Learning Hidden Markov Model Structure for Information Extraction

Kristie Seymoref
kseymore@ri.cmu.edu

tSchool of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Statistical machine learning techniques, while well
proven in fields such as speech recognition, are just
beginning to be applied to the information extraction
domain. We explore the use of hidden Markov models
for information extraction tasks, specifically focusing
on how to learn model structure from data and how
to make the best use of labeled and unlabeled data.
We show that a manually-constructed model that con-
tains multiple states per extraction field outperforms a
model with one state per field, and discuss strategies for
learning the model structure automatically from data.
We also demonstrate that the use of distantly-labeled
data to set model parameters provides a significant im-
provement in extraction accuracy. Our models are ap-
plied to the task of extracting important fields from
the headers of computer science research papers, and
achieve an extraction accuracy of 92.9%.

Introduction

Hidden Markov modeling is a powerful statistical ma-
chine learning technique that is just beginning to gain
use in information extraction tasks. Hidden Markov
models (HMMs) offer the advantages of having strong
statistical foundations that are well-suited to natural
language domains, handling new data robustly, and be-
ing computationally efficient to develop and evaluate
due to the existence of established training algorithms.
The disadvantages of using HMMs are the need for an
a priort notion of the model topology and, as with any
statistical technique, large amounts of training data.
This paper focuses on two aspects of using HMMs
for information extraction. First, we investigate learn-
ing model structure from data. Most applications of
HMMs assume a fixed model structure (the number of
states and the transitions between the states), which is
selected by hand a priori according to the domain. We
argue that for information extraction, the correct model
topology is not apparent, and that the typical solution
of using one state per class may not be optimal.
Second, we examine the role of labeled and unla-
beled data in the training of HMMs. We introduce
the concept of distantly-labeled data, which is labeled
data from another domain whose labels partially over-
lap those from the target domain. We show how using

Andrew McCallum?

mccallum@justresearch.com

Ronald Rosenfeldf

roni@cs.cmu.edu

tJust Research
4616 Henry Street
Pittsburgh, PA 15213

distantly-labeled data consistently improves classifica-
tion accuracy.

Hidden Markov models, while relatively new to infor-
mation extraction, have enjoyed success in related nat-
ural language tasks. They have been widely used for
part-of-speech tagging (Kupiec 1992), and have more
recently been applied to topic detection and tracking
(Yamron et al. 1998) and dialog act modeling (Stolcke,
Shriberg, & others 1998). Other systems using HMMs
for information extraction include those by Leek (1997),
who extracts gene names and locations from scientific
abstracts, and the Nymble system (Bikel et al. 1997)
for named-entity extraction. Unlike our work, these sys-
tems do not consider automatically determining model
structure from data; they either use one state per class,
or use hand-built models assembled by inspecting train-
ing examples. Freitag & McCallum (1999) hand-build
multiple HMMs, one for each field to be extracted, and
focus on modeling the immediate prefix, suffix, and in-
ternal structure of each field; in contrast, we focus on
learning the structure of one HMM to extract all the
relevant fields, taking into account field sequence.

Our work on HMMs is centered around the task of
extracting information from the headers of computer
science research papers. The header of a research paper
consists of all the words preceding the main body of the
paper, and includes the title, author names, affiliations
and addresses. Automatically extracting fields such as
these is useful in constructing a searchable database of
computer science research. The models we describe in
this paper are used as part of the Cora computer science
research paper search engine (McCallum et al. 1999),
available at http://www.cora.justresearch.com.

The remainder of the paper is structured as follows:
first, we review the basics of hidden Markov mod-
els. Then, we discuss how to learn model structure
from data and examine how to estimate model parame-
ters from labeled, unlabeled and distantly-labeled data.
Next, we present experimental results on extracting im-
portant fields from the headers of computer science re-
search papers. Finally, we conclude with a breakdown
of the errors that the HMMs are making and a discus-
sion of future work towards improving the models.

Information Extraction with Hidden
Markov Models

Hidden Markov models provide a natural framework
for modeling the production of the headers of research
papers. We want to label each word of a header as
belonging to a class such as title, author, date, or key-
word. We do this by modeling the entire header (and
all of the classes to extract) with one HMM. This task
varies from the more classical extraction task of identi-
fying a small set of target words from a large document
containing mostly uninformative text.

