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Abstract

When a trigram backoff languagemodel is createdfrom a large body of text,
trigramsandbigramsthatoccurfew timesin thetrainingtext areoftenexcluded
from the model in orderto decreasethe modelsize. Generally, the elimination
of n-gramswith very low countsis believedto not significantlyaffectmodelper-
formance.This projectinvestigatesthedegradationof a trigrambackoff model’s
perplexity andword errorratesasbigramandtrigramcutoffs areincreased.The
advantageof reductionin modelsize is comparedto the increasein word error
rateandperplexity scores.

More importantly, this project also investigatesalternative ways of excluding
bigramsandtrigramsfrom abackoff languagemodel,usingcriteriaotherthanthe
numberof timesann-gramoccurredin thetrainingtext. Specifically, adifference
methodhasbeeninvestigatedwhere the differencein the logs of the original
andbackedoff trigram andbigramprobabilitieswasusedasa basisfor n-gram
exclusionfrom the model. We have shown thatexcluding trigramsandbigrams
basedon a weightedversionof this differencemethodresultsin betterperplexity
andword error rateperformancethanexcluding trigramsandbigramsbasedon
countsalone.



1 Introduction

A languagemodelisafundamentalcomponentof aspeechrecognizerthatassigns
prior probabilitiesto hypothesizedwordsequencessuppliedby a speechdecoder.
Statistical languagemodelsestimatetheseprior probabilitiesby counting the
numberof occurrencesof all wordsandcertainword sequencesof interestin a
giventrainingtext. Thereliability of theseprobabilityestimateswhenusedfor a
particularspeechrecognitiontaskdependonthesourceof thetrainingtext andthe
amountof trainingtext available.Inaccuraciesin probabilityestimatesfrequently
arisewhenthe training text doesnot resemblethe natureof the languageto be
recognized,or whenthereis notenoughtrainingdataavailableto obtainareliable
representationof wordandwordsequencefrequency from aparticulartext source.

Currentcollectionsof text for statisticallanguagemodeltrainingaremaking
thesparsetrainingdataproblemlessseriousfor certaindomains,suchasARPA’s
Wall StreetJournalcorpus,whichis partof the305million wordNorthAmerican
BusinessNewscollection.Themoretrainingtext thatis usedfor languagemodel
creation,themoreuniquewordsequencesareencounteredthatmustbestoredin
themodel. Thus,astrainingtext sizeincreases,languagemodelsizenecessarily
increases,whichcanleadtomodelsthataretoounwieldyandmemory-demanding
to beof practicaluse.This overabundanceof trainingdatawill allow us,or more
correctlyforceus,tobeselectivein choosingthetrainingdatathatweuseto create
ourmodels.

This projectinvestigatesmethodsof trainingtext pruningthatallow for com-
pact and efficient creationof trigram backoff languagemodels. One pruning
method,the popularcutoff method,eliminatesfrom the trigram backoff model
thosebigramsandtrigramsthatoccurthefewestnumberof timesin thetraining
text. We developanothermethodbasedon weighteddifferences,wherethedif-
ferencein thelogsof theoriginalandbackedoff trigramandbigramprobabilities
is usedasabasisfor n-gramexclusionfrom themodel.Perplexity andworderror
ratesareusedto assessa model’s performanceasfewerbigramsandtrigramsare
incorporatedinto themodel. Also, differentamountsof training text arepruned
down to createmodelsof thesamesize,so that theeffect of theoriginal amount
of training dataon a scaled-down modelcanbe concluded. Theseresultshelp
determineif thestatisticaladvantagesof creatinga languagemodelfrom a large
trainingtext canbecarriedovertoscaleddownversionsof thesamemodel,for use
onsystemswhosememorycapacitiesdonotmeetthelargemodel’srequirements.
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2 The Backoff Language Model

Thebackoff languagemodelwasdevelopedby Katz [2] to addresstheproblems
associatedwith sparsetraining data. Small amountsof training dataare more
likely to misrepresentthetruedistribution of word frequenciesfrom a particular
languagesourceduetoalackof sufficientsamples.Thebackoff modelhandlesthis
type of samplingerrorby reducingthe probabilityof unreliableestimatesmade
from observed frequenciesand distributing this freed probability massamong
thosewordsfrom a given vocabulary that did not occurin the training text [2].
Generally, anestimateis deemedunreliableif it occurredfew timesin thetraining
text. Wordsequences,orn-grams,with low countshavetheirmaximum-likelihood
estimatesreplacedby Turing’sestimates.

