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ABSTRACT

We present a maximum entropy language model that in-
corporates both syntax and semantics via a dependency
grammar. Such a grammar expresses the relations be-
tween words by a directed graph. Because the edges of
this graph may connect words that are arbitrarily far
apart in a sentence, this technique can incorporate the
predictive power of words that lie outside of bigram or
trigram range. We have built several simple dependency
models, as we call them, and tested them in a speech
recognition experiment. We report experimental results
for these models here, including one that has a small but
statistically significant advantage (p < .02) over a bigram
language model.

1. INTRODUCTION

In this paper, we propose a new language model to rem-
edy two important weaknesses of the well-known Ngram
method. We begin by reviewing these problems.

Let S be a sentence consisting of words w®...w™, each
drawn from a fixed vocabulary of size V. By the laws of
conditional probability,

P(S) = P(u®)P(w' | w®)... P(w™ |w°®...w™"). (1)

Unfortunately, this decomposition, though exact, does not
constitute a usable model. P(w* | w®...w*™!), the gen-
eral factor in (1), requires the estimation and storage of
Vl_l(V —1) independent parameters, and since typically
V =~ 25,000 and » = 20, this is infeasible.

Ngram models avoid this difficulty by retaining only
the N — 1 most recent words of history, usually with
N = 2 or 3. But this approach has two significant draw-
backs. First, it is frequently linguistically implausible,
for it blindly discards relevant words that lie N or more
positions in the past, yet retains words of little or no pre-
dictive value simply by virtue of their recency. Second,
such methods make inefficient use of the training corpus,
since the distributions for two histories that differ only by
some triviality cannot pool data.

In this paper we present a mazimum entropy depen-
dency language model to remedy these two fundamental
problems. By use of a dependency grammar, our model
can condition its prediction of word w* upon related words
that lie arbitrarily far in the past, at the same time ignor-
ing intervening linguistic detritus. And since it is a max-
imum entropy model, it can integrate information from
any number of predictors, without fragmenting its train-
ing data.

2. STRUCTURE OF THE MODEL

In this section we motivate our model and describe it in
detail. First we discuss the entities we manipulate, which
are words and disjuncts. Then we exhibit the decomposi-
tion of the model into a product of conditional probabili-
ties. We give a method for the grouping of histories into

equivalence classes, and argue that it is both plausible and
efficient. Since our model is obtained using the maximum
entropy formalism, we describe the types of constraints we
imposed. Finally, we point out various practical obstacles
we encountered in carrying out our plan, and discuss the
changes they forced upon us.

2.1. Elements of the Model

Our model is based upon a dependency grammar [2], and
the closely related notion of a link grammar [10, 5]. Such
grammars express the linguistic structure of a sentence in
terms of a planar, directed graph: two related words are
connected by a graph edge, which bears a label that en-
codes the nature of their linguistic relationship. A typical
parse or linkage K of a sentence S appears in Figure 1.

Y Y

<s> The dog | heard last night barked again </s>

Figure 1. A Sentence S and its Linkage K. <¢> and </s>
are sentence delimiters.

Our aim is to develop an expression for the joint prob-
ability P(S, K). In principle, we can then recover P(S5)
as the marginal EK P(S,K). In practice, we make the
assumption that this sum is dominated by a single term
P(S,K*), where K* = argmaxy P(S, K), and then ap-
proximate P(S) by P(S, K*).

For our purposes, every sentence S begins with the
“word” <s>, and ends with the “word” </s>. We use
shudder quotes because these objects are of course not re-
ally words, though mathematically our model treats them
as such. They are included for technical reasons: the start
marker <g> functions as an anchor for every parse, and
the end marker </¢> ensures that the function P(S, K)
sums to unity over the space of all sentences and parses.

A directed, labeled graph edge is called a link, and de-
noted L. (Formally, each L consists of a triple of parse-
node tags, plus an indication of the link’s direction; we
depict them more simply here for clarity.) A link L that
connects words y and z is called a link bizgram, and written
yLz.

