedthe proceduredescribedin Section1
to find twenty relevant topicsfor eacharticle. We took a word �
to be off-topic if the frequency of � in the training datain each
of thetwentytopicswasnot significantlyhigherthanits off-topic
unigramprobabilityaccordingto a j P test.

3. BOOSTING ON-TOPIC k -GRAM PROBABILITIES

In boostingtheprobabilitiesof wordsand � -gramsthataretopical
andon-topic,first considerthecasewherewewould like to adapt



a languagemodel toward a single topic d . A reasonableproce-
durewould be to seteachadaptedprobability � adapt���	� 
�� to the
baseline� -gramprobability �%$����	� 
�� unlessthe topic probability� ` ���.� 
/� is significantlydifferent(e.g., accordingto a j P test),in
whichcasetheadaptedprobabilityshouldbesetto thetopicprob-
ability. We can takethe topic model � ` ���.� 
/� to be an � -gram
modelbuilt on thetrainingdatalabeledwith topic d .

Toperformthisadaptationfor exponentialmodels,wecanfirst
loopthroughall unigrams� . Whenever � ` ����� is significantlydif-
ferentfrom �,$-����� we adda feature

� ) ��

��� Z � asin equation(3)
with  ) setsuchthat 5-6l� =Tm�@ ),C=?>n@ ),C . Then,we loop throughall
bigrams � � D
2 � � , comparing� ` ��� � � � � D
2 � against� $ ��� � � � � D
2 �
combinedwith all unigramfeaturescreated.(In exponentialmod-
els, an � -gramfeatureaffectsall � Z -gramprobabilitiesfor � Z�o� .) Wecanrepeatthisprocessfor all levelsof the � -grammodel.3

However, articlesaregenerallyacombinationof multipletop-
ics, andit is not clearhow to reconcileprobabilitiesin this more
complex situation,especiallyin light of theindirectdependencies
mentionedin Section2. A theoreticallymotivatedmethodwould
beto build amaximumentropytopic � -grammodel(analogousto
thetopic unigrammodeldescribedearlier)andto train this model
ontheentiretrainingset;however, thiswouldrequireastupendous
amountof computation.

We insteadchooseasimpleheuristicthatcanbeconsideredin
spirit to bea very poorapproximationto maximumentropytrain-
ing. In particular, for eachlevel of our � -grammodelweapplythe
proceduredescribedpreviously for adaptingto a single topic to
eachof thetopicsin turn,exceptthatweonly considerprobability
increases. That is, for eachprobability � adapt���.� 
/� we take the
maximal� ` ���.� 
/� over all of therelevanttopicsT, aslong asthis
probabilityis significantlyhigherthanthebaseline� -gramproba-
bility accordingto a j P test. Intuitively, we areassumingthat the
probabilityof a word or � -gramin the adaptedmodelshouldbe
largeif it is largein anyof therelevanttopics.

3.1. Filtering Adaptation Topics

We have found thatusuallynot all of the twenty topicsfor anar-
ticle returnedby our Bayesclassifierare relevant. To selectthe
mostrelevanttopicsof thetwenty, webuild amodelfor eachtopic
adaptingthegeneralmodelto justthattopic. Wecalculatethelike-
lihood of the first-passhypothesistranscriptionusingthesemod-
els, and usea topic only if its correspondinglikelihood is sub-
stantiallylower (0.3bits/word)thanthelikelihoodassignedby the
generalmodel.4 In Table2, we displaythe resultsof this process
for anarticleconcerningracialissuesbetweenblacksandwhites.

3.2. BoostingArticle-Specific � -Gram Probabilities

Cachemodelsattemptto characterizethephenomenonthatwords
and � -gramstendto repeatthemselveswithin articles,by increas-
ing theprobabilitiesof � -gramsthat have occurredpreviously in
anarticle[7]. Wecanplacethis typeof modelingwithin ouradap-
tationframeworkby viewing thefirst-passhypothesistranscription
of anarticleto beanothertopic adaptationtext. We canadaptour

3This procedureis a crudebut quick approximationto maximumen-
tropy training with this featureset. It would be moresound(but vastly
moreexpensive) to set the parametersp usinga true maximumentropy
trainingalgorithm.

4Becausecalculatingan exact likelihood would be expensive due to
normalizationcosts,weuseapproximationsto calculatethelikelihood.

kept filteredout
Racism Murder Political activity
Blacks Presidents Criminal justice
Racediscrimination Clinton, Bill Administration
Minorities United States Racerelations
Prejudice Socialconditions
Employment Economicconditions
Discrim., employment Crime and criminals
Affirmativeaction Politics and government

Table2: Resultsof topic filtering by likelihood for anarticlecon-
cerningracialissuesbetweenblacksandwhites

languagemodel to this text in the sameway that we adaptit to
eachrelevanttopic. Wordsor � -gramsthatoccursurprisinglyfre-
quentlyin the hypothesiswill have their probabilitiesboostedin
theadaptedlanguagemodel.

In conventionalcaching,hypothesesareprocessedbeginning-
to-endandall previous wordsin a hypothesisareassumedto be
correctandplacedin thecache.In our scheme,thewholearticle
is processedbeforefeaturesarecreated,andfeaturesareonly cre-
atedif they passa significancetest.Thus,it seemslikely thatour
schemeis lesssusceptibleto speechrecognitionerrors.