The trigram backoff model is constructedby countingthe frequency of uni-
grams,bigramsandtrigramsin asampletext relativeto agivenvocabulary. Those
n-gramsthatoccurfew timesin thetext arediscounted,andtheextra probability
massis divided amongthosewords in the vocabulary that are not seenin the
training data. As a result,every word in the vocabulary hasa finite probability
of occurringwhenthemodelis usedto predictnew word sequences.Themodel
alsotriesto useasmuchwordhistoryaspossiblewhenassigningtheprobability
of awordgiventhetwo wordsthatprecedeit. Theprobabilityassignedto aword
sequenceis shown in Equation1, where ���� representsthesequence

� � ��������� � ��	 ,
thediscountratio 
 is a functionof thecount � � �
�

1 	 , andthe � ’s arethebackoff
weightsthatensurethattheprobabilitiessumto one:

� � � � ��� � ��� 1
1 	��

� �
1 ��
 	 � � � �

1 	�� � � � ��� 1
1 	 if � � � �

1 	�� 0

� � � � � ��� 1
1 	�	�� � ��� 1

� � ��� � � � 1
2 	 if � � �
�

1 	!� 0
(1)

In the caseof a trigram model, the word history is limited to the two words
precedingthe word for which we aredefininga probability. The modeltries to
assignthetrigramprobability

� � � �"� � � � 1��� 2 	 if it exists in themodel. If thereis no
trigramprobability for thatword sequence,thenthe modelbacksoff andusesa
weightedversionof thebigramprobability,

� � � ��� � � � 1 	 . If the bigramwasnot
seenin thetrainingtext, themodelbacksoff againandusesaweightedversionof
unigramprobability

� � � �#	 .
As the amountof training text usedto createthe backoff model increases,

thenumberof uniquetrigramsandbigramsincreases.(Thenumberof unigrams
staysconstantandequalsthe sizeof the vocabulary.) The languagemodelwill
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necessarilytakesup more memoryin order to storethe additionalinformation
from the training text. At somepoint, the model’s memoryrequirementswill
exceedany practicalsystemcapacity. Therefore,wecaneitherlimit theamountof
trainingdataweuseto developthemodel,or takefrom a largeamountof training
text thatportionwhich leadsto themostreliablewordpredictions.Thus,a large
amountof trainingtext canbescaleddown to createacompactmodelof adesired
size.Two scalingtechniquesthatcanbeusedtoselectspecificamountsof training
text will beintroducedin thefollowing sections.

3 Pruning Techniques

As hasbeenpreviously suggested,word sequencesthatoccurthefewestnumber
of timesin a trainingtext canleadto unreliablepredictions.This ideahasled to
thepopularcutoff methodof trainingtext reduction,whereonly informationabout
the most frequentlyoccurringbigramsandtrigramsis includedin the language
model. This methodwill be explored in depth in Section3.1. However, we
alsoneedto considerthe word sequencesfor which the modelwould not make
a good predictionif the probability for that sequencewas not includedin the
model. Theremaybea way to exploit theredundancy presentin thestructureof
thebackoff modelby specificallyconsideringwhichinformationfrom thetraining
datawoulddo themostharmif excluded.This ideahasled to thedevelopmentof
theweighteddifferencemethodof trainingtext reduction,whichwill beintroduced
in Section3.2.