Each word in the sentence bears a collection of links,
emanating from it like so many flowers grasped in a hand.
We refer to this collection as a disjunct, denoted d. A dis-
junct is a rule that shows how a word must be connected
to other words in a legal parse. In linguist’s parlance, a
word and a disjunct together constitute a fully specified
lexical entry.

For instance, the disjunct atop dog in Figure 1 means
that it must be preceded by a determiner, and followed
by a relative clause and the verb of which it is the sub-
ject, in that order. Intuitively, a disjunct functions as a
highly specific part-of-speech tag. Note that in different
sentences, or in different parses of the same sentence, a




given word may bear different disjuncts, just as the word
dog may function as a subject noun, object noun, or verb.
A disjunct d is defined formally by two lists, left(d) and
right(d), respectively its links to the left and right.

2.2. Decomposition of the Model

Just as w* is the ith word of S, we write d* for its disjunct
in a given linkage. It can be shown that if a sequence
d®...d™ of disjuncts is obtained from a legal linkage K,
then the linkage can be uniquely reconstructed from the
sequence. Thus

P(S,K)=P(w°...w"d°...d") = P(w°d®...w"d")

where it is understood that this quantity is 0 if the dis-
Jjunct sequence does not constitute a legal linkage. Now
let us write A’ for the history at position 2. That is, A’
lists the constituents of the sentence and its linkage up to
but not including w*d’*; explicitly 2* = w%d° ... w* " d"~ .
Hence by the laws of conditional probability, we have the
exact decomposition

P(S,K) =[] P(w'd* | b%) (2)

©=0

A given factor P(w*d" | A*) in (2) is the probability that
word w", playing the grammatical role detailed by d°, will
follow the words and incomplete parse recorded in h*. Fig-
ure 2 depicts this idea.

the words of the relative clause—to which barked bears
no links—would seem to be of much predictive value.
This intuition led us to the following design decision:
the map ¢ : A — [h] retains (1) a finite context, consisting
of 0, 1 or 2 preceding words, depending upon the particu-
lar model we wish to build, and (2) a link stack, consisting
of the open (unconnected) links at the current position,
and the identities of the words from which they emerge.
The action of this map is depicted in Figure 3, where the
information retained in [A"] is rendered in black.
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<s> The dog | heard last night

Figure 2. Meaning of P(w"d" | B"). " is the sequence of
all words and disjuncts to the left of position 7. Positions
are numbered from the left, starting with 0.

2.3. Equivalence Maps of Histories

The problem is now to determine the individual probabili-
ties in the right hand side of (2). But once again there are
too many different histories, hence too many parameters.

We are driven to the solution used by Ngram model-
ers, which is to divide the space of possible histories into
equivalence classes, via some map ¢ : k — [k], and then
to estimate the probabilities P(wd | [A]). Approximating
each factor P(w'd" | &%) by P(w'd® | [A']), equation (2)
yields

P(S,K) = [[ P(w'd | b') = ] P(w'd* | [R]).  (3)

This expedient has the advantage of coalescing, into
each class [k], evidence that had previously been splin-
tered among many different histories. It has the dis-
advantage that the map A — [h] may discard key el-
ements of linguistic information. Indeed, the trigram
model, which throws away everything but the two pre-
ceding words, leads to the approximation P(barked |
The dog I heard last night) =~ P(barked | last night). This
is precisely what drove us to dependency modeling in the
first place.

Our hope in incorporating the incomplete parse into
each h' is that the parser will identify just which words
in the history are likely to be of use for prediction. To
return to our example, we have a strong intuition that
barked 1s better predicted by dog, five words in the past,
than by the preceding bigram last night. Indeed, none of

Figure 3. Meaning of P(w"d” | [h"]). [A"] consists of the
elements displayed in black.

We include the finite context in [h] because trigram
and bigram models are remarkably effective predictors,
despite their linguistic crudeness. We include the link
stack because it carries both grammar—it constrains the
d that can appear in the next position, since lef{(d) must
match some prefix of the stacked links—and semantics—
we expect the word in the next position to bear some
relation of meaning to any word it links to. Moreover, this
choice for ¢ has the advantage of discarding the words and
grammatical structure that we believe to be irrelevant (or
at least less relevant) to the prediction at hand.

