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ABSTRACT

When a trigram backoff languagemodel is createdfrom a large
body of text, trigrams and bigramsthat occur few times in the
training text are often excluded from the model in order to de-
creasethe modelsize. Generally, theeliminationof n-gramswith
very low countsis believedto notsignificantlyaffectmodelperfor-
mance.Thisprojectinvestigatesthedegradationof a trigramback-
off model’s perplexity andword error ratesasbigramandtrigram
cutoffs areincreased.The advantageof reductionin modelsizeis
comparedto theincreasein worderrorrateandperplexity scores.

More importantly, this projectalsoinvestigatesalternative waysof
excludingbigramsandtrigramsfrom abackoff languagemodel,us-
ing criteriaotherthanthenumberof timesann-gramoccursin the
training text. Specifically, a differencemethodhasbeeninvesti-
gatedwherethe differencein the logs of the original and backed
off trigram andbigramprobabilitiesis usedasa basisfor n-gram
exclusionfrom themodel.Weshow thatexcludingtrigramsandbi-
gramsbasedonaweightedversionof thisdifferencemethodresults
in betterperplexity andworderrorrateperformancethanexcluding
trigramsandbigramsbasedon countsalone.

1. INTRODUCTION

Currentcollectionsof text for statisticallanguagemodel training
aremakingthesparsetrainingdataproblemlessseriousfor certain
domains,suchasARPA’s Wall StreetJournalcorpus,which is part
of the305million wordNorthAmericanBusinessNewscollection.
Themoretrainingtext thatis usedfor languagemodelcreation,the
moreuniqueword sequencesareencounteredthat mustbe stored
in themodel. Thus,astrainingtext sizeincreases,languagemodel
size necessarilyincreases,which can lead to modelsthat are too
unwieldyandmemory-demandingto beof practicaluse.Thisover-
abundanceof training datawill allow us, or morecorrectly force
us, to be selective in choosingthe trainingdatathatwe useto cre-
ateour models. We explore two methodsof training text pruning
thatallow for compactandefficientcreationof trigrambackoff lan-
guagemodels. The effectsof theoriginal amountof trainingdata
on ascaled-downmodelis alsoinvestigated.

2. THE BACKOFF LANGUAGE MODEL

Thebackoff languagemodelwasdevelopedby Katz [2] to address
theproblemsassociatedwith sparsetrainingdata.Smallcountsre-
sult in unreliableestimates.Thebackoff modelhandlesthis typeof
samplingerror by discountingthe probabilityof low countevents
anddistributing thefreedprobabilitymassamongunseenevents.

As theamountof trainingtext usedto createthebackoff modelin-
creases,thenumberof uniquetrigramsandbigramsincreases.The
languagemodel will necessarilytakesup more memoryin order
to storetheadditionalinformationfrom the trainingtext. At some
point, themodel’s memoryrequirementswill exceedany practical
systemcapacity. Therefore,wecaneitherlimit theamountof train-
ing datawe useto developthemodel,or takefrom a large amount
of training text that portion which leadsto themostreliableword
predictions.

3. PRUNING TECHNIQUES

Word sequences that occur the fewestnumberof timesin a train-
ing text canleadto unreliablepredictions.This ideahasled to the
popularcutoff methodof trainingtext reduction,whereonly infor-
mationaboutthemostfrequentlyoccurringbigramsandtrigramsis
includedin the languagemodel. This methodwill be exploredin
depthin Section3.1. However, we alsoneedto considertheword
sequencesfor which themodelwould not makea goodprediction
if they wereeliminatedfrom the model. This ideahasled to the
developmentof theweighteddifferencemethodof trainingtext re-
duction,whichwill beintroducedin Section3.2.

3.1. The Cutoff Method

The cutoff methodof training text pruningexcludesfrom the lan-
guagemodel thosebigramsand trigramsthat occur infrequently.
Themotivationfor thismethodlies in theargumentthatthereis not
muchdifferencebetweena trigram or bigramoccurringoncein a
text of millions of wordsandit notoccuringatall. Justby excluding
thosen-gramswith a countof onefrom a model,a significantsav-
ingsin memorycanbeachieved. In a typical trainingtext, roughly
80%of uniquetrigramsequencesoccuronly once.This ideacanbe
extendedfurtherto bigramsandtrigramsthatoccurany numberof
times. We candesignatea trigramcutoff anda bigramcutoff, and



all bigramsandtrigramsthatoccurthesamenumberof timesor less
thantheircutoff areexcludedfrom thebackoff languagemodel.