3.1 The Cutoff Method

Thecutoff methodof trainingtext pruningexcludesfromthelanguagemodelthose
bigramsandtrigramsthatoccurinfrequently. Themotivationfor this methodlies
in the argumentthat thereis not muchdifferencebetweena trigram or bigram
occurringoncein a text of millions of wordsandit not occuringat all. A trigram
will occuronly oncein a training text for oneof two reasons:eitherthetrigram
representsa word sequencethat is rarely emittedfrom the training text source,
or a samplingerrorhasoccurredandthetraining text doesnot accuratelyreflect
the true expectedfrequency of that trigram. In eithercase,thereshouldnot be
muchharmdoneto themodel’s performanceif thattrigramis excludedfrom the
model. If thetrigramdoesin factoccuronly rarely, thenit will mostlikely occur
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infrequentlyduringthemodel’s use,leadingto infrequentprobabilityerrors.The
modelwill backoff to abigramprobabilityestimate,whichwill hopefullyleadto
a stronger(morereliable)probabilityestimatefor thosecaseswherea sampling
error hasoccurred. Justby excluding thosetrigramswith a countof onefrom
a model,a significantsavings in memorycanbe achieved. In a typical training
text, roughly 80% of uniquetrigram sequencesoccuronly once. This ideacan
beextendedfurther to bigramsandtrigramsthatoccurmorethanonce. We can
designatea trigram cutoff anda bigramcutoff, wherea cutoff of $ meansthat
n-gramsoccuring$ or fewertimesarediscarded.

What kind of memorysavings can we expect from excluding bigramsand
trigramsin this manner?In Carnegie Mellon University’s SphinxII speechrec-
ognizer, eachtrigramtakesup4 bytesof memory(2 bytesfor word identification
and2 bytesfor theprobability)andeachbigramtakes8 bytes(2 bytesfor word
identification,2bytesfor theprobability, 2bytesfor thebackoff weightand2bytes
for apointerto thetrigrams.)Thememoryrequiredfor unigramprobabilitiesand
constantscanbeconsidereda fixedoverhead,andis not includedin our memory
calculations.Usinga58,000worddictionaryand45million wordsof Wall Street
Journaltrainingdata(1992- 1994),thememoryrequirementsof modelscreated
with differentcutoffs canbecomputed.Severalsamplemodelsizesareshown in
Table1, with cutoffs indicatedby (bigramcutoff – trigramcutoff).

ModelCutoffs # Bigrams # Trigrams Memory(MB)
(0–0) 4,627,551 16,838,937 104
(0–1) 4,627,551 3,581,187 51
(1–1) 1,787,935 3,581,187 29
(0–10) 4,627,551 367,928 38
(10–10) 347,647 367,928 4

Table1: ModelCutoffs andResultingModelSize

For thisdata,78.5%of thetrigramsand61%of thebigramsoccuronlyonce,so
weseethatsignificantmemorysavingscanbeobtainedby cuttingout thebigrams
andtrigramsthatappearinfrequently.

In orderto investigatetheeffectsof raisingbigramandtrigramcutoffs,several
modelswerecreatedusing the Carnegie Mellon StatisticalLanguageModeling
Toolkit [4]. The perplexities of the scaleddown modelswerecomputedusing
the official ARPA 1994LanguageModel DevelopmentSet,andthe word error
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Figure1: Perplexity vsScaledLanguageModelSize,TrigramPruningOnly, 1992
- 1994Data.

ratewascomputedusingCMU’s Sphinx II systemand the ARPA 1994Hub 1
AcousticDevelopmentSet(7387words). Thenumberof trigramsto beretained
in themodelwaschosento besomefixednumber, andthenthecutoff wassetto
bethemaximumcutoff possiblesothatall trigramswith acountequalor lessthan
the cutoff plus somenumberwith a countof (cutoff+1) wereremoved from the
model.Thetrigramscut outat level (cutoff+1) werethefirst onesencounteredin
analphabetizedlist.