2.4. Maximum Entropy Formulation
Even with the map A — [h], there are still too many dis-
tinct [R] to estimate the probabilities P(wd | [A]) as ratios
of counts. To circumvent this difficulty, we formulated
our model using the method of constrained maximum en-
tropy [1]. The maximum entropy formalism allows us to
treat each of the numerous elements of [k] as a distinct
predictor variable.

By familiar operations with Lagrange multipliers, we
know that the model must be of the form

Zidifi(w,dA])

P(wd|[h]):W

(4)

Here each fi(w, d, [h]) is a feature indicator function, more
simply feature function or just feature, and ); is its asso-
ciated parameter. The constraint consists of the require-

ment

Eplf]=Eplfil, (5)
that is, it equates expectations computed with respect
to two different probability distributions. On the right
hand side, P stands for p(w,d, [7]), the joint empirical
distribution. On the left hand side, P is the composite
distribution defined by P(w,d,[h]) = P(wd | [R])- P([A]),
where P(wd | [h])is the model we are building, and P([A])

is the empirical distribution on history equivalence classes.

2.5. Model Constraints

Assuming that we retain one word of finite context, de-
noted ™', we recognize three different classes of feature.
The first two classes are indicator functions for unigrams
and bigrams respectively, and are defined as

f(w,d,[R]) =1
fyz(’w,d, [h]) =1

attaining 0 otherwise. Typically, there are many such
functions, distinguished from one another by the unigram
or bigram they constrain. These notions are more fully

described in [6, 8, 9].

ifw=z2

fw=zand A7l =y




The novel element of our model is the link bigram con-
straint. It is here that we condition the probability of
the predicted word w upon linguistically related words in
the past, possibly out of Ngram range. The link bigram
feature function fyr.(w,d,[h]) is defined by

fyLZ(wi d, [h]) =1

attaining 0 otherwise. The notation “[h] ~ d,” read “[A]
matches d,” means that d is a legal disjunct to occupy the
next position in the parse. Specifically, if left(d) contains
7 links, then these must exactly match the links of the
first r entries of the link stack of [k], both lists given
innermost to outermost. Figure 4 depicts matching and
non-matching examples. The additional qualification “via
yLz” means that at least one of the links must bear label
L, and connect to word y. Returning to Flgure 1, we have

gdongarked('w a7, [R7]) = 1, but frsparkea(w”, d* [k A7) =

if w=2zand [h] ~ d via yLz

<> *E— <s> <*—E—
<> *—T— <> -—T—
dog —s—™ <> =-—E— dog —s—=

heard =—Av— AV <> *—T— T heard =—AV— s
lat —J3—= J dog —s—= s last —3—= AV

link stack of [h] ~~ left(c) link stack of [h] ~ left(d) link stack of [h] ~ left(d)

Figure 4. Matching and Non-Matching [R], d Pairs. Left,
center: matching. Right: non-matching. Innermost links are
at the bottom of the page, outermost at the top.

2.6. Practical Considerations

Unfortunately, the model just described required too
much file space to build. Since the heart of the difficulty
was the number of potential futures {w} x {d}, we de-
cided to move the sequence of disjuncts into the model’s
history. Because the sequence d°...d™ is identified with

the parse K, this yields a conditional model P(S | K)
In this reformulation of the model, the history A* at

each position ¢ consists of the precedmg words w° ... w'™?,
and all disjuncts d°...d™. As before, the map ¢ : R
[k'] retains only the finite context and the link stack at
position ¢. By adopting this expedient, we were able to
build several small but non-trivial dependency models.

Of course, we are ultimately still interested in obtaining
an estimate of P(S, K'). This can be recovered via the
identity P(S, K)= P(S | K)P(K), but we are then faced
with the computation of P(K). As it happens though the
parsing process generates an estimate of P(K | §), and
we may use this quantity as an approximation to P(K),
yielding

P(S,K)=~ P(S| K)P(K|S).