What kind of memorysavings can we expect from excluding bi-
gramsand trigramsin this manner? In Carnegie Mellon Univer-
sity’s SphinxII speechrecognizer, eachtrigramtakesup 4 bytesof
memoryandeachbigramtakes8 bytes(becauseit containsaback-
off weightanda pointerto thedependenttrigrams.) The memory
requiredfor unigramprobabilitiesandconstantscanbeconsidered
a fixed overhead,andis not includedin our memorycalculations.
Usinga58,000worddictionaryand45million wordsof Wall Street
Journaltraining data(1992– 1994), the memoryrequirementsof
modelscreatedwith different cutoffs can be computed. Several
samplemodel sizesare shown in Table1, with cutoffs indicated
by (bigramcutoff – trigram cutoff). A cutoff of

�
meansthat n-

gramsoccuring
�

or fewer timesarediscarded.For thisdata,78.5%
of thetrigramsand61%of thebigramsoccuronly once,sowesee
thatsignificantmemorysavingscanbeobtainedby cuttingout the
bigramsandtrigramsthatappearinfrequently.

ModelCutoffs # Bigrams # Trigrams Memory(MB)
(0–0) 4,627,551 16,838,937 104
(0–1) 4,627,551 3,581,187 51
(1–1) 1,787,935 3,581,187 29
(0–10) 4,627,551 367,928 38
(10–10) 347,647 367,928 4

Table 1: ModelCutoffs andResultingModelSize

In orderto investigatetheeffectsof raisingbigramandtrigramcut-
offs, severalmodelswerecreatedusingtheCarnegieMellon Statis-
tical LanguageModelingToolkit [4]. The word error rate(WER)
andperplexity (PP)werecalculatedfor eachmodel. The perplex-
ities of the scaleddown modelswerecomputedusingthe official
ARPA 1994LanguageModelDevelopmentSet,andtheworderror
ratewascomputedusingCMU’s SphinxII systemandthe ARPA
1994Hub1 AcousticDevelopmentSet(7387words).Severalmod-
elswerecreatedbypruningonly trigrams,while othersincorporated
bigramandtrigrampruning.First, theamountof trigramsto bere-
tainedin themodelwasdetermined,andthenthecutoff wassetto
be the maximumcutoff possibleso that all trigramswith a count
equalor lessthanthecutoff plussomenumberwith acountof (cut-
off+1) wereremovedfrom themodel.Thetrigramscutout at level
(cutoff+1) werethe first onesencounteredin an alphabetizedlist.
For combinedbigramandtrigrampruning,thenumberof bigrams
retainedin themodelwasascloseaspossibleto thenumberof tri-
gramsin themodel. The bigramandtrigram cutoffs werechosen
so that thesedesiredtotalscould be met, resultingin bigramand
trigramcutoffs thatwerenotnecessarilythesame.

3.2. The Weighted Difference Method

If ann-gramis notpresentin themodel,themodelusesabackedoff
probabilityestimatein placeof theoriginalestimate.If thatbacked
off estimateis very closeto theoriginal estimate,thenthereis not
aneedto storetheoriginalestimatein thefirst place.This ideahas
led to theweighteddifferencemethodof trainingtext reduction.

Theweighteddifferencefactorof ann-gramis definedto be
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(1)

where
�

is theGood-Turing discountedn-gramcount.This factor
reflectsourdesireto keepann gramin thelanguagemodel.

The CMU StatisticalLanguageModeling Toolkit wasmodifiedto
createweighteddifferencelanguagemodelsby pruning n-grams
basedontheirweighteddifferencefactor. Severalmodelswerecre-
ated.Theresultsareplottedwith thecutoff methodresults,andare
shown in Figures1 - 4. In bothcases,asthe languagemodelsize
is decreased,theperplexity risessharply. Trigrampruningdoesnot
have mucheffect on WER,but bigramandtrigrampruningcauses
memorysavingsandincreasesin WER to becomesignificant.

As can be seenfrom thesefigures, the modelscreatedwith the
weighteddifferencemethodhavesignificantlylowerperplexity val-
uesthanfor thecutoff models,but theperplexity risesin thesame
mannerin bothcases.Theword errorratesfor theweighteddiffer-
encemodelsarealmostalwayslower thanthat of the cutoff mod-
els, but the significanceof the differenceis questionable.We can
saywith confidencethatusingtheweighteddifferencemethodis at
leastasgoodasthe cutoff method,andgenerallyyields improved
perplexity andworderrorratesover thecutoff method.

Table2 displaysmoreclearlytheresultsdepictedin Figure4 for the
weighteddifferencemethod,with therelative increasein WERover
theoriginal (0–1)modelshown.

# Bigrams # Trigrams Memory(MB) WER(increase)
4,627,551 3,581,187 51 MB (originalmodel)
4,627,551 400,000 39 MB 1%relative
4,627,551 70,000 37 MB 3%relative

934,351 900,000 11 MB 5%relative
416,338 400,000 5 MB 9%relative
108,117 100,000 1.3MB 20%relative

Table 2: ModelReductionandResultingWERIncreases
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Figure 1: Perplexity vs ScaledLanguageModel Size, Trigram
PruningOnly, 1992- 1994Data.
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Figure 2: Word Error Ratevs ScaledLanguageModel Size,Tri-
gramPruningOnly, 1992- 1994Data.
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Figure 3: Perplexity vs ScaledLanguageModel Size,Bigramand
TrigramPruning,1992- 1994Data.
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Figure 4: WordErrorRatevsScaledLanguageModelSize,Bigram
andTrigramPruning,1992- 1994Data.