Figures1 and 2 show theeffectsof cuttingoutonly trigramsonperplexity and
worderrorrate.Figures3 and 4 show theeffectsof cuttingoutbothbigramsand
trigramsfrom themodel.For eachmodel,a fixednumberof trigramswaschosen
to beretainedin themodel. For bigrampruning,thenumberof bigramsretained
in themodelwasascloseaspossibleto thenumberof trigramsin themodel.The
bigramandtrigramcutoffs werechosensothatthesedesiredtotalscouldbemet,
resultingin bigramandtrigramcutoffs thatwerenotnecessarilythesamenumber.
As canbeseenfrom thegraphs,thesavingsin termsof memoryaremuchgreater
whenbigramsareexcludedfrom themodel.

As thelanguagemodelsizeisdecreased,theperplexity risessharply(Figures1
and 3.) The word error ratealsorisessharply, althoughthe increaseonly truly
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Figure 2: Word Error Ratevs ScaledLanguageModel Size, Trigram Pruning
Only, 1992- 1994Data.
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Figure3: Perplexity vs ScaledLanguageModelSize,BigramandTrigramPrun-
ing, 1992- 1994Data.
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Figure4: Word ErrorRatevs ScaledLanguageModelSize,BigramandTrigram
Pruning,1992- 1994Data.

becomessignificantoncebigramsareprunedfrom themodel.

3.2 The Weighted Difference Method

The cutoff methodshows that training text reductioncanresult in a significant
savings in memorywith a generallyacceptableincreasein WER andperplexity.
However, thereshouldbe a moreintelligent way to choosewhich trigramsand
bigramsto includein themodelthanjust thosewhich occurthemostoftenin the
trainingtext. If ann-gramis notpresentin themodel,themodelusesabackedoff
probabilityestimatein placeof theoriginal estimate.If thatbackedoff estimate
is very closeto the original estimate,thenthereis no needto storethe original
estimatein thefirst place.This ideahasled to theweighteddifferencemethodof
trainingtext reduction.

Theweighteddifferencefactorof ann-gramis definedto be

� � 
 �('�)+*-,/.�0 �2143 �
log

�
originalprob	 � log

�
backedoff prob	�	 (2)

where 1 is the Good-Turing discountedn-gramcount. This factor reflectsour
desireto keepann gramin thelanguagemodel.
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The CMU StatisticalLanguageModeling Toolkit was modified to create
weighteddifferencelanguagemodelsby pruningn-gramsbasedontheirweighted
differencefactor. Severalmodelswerecreated.The resultsareplottedwith the
cutoff methodresults,and are shown in Figures5 - 8. In both cases,as the
languagemodelsizeis decreased,theperplexity risessharply. Trigram pruning
doesnot have mucheffect on WER, but bigrampruningcausesmemorysavings
andincreasesin WERto becomesignificant.

As can be seenfrom thesefigures, the modelscreatedwith the weighted
differencemethodhave significantlylower perplexity valuesthanfor the cutoff
models,but theperplexity risesin thesamemannerin bothcases.Theworderror
ratesfor theweighteddifferencemodelsarealmostalwayslower thanthatof the
cutoff models,but thesignificanceof thedifferenceis questionable.We cansay
with confidencethatusingtheweighteddifferencemethodis at leastasgoodas
thecutoff method,andgenerallyyieldsimprovedperplexity andworderrorrates
over thecutoff method.

Table2 displaysmoreclearlytheresultsdepictedin Figure8 for theweighted
differencemethod,with therelativeincreasein WERovertheoriginal(0–1)model
shown.

# Bigrams # Trigrams Memory(MB) WER(increase)
4,627,551 3,581,187 51MB (originalmodel)
4,627,551 400,000 39MB 1%relative
4,627,551 70,000 37MB 3%relative

934,351 900,000 11MB 5%relative
416,338 400,000 5 MB 9%relative
108,117 100,000 1.3MB 20%relative

Table2: ModelReductionandResultingWERIncreases

Is modelsizereductiona feasiblepractice?We seein Table2 thatsignificant
memoryreductioncan be achieved. Certainly, for particularapplications,the
increasein WERis worth thesavingsin memory.