This decomposition is decidedly illegitimate, and renders
meaningless any perplexity computation based upon it.
However, our aim is to reduce the word error rate, and
the performance improvement we realize by incorporating
P(K | S) this way is for us an adequate justification.

3. EXPERIMENTAL METHOD

In this section we discuss the training and testing of our
dependency model. We describe the elements of our ex-
perimental design forced upon us by the parser, our meth-
ods for training the parser, its underlying tagger, and the
dependency model itself, and how we use and evaluate the
model.

3.1. Tagging and Parsing

Our model operates on parsed utterances. To obtain the
required parse K of an utterance S, we used the depen-
dency parser of Michael Collins [2], chosen because of its
speed of operation, accuracy, and trainability. This parser
processes a linguistically complete utterance S—what we

normally think of as a sentence—that has been labeled
with part-of-speech tags. It yields a parse K, and a prob-
ability P(K | S) of this parse. The parser’s need for
complete, labeled utterances had three important conse-
quences.

First, we needed some means of dividing the waveforms
we decoded into sentences. We adopted the expedient
of segmenting all our training and testing data by hand.
Second, because the parser does not operate in an incre-
mental, left-to-right fashion, we were forced to adopt an
N-best rescoring strategy. Finally, because the parser re-
quires part-of-speech tags on its input, a prior tagging
step is required. For this we used the maximum entropy
tagger of Adwait Ratnaparkhi [7], again chosen because
of its trainability and high accuracy.

All training and testing data were drawn from the
Switchboard corpus of spontaneous conversational Eng-
lish speech [4], and from the Treebank corpus, which is
a hand-annotated and hand-parsed version of the Switch-
board text. We used these corpora as follows. First we
trained the tagger, using approximately 1 million words of
hand-tagged training data. Next we applied this trained
tagger to some 226,000 words of hand-parsed training
data, which were disjoint from the tagger’s training set;
these automatically-tagged, hand-parsed sentences were
then used as the the parser’s training set. Finally, the
trained tagger and parser were applied to some 1.44 mil-
lion words of linguistically segmented training text, which
included the tagger and parser training data just men-
tioned.

The resulting collection of sentences and their best
parses constituted the training data for all our depen-
dency language models, from which we extracted features
and their expectations. For all features, we used ratios of
counts, or ratios of smoothed counts, to compute empiri-
cal expectations.

3.2. Training of the Dependency Model

To find the maximum entropy model subject to a given set
of constraints, we used the Maximum Entropy Modeling
Toolkit [8]. This program implements the Improved Iter-
ative Scaling algorithm, described in [3]. It proved to be
highly efficient: a large trigram model, containing 12,412
unigram features, 36,191 bigram features, and 120,116 tri-
gram features, completed 10 training iterations on a single
Sun UltraSparc workstation in under 2 1/2 hours.

The one drawback of this program is the extremely large
size of the file that constitutes its input. This file must
specify the activating futures of each conditional feature
in the model, whether or not this future was observed
in the training corpus. In the worst case, for a future
space of size F', and a training corpus of E observations,
the events file contains O(FE) bytes. For instance, the
events file for the trigram model above was over 1 GB.

3.3. Testing Procedure

For testing, we used a set of 11 time-marked tele-
phone conversation transcripts, linguistically segmented
by hand, then aligned against the original waveforms to
yield utterance boundaries. To implement the N-best
rescoring strategy mentioned above, we first used com-
mercially available HTK software, driven by a standard
trigram language model, to generate the 100 best hy-
potheses, S1,...,S100, for each utterance A. We chose
this relatively small value for N to allow quick experi-
mental turnaround.