Discrete output, first-order HMMs are composed
of a set of states (), with specified initial and final
states ¢y and ¢qp, a set of transitions between states
(¢ = ¢'), and a discrete vocabulary of output symbols
Y = {o1,092,...,0m}. The model generates a string
X = z1Z2...2; by beginning in the initial state, tran-
sitioning to a new state, emitting an output symbol,
transitioning to another state, emitting another sym-
bol, and so on, until a transition is made into the final
state. The parameters of the model are the transition
probabilities P(¢ — ¢') that one state follows another
and the emission probabilities P(¢ 1 o) that a state
emits a particular output symbol. The probability of a
string x being emitted by an HMM M is computed as
a sum over all possible paths by:

I+1

> JIPlar-1 = ax)Plax tax), (1)
g1, EQF k=1
where gg and ¢;41 are restricted to be ¢r and gp respec-
tively, and z;41 is an end-of-string token. The Forward
algorithm can be used to calculate this probability (Ra-
biner 1989). The observable output of the system is the
sequence of symbols that the states emit, but the under-
lying state sequence itself is hidden. One common goal
of learning problems that use HMMs is to recover the
state sequence V(x|M) that has the highest probability
of having produced an observation sequence:

P(x|M) =

141
V(x| M) = argmax H P(gr—1 — ¢5)P(qr T 25). (2)
Q. q€Q 2y
Fortunately, the Viterbi algorithm (Viterbi 1967) effi-
ciently recovers this state sequence.

HMMs may be used for information extraction from
research paper headers by formulating a model in the
following way: each state is associated with a class that
we want to extract, such as title, author or affiliation.
Each state emits words from a class-specific unigram
distribution. We can learn the class-specific unigram
distributions and the state transition probabilities from
training data. In order to label a new header with
classes, we treat the words from the header as obser-
vations and recover the most-likely state sequence with
the Viterbi algorithm. The state that produces each
word is the class tag for that word. An example HMM,
annotated with class labels and transition probabilities,
is shown in Figure 1.

Learning Model Structure from Data

In order to build an HMM for information extraction,
we must first decide how many states the model should
contain, and what transitions between states should be
allowed. A reasonable initial model is to use one state
per class, and to allow transitions from any state to any
other state (a fully-connected model.) However, this
model may not be optimal in all cases. When a specific
hidden sequence structure is expected in the extraction
domain, we may do better by building a model with
multiple states per class, with only a few transitions
out of each state. Such a model can make finer dis-
tinctions about the likelihood of encountering a class at
a particular location in the document, and can model
specific local emission distribution differences between
states of the same class.

An alternative to simply assigning one state per class
is to learn the model structure from training data.
Training data labeled with class information can be
used to build a maximally-specific model. Each word in
the training data is assigned its own state, which tran-
sitions to the state of the word that follows it. Each
state is associated with the class label of its word token.
A transition is placed from the start state to the first
state of each training instance, as well as between the
last state of each training instance and the end state.

This model can be used as the starting point of a va-
riety of state merging techniques. We propose two sim-
ple types of merges that can be used to generalize the
maximally-specific model. First, “neighbor-merging”
combines all states that share a transition and have the
same class label. For example, the sequence of adjacent
title states from a single header are merged into a single
title state. As multiple neighbor states with the same
class label are merged into one, a self-transition loop is
introduced, whose probability represents the expected
state duration for that class.

Second, “V-merging” merges any two states that
have the same label and share transitions from or to
a common state. V-merging reduces the branching
factor of the maximally-specific model. Here, we ap-
ply V-merging to models that have already undergone
neighbor-merging. For example, instead of beginning in
the start state and selecting from among many transi-
tions into title states, the V-merged model would merge
the children title states into one, so that only one tran-
sition from the start state to the title state would re-
main. The V-merged model can be used for extraction
directly, or more state merges can be made automati-
cally or by hand to generalize the model further.

Model structure can be learned automatically
from data, starting with either a maximally-specific,
neighbor-merged or V-merged model, using a technique
like Bayesian model merging (Stolcke 1994). Bayesian
model merging seeks to find the model structure that
maximizes the probability of the model M given some
training data D, by iteratively merging states until an
optimal tradeoff between fit to the data and model size
has been reached. This relationship is expressed using

Figure 1: Example HMM. Each state emits words from a class-specific multinomial distribution.