4 Effects of Different Amounts of Training Data

In orderto verify thatusingmoretrainingdataandthenpruningit down is abetter
approachthanjust startingwith a smallerbody of training data,threedifferent
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Figure5: Perplexity vsScaledLanguageModelSize,TrigramPruningOnly, 1992
- 1994Data.
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Figure 6: Word Error Ratevs ScaledLanguageModel Size, Trigram Pruning
Only, 1992- 1994Data.
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Figure7: Perplexity vs ScaledLanguageModelSize,BigramandTrigramPrun-
ing, 1992- 1994Data.
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Figure8: Word ErrorRatevs ScaledLanguageModelSize,BigramandTrigram
Pruning,1992- 1994Data.
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Figure9: Perplexity vs ScaledLanguageModelSize,BigramandTrigramPrun-
ing, 1993- 1994Data.

sizeddatasetsweredefinedandusedto createmodelsof thesamesize.Thefirst
datasetconsistsof 45.3million wordsof Wall StreetJournaldata(1992- 1994),
thesamedatasetusedin theexamplesabove. Theseconddatasetis a subsetof
thefirst dataset,consistingof 28.5million wordsof Wall StreetJournaldatafrom
1993- 1994. The third set is yet a smallerset,6.5 million wordsof 1994Wall
StreetJournaldata.Severallanguagemodelsof approximatelythesamesizewere
computedwith the threedatasetsusingboth the cutoff andweighteddifference
methods,pruningasmany bigramsandtrigramsasnecessaryin orderto reachthe
desiredsize. The perplexity andword error rateresultsareshown in Figures9
- 12 for the second(1993- 1994)andthe third (1994only) datasets. Referto
Figures7 and 8 for the1992- 1994results.For thethird setof data(6.5million
words),thelargestmemorydatapointrepresentsa(0–0)model,wherenopruning
hasoccurredat all. For all threesets,theweighteddifferencemethodgenerally
outperformsthecutoff methodin termsof perplexity andworderrorrate.

Figures13 and 14 show the weighteddifferenceresultsfor all threedata
sets.It canclearlybeseenthatthe6.5million wordmodelsperformsignificantly
worsethanthemodelsoriginally createdfrom 45.3and28.5million words. The
differencebetweenthefirst andseconddatasetsis notassignificant,yet thelarger
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Figure10: WordErrorRatevsScaledLanguageModelSize,BigramandTrigram
Pruning,1993- 1994Data.
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Figure 11: Perplexity vs ScaledLanguageModel Size, Bigram and Trigram
Pruning,1994Data.
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Figure12: WordErrorRatevsScaledLanguageModelSize,BigramandTrigram
Pruning,1994Data.

datasetdoesdoslightly better.
Thereareseveralfactorsthatneedto beconsideredwhenanalyzingtheresults

of Figures13 and 14. First of all, the threedatasetsdo not comefrom the
samedistribution. Thereis a time shift present,in that the datathat is addedto
the 6.5 million wordsto get the 28.5and45.3million wordsis older data. If a
significantchangeof styleor contenthasoccurredover time for thatsource,the
statisticsof the older datamay be lesshelpful in modelingprobabilitiesdueto
bigramandtrigramfrequenciesthatdonotaccuratelyreflectthecurrentfrequency
distributionsof thelanguagesource.In fact,wefoundaconsistent10%perplexity
increasewhenthe6.5MW of 1994datawasreplacedby a comparableamountof
1992data.In previouswork ([3]), wefoundasimilareffecton theOOV rate.

Second,thereseemsto be a thresholdat aboutthe 1–2 MB modelsize for
which theperplexities andworderrorratesdegradeequallyno matterhow much
datawasusedinitially. At somepoint, so much informationhasbeenpruned
from themodelthatperhapsthemodelsconvergeto approximatelythesamesetof
bigramandtrigramsequences,whicharethosethatoccurthemostfrequently. For
example,92%of thebigramsand87%of thetrigramsarethesamein thetwo 1.3
MB modelsbasedon28.5MW and45.3MW. Furtherintersectingwith the6.5MW
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modelyieldsa 73%bigramanda 59%trigramoverlap.Usingapproximatelythe
samesetof bigramsandtrigramswith approximatelythesamesetof probabilities
is likely to leadto similarperformance.