4. EXPERIMENTS

In ourexperiments,weusedspeechrecognitionlatticesgenerated
bytheSphinx-III system[10] on20articlesof BroadcastNewsdata
(16,700words). For eacharticle,we first generateda hypothesis
usinga trigrammodelgeneratedby theCMU languagemodeling
toolkit[11] from our 130Mwordsof trainingtext. Theword-error
rateof thesehypotheseswere30.8%. We found twenty relevant
topicsfor eacharticle usinga Bayesclassifieron thesefirst-pass
hypotheses.In eachexperiment,word-errorrateswerecalculated
throughlattice rescoringwith the adaptedmodel. The baseline
modelfor adaptationis thetrigrammodeldescribedabove.

4.1. DepressingOff-Topic Word Probabilities

Weinvestigatedwhetherthedepressionof off-topicwordprobabil-
ities alonewould improve word-errorrate. Using the 30,000de-
pressionfeaturesdescribedin Section2, we foundthat theWER
improved by 0.1% absoluteto 30.7%. To get a detailedview of
thevariationbetweenthehypothesisgeneratedby thebaselinetri-
grammodelandthe hypothesisgeneratedby the adaptedmodel,
we alignedthesetwo hypothesesto find their word differences.
We thenalignedthesedifferencesagainstthereferencetranscript,
to determinehow many errorswere fixed and createdwith the
adaptedmodel. Over the16,700wordsin the testset,therewere
43 word differencesbetweenthe baselineand adaptedhypothe-
ses. Of these43 differences,17 wereerrorsfixed in the adapted
hypothesis,5 wereerrorscreated,and21 wereerrorsin bothhy-
potheses.

As anupperboundontheWERreductionof thesetechniques,
Rosenfeldetal.[12, 15]estimatethatif noout-of-vocabularyerrors
areintroduced,thenremoving 10,000wordsfrom a largevocabu-
lary improvesWERby about0.2%absolute,sodepressing30,000



no. base topic art. both unig.
art. words WER adapt adapt adapt adapt
A 1724 37.1% 36.0% 36.3% 35.3% 35.8%
B 2761 34.0% 34.0% 34.1% 34.1% 34.2%
C 3499 30.3% 30.3% 30.2% 30.1% 30.4%
D 2529 37.7% 38.2% 37.5% 38.2% 38.1%
E 3928 26.5% 26.1% 26.3% 25.7% 26.1%
F 2259 22.3% 22.0% 21.6% 21.4% 21.3%

tot. 16700 30.8% 30.6% 30.5% 30.3% 30.5%

Table3: Speechrecognitionperformancefor modelswith on-topic
andarticle-specific� -gramfeatures

wordscompletelyand perfectlywould lead to a WER improve-
mentof about0.6%.

4.2. Boosting On-Topic and Article-Specific � -Gram Proba-
bilities

In experimentswith on-topicandarticle-specificfeatures,we did
not usedepressionfeaturesas they seemedto have little effect.
We performedadaptationwith unigramandbigramfeatures.We
display the article-by-articleerror ratesof on-topic and article-
specificadaptationin Table3. We achieved our bestWER im-
provementof 0.5%absoluteusingbothadaptationstogether. Im-
provementsvariedwidely betweenarticles,with our bestarticle
WER improvementbeing1.8%absolutein articleA. In the final
column of the table, we display the resultsof addingonly uni-
gramadaptationfeatures;bigramfeaturesseemto effect a small
improvement.

Comparingthebaselineandbestadaptationhypothesesusing
themethodologydescribedin Section4.1, we found that the two
hypothesesdifferedby 854words.Of these854words,261were
errorsfixedby adaptation,162wereerrorscreatedby adaptation,
and431wereerrorsin bothhypotheses.

5. DISCUSSION

To summarize,we introducedseveralnovel topic adaptationtech-
niquesfor unnormalizedexponentialmodels. The useof unnor-
malizedexponentialmodelshastheadvantageof efficient compu-
tationwhile hopefullyretainingsomeof thepropertiesof conven-
tional exponentialmodels. We wereableto run lattice rescoring
experimentsat about3 timesreal-timeon a PentiumII processor.
Becauseweuseunnormalizedmodels,it is not meaningfulto cal-
culateperplexity; however, perplexity hasbeenshown to correlate
poorlywith speechrecognitionperformance.

Thiswork is thefirst to explicitly modelthedepressionof off-
topic word probabilities. We describehow to usemaximumen-
tropy training to determinethesedepressionfactors. We present
a novel implementationfor robust caching,which fits in a uni-
fied mannerwithin our topic adaptationframework. We describe
aneffective methodfor filtering out irrelevant topicsby usingthe
likelihoodof thefirst-passtranscription.Throughoutourwork, we
usestatisticaltestingto selectonly thoseadaptationfeatureswhich
aresignificant.

We achieveda minimal reductionin WER by depressingoff-
topic wordprobabilities,but achievedamodestreductionthrough

boostingon-topicand article-specific� -gramprobabilities. Our
WER reductionis comparableto thebestexisting resultsfor this
task.
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