Bayes’ rule as:
P(M|D) x P(D|M)P(M). (3)

P(D|M) can be calculated with the Forward algorithm,
or approximated with the probability of the Viterbi
paths. The model prior can be formulated to reflect
a preference for smaller models. We are implementing
Bayesian model merging so that learning the appropri-
ate model structure for extraction tasks can be accom-
plished automatically.

Labeled, Unlabeled, and
Distantly-labeled Data

Once a model structure has been selected, the transi-
tion and emission parameters need to be estimated from
training data. While obtaining unlabeled training data
is generally not too difficult, acquiring labeled training
data is more problematic. Labeled data is expensive
and tedious to produce, since manual effort is involved.
It is also valuable, since the counts of class transitions
¢(¢ — ¢') and the counts of a word occurring in a class
¢(q 1 o) can be used to derive maximum likelihood es-
timates for the parameters of the HMM:

Py =TS
f’(qTa’): C(qTU) (5)

dopexclatp)

Smoothing of the distributions is often necessary to
avoid probabilities of zero for the transitions or emis-
sions that do not occur in the training data.

Unlabeled data, on the other hand, can be used with
the Baum-Welch training algorithm (Baum 1972) to
train model parameters. The Baum-Welch algorithm is
an iterative expectation-maximization (EM) algorithm
that, given an initial parameter configuration, adjusts
model parameters to locally maximize the likelihood of
unlabeled data. Baum-Welch training suffers from the
fact that it finds local maxima, and is thus sensitive to
initial parameter settings.

A third source of valuable training data is what we
refer to as distantly-labeled data. Sometimes it is pos-
sible to find data that is labeled for another purpose,

but which can be partially applied to the domain at
hand. In these cases, it may be that only a portion
of the labels are relevant, but the corresponding data
can still be added into the model estimation process
in a helpful way. For example, BibTeX files are bibli-
ography databases that contain labeled citation infor-
mation. Several of the labels that occur in citations,
such as title and author, also occur in the headers of
papers, and this labeled data can be used in training
emission distributions for header extraction. However,
other BibTeX fields are not relevant to the header ex-
traction task, and the data does not include any infor-
mation about sequences of classes in headers.

Experiments

The goal of our information extraction experiments is to
extract relevant information from the headers of com-
puter science research papers. We define the header of a
research paper to be all of the words from the beginning
of the paper up to either the first section of the paper,
usually the introduction, or to the end of the first page,
whichever occurs first. The abstract is automatically
located using regular expression matching and changed
to the single token +ABSTRACT+. Likewise, a single to-
ken is added to the end of each header, either +INTRO+
or +PAGE+, to indicate the case which terminated the
header. A few special classes of words are identified
using simple regular expressions and converted to spe-
cial tokens, such as <EMAIL>, <WEB>, <YEAR_NUMBER>,
<ZIP_CODE>, <NUMBER>, and <PUBLICATION_NUMBER>.
All punctuation, case and newline information is re-
moved from the text.

The target classes we wish to identify include the
following fifteen categories: title, author, affiliation,
address, note, email, date, abstract, introduction (in-
tro), phone, keywords, web, degree, publication num-
ber (pubnum), and page. The abstract, intro and page
classes are each represented by a state that outputs only
one token, +ABSTRACT+, +INTRO+, or +PAGE+, respec-
tively. The degree class captures the language associ-
ated with Ph.D. or Master’s theses, such as “submitted
in partial fulfillment of...” and “a thesis by...”. The
note field commonly accounts for phrases from acknowl-
edgements, copyright notices, and citations.

Type Source | Word Tokens Accuracy
Labeled 500 headers 23,557 Model | # states | # trans | L | L+D [L*D
Unlabeled 5,000 headers 287,770 full 17 255 62.8 | 57.4 | 64.5
Distantly-labeled | 176 BibTeX files 2,390,637 self 17 252 85.9 | 83.1 | 89.4
ML 17 149 90.5 | 89.4 | 92.4
Table 1: Sources and amounts of training data. smooth 17 255 89.9 | 88.8 | 92.0

One thousand headers were manually tagged with
class labels. Sixty-five of the headers were discarded
due to poor formatting, and the rest were split into a
500-header, 23,557 word token labeled training set and
a 435-header, 20,308 word token test set. Five thousand
unlabeled headers, composed of 287,770 word tokens
were designated as unlabeled training data. Distantly-
labeled training data was acquired from 176 BibTeX
files that were collected from the Web. These files con-
sist of 2.4 million words, which contribute to the fol-
lowing nine header classes: address, affiliation, author,
date, email, keyword, note, title, and web. The training
data sources and amounts are summarized in Table 1.