5 Conclusions

Fromtheresultspresentedin theprevioussections,wecancometo thefollowing
conclusionsabouttheusefulnessandperformanceof compactlanguagemodels:

5 Training text pruningcanbeusedto build compactandefficient language
modelsthat requiresignificantlylessmemorythanlanguagemodelsbuilt
from completetrainingtext.

5 As modelsizedecreases,the weighteddifferencemethodof training text
pruningresultsin a significantlysmallerperplexity increasethanthecutoff
method.

5 As modelsizedecreases,the weighteddifferencemethodof training text
pruninggenerallyresultsin a slightly smallerworderrorrateincreasethan
thecutoff method.

5 Usingmoretrainingdata,up to at least25 - 30 million wordsinitially, and
thenpruning it down is a betterapproachthan just startingwith a small
amountof trainingdata,aslongasthetrainingtext doesnotcontainsignif-
icantstylechangesandthepruningis not severe(at least2MB remaining).
Beyond 25 million words, the amountof training datadoesnot have a
noticeableeffect.

6 Future Work

Thereare several issuesof interestthat could be addressedin future work on
scalablelanguagemodels. Currently, the weighteddifferencemethodprovides
two lists: one for bigramsand one for trigrams. The userdecideshow many
trigramsandbigramsto includein thescaleddown model. A onelist approach
would be muchmoreuseful,wherethe systemdecidesautomaticallywhethera
trigram or bigram shouldbe the next entity prunedfrom the model. The two
list approachwas usedherebecausethe memoryrequirementsof bigramsand
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trigramsareimplementationdependent,andalsoduetothecomplicationof trigram
dependencieson bigrams.In our implementationof thebackoff languagemodel,
a bigramcannotbe excludedfrom the model if it is an initial part of a trigram
that is still in themodel. Trigram pruningoccursfirst, andthenthebigramsare
prunedonly if they have no dependenttrigrams. A differentimplementationof
thebackoff modelmaybeableto avoid thisproblem.

Alternatively, aonelist approachcanbeuseddespitetrigramdependencieson
bigrams.Onelist canbemadecontainingall of theweighteddifferencefactorsfor
all of thebigramsandtrigramsin alargemodel,andthenthetopn-gramsfrom the
list (thosewith thehighestweighteddifferencefactors)canbechosenin orderto
meetadesiredmemorysize.Wheneverabigramis to beexcludedfromthemodel,
all of its dependenttrigramsarethrown out, regardlessof whetherthey wereto
beretainedin or excludedfrom themodel. An initial explorationof theonelist
approachshowsthattheperplexity of thesemodels(for thisdata)is essentiallythe
sameastheweighteddifferenceperplexitiesof modelswhereapproximatelyequal
numbersof bigramsandtrigramswereretained.Dividing theweighteddifference
factor for the bigramsby two (sincethey takeup twice the spaceof a trigram
in our currentimplementation),henceincreasingtheir likelihood to beexcluded
from themodel,shows no effect on modelperplexity, thoughsignificantlymore
trigramsare retainedin the model. Also, hand-pickingthe ratio of bigramsto
trigramsto be1:5 and5:1 (ratherthan1:1) resultsin worseperplexity measures
thanthe1:1 ratio. Furtherstudiesarerequiredto determineif thereis anoptimal
ratioof bigramsandtrigramsthatminimizemodelperplexity.

As a secondtopic of further investigation,an additional factor may prove
helpful in the weighteddifferencemeasure. If a time coefficient is somehow
addedinto theequation,thentheeffectsof time shift in thetraining text maybe
accountedfor. More recenttext could be weightedmoreheavily, meaningthat
thosetrigramsandbigramswouldhave a greaterchanceof surviving thepruning
stepandberetainedin themodel.In thisway, newervocabularyandmorecurrent
topicsof interestcould be reflectedin the model,asthey will be morelikely to
occurduringthemodel’s use.However, similar attemptsto factordatatime shift
into vocabularyselectionfailed to show a significanteffect [3].
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