For each hypothesis S, containing words w° ... w™, we
computed the best possible tag sequence T using the tag-
ger, and from S and T* together the best possible disjunct
sequence D* using the parser. Note that n, 7" and D*
taken together constitute a linkage K. In fact this three-
some was our working definition of K*, the best possible



model number of constraints WER (%)
unigram  bigram linkbg | dm all

[ 2g24 | 12,412 36,191 [ 48.3 474 |
1g2cd 12,412 37,007 | 48.3 48.1
2g24c7 12,412 36,191 10,005 | 47.5 46.8
2g24c2 12,412 36,191 46,666 | 48.4 47.6
2g24chmi 12,412 36,191 12,130 | 48.6 47.5

Table 1. Experimental Results.

linkage for S. (Note that the maximization of 7 from S,
and then of D* from T* and S, is not the same as the
joint maximization of D* and T™ from S, and hence this
is an approximation to K*.)

With these entities all in hand, we then rescored using
the product P(A | S)P(S), where P(A | S) is the acoustic
score, and P(S5) is the geometrically averaged quantity

P(n)*P(T | n,S)’P(D | T,n,8)"P(S | D,T,n)° (6)

where o, B, v and § are experimentally-determined
weights. Here P(n) is an insertion penalty, which penal-
izes the decoding of an utterance as a sequence of short
words or particles; P(T* | n,S) is the tagger score; and
P(D* | T*,n,S)is the parser score. Finally, recalling that
T*, D* and n together constitute K*, we recognize the
quantity P(S | D*,T*,n) as precisely P(S | K*), and it
is here that our model finally enters the decoding process.
The remaining factors of (6) constitute our estimate of

P(K*|8S).
4. RESULTS AND CONCLUSIONS

We built and tested five models with this scheme—a
baseline and four dependency models. All of our mod-
els were maximum-entropy models, trained as described
above. FEach of these models retained all unigrams of
count > 2 as constraints. They differed only in the num-
ber and nature of the additional constraints included dur-
ing training, and then used as features when computing

P(S | K).
4.1. Model Details

Model 2g24, a maximum entropy bigram model, was our
baseline. For 2g24 we included all unigrams, as well all
bigrams of count > 4. Here “bigram” is used in the usual
sense of two adjacent words; we will call this an adjacency
bigram to distinguish it from a link bigram. Thus this
model does not use the parse K at all.

For our first two dependency models, 1g2c4 and 2g24c7,
we labeled each link bigram with its sense only («— or —),
erasing the other linguistic information the link carried.
For 1g2c4, we retained unigrams as above but no adja-
cency bigrams—that is, we included no finite context in
the history—and instead included all link bigrams, labeled
with sense only, of count > 4. Thus 1g2c4 is the link bi-
gram analog of 2g24. Intuitively, its performance relative
to the baseline measures the value of link bigrams versus
adjacency bigrams.

All the rest of the models we built retained unigrams
and adjacency bigrams as in 2g24; they differed only in
what constraints beyond these were included. For 2g24c7,
we included beyond 2g24 all sense-only link bigrams of
count > 7. This was our best model.

For the last two models, 2g24c2 and 2g24c5mi, we did
not erase the link label information, which comprise part-
of-speech tags and parser labels, in addition to sense.
Model 2g24c2 included beyond 2g24 all fully-labeled link
bigrams of count > 2. Finally, for model 2g24cbmi, we ap-
plied an information-theoretic measure to link selection:
we included beyond 2g24 all link bigrams of count > 5,
for which the average link gain [11] exceeded 1 bit.

4.2. Model Performance

Table 1 above lists word error rate scores for these mod-
els. Column dm reports results with 8,y = 0, in ex-
pression (6), and o and § fixed at nominal values. The
superior performance of 2g24cT over the baseline in this
column, though small, is statistically significant according
to a sign test, p < .02. Column all reports results with all
exponents of (6) allowed to float to optimal values on the
test suite, independently for each model.

We interpret the identical dm performance of 2g24 and
1g2c4 to mean that the link bigrams captured essentially
the same information as regular bigrams. Moreover, the
superior figures of column all versus dm confirm our intu-
ition that the tag and parse scores are useful.

Finally, the slim but statistically significant superior-
ity of 2g24cT convinces us that dependency modeling is a
promising if unproven idea. We intend to pursue it, con-
structing more elaborate models, training them on larger
corpora, and testing them more thoroughly. A more thor-
ough discussion of the methods and results presented here
may be found in reference [11].
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