Class emission distributions are trained using either
the labeled training data (L), a combination of the la-
beled and distantly-labeled data (L+D), or a linear in-
terpolation of the labeled and distantly-labeled data
(L*D). In the L+D case, the word counts of the labeled
and distantly-labeled data are added together before de-
riving the emission distributions. In the L*D case, sep-
arate emission distributions are trained for the labeled
and distantly-labeled data, and then the two distribu-
tions are interpolated together using mixture weights
derived from leave-one-out expectation-maximization
of the labeled data.

For each emission distribution training case, a fixed
vocabulary is derived from all of the words in the train-
ing data used. The labeled data results in a 4,914-word
vocabulary, and the labeled and distantly-labeled data
together contain 92,426 words. Maximum likelihood
emission estimates are computed for each class, and
then smoothed using absolute discounting (Ney, Essen,
& Kneser 1994) to avoid probabilities of zero for the
vocabulary words that are not observed for a particular
class. The unknown word token <UNK> is added to the
vocabularies to model out-of-vocabulary words. Any
words in the testing data that are not in the vocabu-
lary are mapped to this token. The probability of the
unknown word is estimated separately for each class,
and is assigned a portion of the discount mass propor-
tional to the fraction of singleton words observed only
in the current class.

Model Selection

We build several HMM models, varying model struc-
tures and training conditions, and test the models by
finding the Viterbi paths for the test set headers. Per-
formance is measured by word classification accuracy,
which is the percentage of header words that are emit-
ted by a state with the label of the words’ true label.

Table 2: Extraction accuracy (%) for models with one state
per class.

The first set of models each use one state per class.
Emission distributions are trained for each class on ei-
ther the labeled data (L), the combination of the labeled
and distantly-labeled data (L+D), or the interpolation
of the labeled and distantly-labeled data (L*D). Ex-
traction accuracy results for these models are reported
in Table 2.

The full model is a fully-connected model where all
transitions are assigned uniform probabilities. It relies
only on the emission distributions to choose the best
path through the model, and achieves a maximum accu-
racy of 64.5%. The self model is similar, except that the
self-transition probability is set according to the max-
imum likelihood estimate from the labeled data, with
all other transitions set uniformly. This model benefits
from the additional information of the expected num-
ber of words to be emitted by each state, and its accu-
racy jumps to 89.4%. The ML model sets all transition
parameters to their maximum likelihood estimates, and
achieves the best result of 92.4% among this set of mod-
els. The smooth model adds an additional smoothing
count of one to each transition, so that all transitions
have non-zero probabilities, but smoothing the transi-
tion probabilities does not improve tagging accuracy.
For all models, the combination of the labeled and un-
labeled data (L+D) negatively affects performance rela-
tive to the labeled data results. However, the interpola-
tion of the distantly-labeled data with the labeled data
(L*D) consistently provides several percentage points
improvement in accuracy over training on the labeled
data alone. We will refer back to the ML model results
in the next comparisons, as the best representative of
the models with one state per class.

Next, we want to see if models with structures de-
rived from data outperform the ML model. We first
consider models built with a combination of automated
and manual techniques. Starting from a neighbor-
merged model of 805 states built from 100 randomly
selected labeled training headers, states with the same
class label are manually merged in an iterative man-
ner. (We use only 100 of the 500 headers to keep the
manual state selection process manageable.) Transi-
tion counts are preserved throughout the merges so that
maximum likelihood transition probabilities can be es-
timated. Each state uses its smoothed class emission
distribution estimated from the interpolation of the la-
beled and distantly-labeled data (L*D). Extraction per-

multi-state ——
935 - ML~ i
g |
§‘ 925 -, 1
=
8
<< o2 q
91.5 i
o1

20 30 40 50 60 70 80
Number of states

Figure 2: Extraction accuracy for multi-state models as
states are merged.

Accuracy
Model 7 states | # trans L L+D | L*D
ML 17 149 90.5 | 89.4 | 92.4
M-merged 36 164 91.3 | 90.5 | 92.9
V-merged 155 402 90.6 | 89.7 | 92.7

Table 3: Extraction accuracy (%) for models learned from
data compared to the best model that uses one state per
class.

formance, measured as the number of states decreases,
is plotted in Figure 2. The performance of the ML
model is indicated on the figure with a ‘4+’. The mod-
els with multiple states per class outperform the ML
model, particularly when 30 to 40 states are present.
The best performance of 92.9% is obtained by the model
containing 36 states. We refer to this model as the
M-merged model. This result shows that more com-
plex model structure benefits extraction performance
of HMMs on the header task.