Is modelsizereductiona feasiblepractice?We seein Table2 that
significantmemoryreductioncanbe achieved. Certainly, for par-
ticular applications,the increasein WER is worth the savings in
memory.

4. EFFECTS OF DIFFERENT AMOUNTS
OF TRAINING DATA

In orderto verify thatusingmoretrainingdataandthenpruningit
down is a betterapproachthanjust startingwith a smallerbodyof
trainingdata,threedifferentsizeddatasetsweredefinedandused
to createmodelsof the samesize. The first dataset consistsof
45.3million wordsof Wall StreetJournaldata(1992- 1994), the
samedatasetwhoseresultsareshown above. The seconddataset
is a subsetof the first dataset, consistingof 28.5 million words
of Wall StreetJournaldatafrom 1993- 1994. The third set is yet
a smallerset,6.5 million wordsof 1994Wall StreetJournaldata.
Severallanguagemodelsof approximatelythesamesizewerecom-
putedwith the threedatasetsusingboth the cutoff andweighted
differencemethods,pruningasmany bigramsandtrigramsasnec-
essaryin order to reachthe desiredsize. For the third setof data
(6.5 million words),thelargestmemorydatapoint representsa (0-
0) model,whereno pruninghasoccurredat all. For all threesets,
the weighteddifferencemethodgenerallyoutperformedthe cutoff
methodin termsof perplexity andworderrorrate.

Figures5 and 6 show theweighteddifferenceresultsfor all three
datasets. It canclearly be seenthat the 6.5 million word models
performsignificantlyworsethanthemodelsoriginally createdfrom
45.3and28.5million words. Thedifferencebetweenthefirst and
seconddatasetsis notassignificant,yet thelargerdatasetdoesdo
slightly better.
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Figure 5: Perplexity vs ScaledLanguageModel Sizefor Different
Amountsof TrainingData(WeightedDifferencePruning.)

Thereareseveralfactorsthatneedto beconsideredwhenanalyzing
the resultsof Figures5 and 6. First of all, the threedatasetsdo
not comefrom thesamedistribution. Thereis a time shift present,
in that the datathat is addedto the 6.5 million words to get the
28.5and45.3million wordsis olderdata.If asignificantchangeof
styleor contenthasoccurredover time for thatsource,thestatistics
of theolderdatamaybelesshelpful in modelingprobabilitiesdue
to bigramandtrigramfrequenciesthatdo notaccuratelyreflectthe
currentfrequency distributionsof the languagesource.In fact,we
found a consistent10% perplexity increasewhen the 6.5 MW of
1994datawasreplacedby a comparableamountof 1992data. In
previouswork ([3]), we foundasimilareffect on theOOV rate.
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Figure 6: WordErrorRatevsScaledLanguageModelSizefor Dif-
ferentAmountsof TrainingData(WeightedDifferencePruning.)

Second,thereseemsto be a thresholdat aboutthe1–2MB model
sizefor whichtheperplexitiesandworderrorratesdegradeequally
nomatterhow muchdatawasusedinitially. At somepoint,somuch
informationhasbeenprunedfrom themodelthatperhapsthemod-
elsconverge to approximatelythe samesetof bigramandtrigram
sequences, which arethosethatoccurthemostfrequently. For ex-
ample,92%of thebigramsand87%of thetrigramsarethesamein
the two 1.3 MB modelsbasedon 28.5MW and45.3MW. Further
intersectingwith the6.5MW modelyieldsa73%bigramanda59%
trigramoverlap.Usingapproximatelythesamesetof bigramsand
trigramswith approximatelythe samesetof probabilitiesis likely
to leadto similar performance.

5. CONCLUSION

Fromtheresultspresentedin theprevioussections,wecanconclude
that,at leastin this domain:

< Training text pruningcanbe usedto build compactandeffi-
cient languagemodelsthat requiresignificantlylessmemory
thanlanguagemodelsbuilt from completetrainingtext.

< As modelsizedecreases,the weighteddifferencemethodof
trainingtext pruningresultsin asignificantlysmallerperplex-
ity increasethanthecutoff method.

< As modelsizedecreases,the weighteddifferencemethodof
training text pruning generallyresultsin a slightly smaller
worderrorrateincreasethanthecutoff method.

< Usingmoretrainingdata,up to at least25 - 30 million words
initially, and thenpruning it down is a betterapproachthan
just startingwith a small amountof trainingdata,aslong as
thetrainingtext doesnotcontainsignificantstylechangesand
the pruningis not severe(at least2MB remaining). Beyond
25 million words,theamountof trainingdatadoesnothavea
noticeableeffect.

Furtheranalysis,detailedresultsandideasfor future investigation
arepresentedin [5].
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