We compare this result to the performance of a 155-
state V-merged model created entirely automatically
from the labeled training data. A summary of the re-
sults of the ML model, the M-merged model, and the
V-merged model is presented in Table 3. Both the
M-merged and V-merged models outperform the ML
model under all three training conditions, with the M-
merged model performing the best. We expect that our
future work on Bayesian model merging will result in a
fully automated construction procedure that produces
models performing even better than the manually cre-
ated M-merged model.

Next, we investigate how to incorporate unlabeled
data into our parameter training scheme. Starting with
the ML and M-merged models, we run Baum-Welch
training on the unlabeled data. Initial parameters are
set to the maximum likelihood transition probabilities
from the labeled data and the interpolated (L*D) emis-
sion distributions. Baum-Welch training produces new
transition and emission parameter values which locally
maximize the likelihood of the unlabeled data.

The models are tested under three different condi-
tions; the extraction results, as well as the model per-

ML M-merged
Acc. | PP | Acc. | PP
nitial 92.4 | 471 | 92.9 | 482
A=05 | 90.1 | 374 | 89.4 | 361
A varies | 89.7 | 364 | 88.8 | 349

Table 4: Extraction accuracy (%) and test set perplexity
(PP) for the ML and M-merged models after Baum-Welch

training.

plexities on the test set, are shown in Table 4. Perplex-
ity is a measure of how well the HMMs model the data;
a lower value indicates a model that assigns a higher
likelihood to the observations from the test set.

The “initial” result is the performance of the models
using the initial parameter estimates. These results are
the same as the L*D case in Table 3. Since the vocabu-
lary words that do not occur in the unlabeled data are
given a probability of zero in the newly-estimated emis-
sion distributions resulting from Baum-Welch training,
the new distributions need to be smoothed with the ini-
tial estimates. Each state’s newly-estimated emission
distribution is linearly interpolated with its initial dis-
tribution using a mixture weight of A. For the “A = 0.5”
setting, both distributions for each state use a weight
of 0.5. Alternatively, the Viterbi paths of the labeled
training data can be computed for each model using the
“A = 0.5” emission distributions. The words emitted
by each state are then used to estimate optimal mix-
ture weights for the local and initial distributions using
the EM algorithm. These mixture weights are used in
the “X varies” case.

The smoothed Baum-Welch emission estimates de-
grade classification performance for both the ML and
M-merged models. The lack of improvement in classi-
fication accuracy can be partly explained by the fact
that Baum-Welch training maximizes the likelihood of
the unlabeled data, not the classification accuracy. The
better modeling capabilities are pointed out through
the improvement in test set perplexity. The perplexity
of the test set improves over the initial settings with
Baum-Welch reestimation, and improves even further
with careful selection of the emission distribution mix-
ture weights. Merialdo (1994) finds a similar effect on
tagging accuracy when training part-of-speech taggers
using Baum-Welch training when starting from well-
estimated initial parameter estimates.

Error Breakdown

We conclude these experiments with a breakdown of
the errors being made by the best performing mod-
els. Table 5 shows the errors in each class for the
ML and M-merged models when using emission distri-
butions trained on labeled (L) and interpolated (L*D)
data. Classes for which there is distantly-labeled train-
ing data are indicated in bold. For several of the classes,
such as title and author, there is a noticeable increase

ML M-merged

Tag L L*D L L*D
All 90.5 | 92.4 | 91.3 | 92.9
Abstract 100 100 | 98.4 | 98.7
Address 95.8 | 95.5 | 95.2 | 95.1
Affiliation | 87.9 | 91.4 | 88.4 | 90.7
Author 95.8 | 97.7 | 95.1 | 97.2
Date 97.6 | 96.9 | 96.9 | 97.2
Degree 75.8 | 70.8 | 80.3 | 73.2
Email 89.2 | 89.0 | 87.5 | 86.9
Keyword 92.2 | 98.1 | 97.3 | 98.9
Note 849 | 85.1 | 88.1 | 89.0
Phone 93.7 | 93.1 | 89.7 | 87.4
Pubnum 65.0 | 65.0 | 61.3 | 60.6
Title 934 | 984 | 93.2 | 97.8
Web 80.6 | 83.3 | 41.7 | 41.7

Table 5: Individual class results for the ML and M-merged
models. Classes noted in bold occur in distantly-labeled
data.

in accuracy when the distantly-labeled data is included.
The poorest performing individual classes are the de-
gree, publication number, and web classes. The web
class has a particularly low accuracy for the M-merged
model, when limited web class examples in the 100
training headers probably kept the web state from hav-
ing transitions to and from as many states as necessary.

Conclusions and Future Work

Our experiments show that hidden Markov models do
well at extracting important information from the head-
ers of research papers. We achieve an accuracy of 92.9%
over all classes of the headers, and class-specific accu-
racies of 97.8% for titles and 97.2% for authors. We
have demonstrated that models that contain more than
one state per class do provide increased extraction accu-
racy over models that use only one state per class. This
improvement is due to more specific transition context
modeling that is possible with more states. We expect
that it is also beneficial to have localized emission distri-
butions, which can capture distribution variations that
are dependent on the position of the class in the header.

Distantly-labeled data has proven to be valuable in
providing robust parameter estimates. The interpo-
lation of distantly-labeled data provides a consistent
increase in extraction accuracy for headers. In cases
where little labeled training data is available, distantly-
labeled data is a helpful resource.

Forthcoming experiments include using Bayesian
model merging to learn model structure completely au-
tomatically from data, as well as taking advantage of
additional header features such as the positions of the
words on the page. We expect the inclusion of layout in-
formation to particularly improve extraction accuracy.

Finally, we also plan to model internal state struc-
ture, in order to better capture the first and last few
words absorbed by each state. A possibly useful in-

OO OO0

affiliation

Figure 3: Proposed internal model structure for states.

ternal state structure is displayed in Figure 3. In this
case, the distributions for the first and last two words
are modeled explicitly, and an internal state emits all
other words. We expect these improvements will con-
tribute to the development of more accurate models for
research paper header extraction.

References

Baum, L. 1972. An inequality and associated maximization
technique in statistical estimation of probabilistic functions
of a Markov process. Inequalities 3:1-8.

Bikel, D. M.; Miller, S.; Schwartz, R.; and Weischedel, R.
1997. Nymble: a high-performance learning name-finder.
In Proceedings of ANLP-97, 194-201.

Freitag, D., and McCallum, A. 1999. Information ex-
traction with HMMs and shrinkage. In Proceedings of the
AAAI-99 Workshop on Machine Learning for Information
Extraction.

Kupiec, J. 1992. Robust part-of-speech tagging using a
hidden Markov model. Computer Speech and Language
6:225-242.

Leek, T. R. 1997. Information extraction using hidden
Markov models. Master’s thesis, UC San Diego.

McCallum, A.; Nigam, K.; Rennie, J.; and Seymore, K.
1999. A machine learning approach to building domain-
specific search engines. In Proceedings of the Sixteenth In-
ternational Joint Conference on Artificial Intelligence.

Merialdo, B. 1994. Tagging english text with a probabilis-
tic model. Computational Linguistics 20(2):155-171.

Ney, H.; Essen, U.; and Kneser, R. 1994. On structuring
probabilistic dependencies in stochastic language model-
ing. Computer Speech and Language 8(1):1-38.

Rabiner, L. 1989. A tutorial on hidden Markov models and
selected applications in speech recognition. Proceedings of

the IEEE 77(2).

Stolcke, A.; Shriberg, E.; et al. 1998. Dialog act modeling
for conversational speech. In Applying Machine Learning

to Discourse Processing, 1998 AAAI Spring Symposium,
number SS-98-01, 98-105. Menlo Park,CA: AAAI Press.
Stolcke, A. 1994. Bayesian Learning of Probabilistic Lan-
guage Models. Ph.D. Dissertation, University of California,
Berkeley, CA.

Viterbi, A. J. 1967. Error bounds for convolutional codes
and an asymtotically optimum decoding algorithm. [EFE
Transactions on Information Theory 1'T-13:260-267.
Yamron, J.; Carp, I.; Gillick, L.; Lowe, S.; and van Mul-
bregt, P. 1998. A hidden Markov model approach to text
segmentation and event tracking. In Proceedings of the

IEEE ICASSP.

