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Vaccination Deep Into a
Pandemic Wave

Potential Mechanisms for a “Third Wave” and the
Impact of Vaccination

Bruce Y. Lee, MD, MBA, Shawn T. Brown, PhD, Philip Cooley, MS,
John J. Grefenstette, PhD, Richard K. Zimmerman, MD, MPH,

Shanta M. Zimmer, MD, Margaret A. Potter, JD, MS,
Roni Rosenfeld, PhD, William D. Wheaton, MA,
Ann E. Wiringa, MPH, Kristina M. Bacon, MPH,

Donald S. Burke, MD

Background: In December 2009, when the H1N1 influenza pandemic appeared to be subsiding,
public health offıcials and unvaccinated individuals faced the question of whether continued H1N1
immunization was still worthwhile.

Purpose: To delineate what combinations of possiblemechanisms could generate a third pandemic
wave and then explorewhether vaccinating the population at different rates and timeswouldmitigate
the wave.

Methods: As part of ongoing work with the Offıce of the Assistant Secretary for Preparedness and
Response at theUSDHHSduring theH1N1 influenza pandemic, theUniversity of PittsburghModels
of Infectious Disease Agent Study team employed an agent-based computer simulationmodel of the
Washington DC metropolitan region to delineate what mechanisms could generate a “third pan-
demic wave” and explored whether vaccinating the population at different rates and times would
mitigate the wave. This model included explicit representations of the region’s individuals, school
systems, workplaces/commutes, households, and communities.

Results: Three mechanisms were identifıed that could cause a third pandemic wave; substantially
increased viral transmissibility from seasonal forcing (changing influenza transmission with chang-
ing environmental conditions, i.e., seasons) and progressive viral adaptation; an immune escape
variant; and changes in social mixing from holiday school closures. Implementing vaccination for
these mechanisms, even during the down-slope of the fall epidemic wave, signifıcantly mitigated the
third wave. Scenarios showed the gains from initiating vaccination earlier, increasing the speed of
vaccination, and prioritizing population subgroups based onAdvisory Committee on Immunization
Practices recommendations.

Conclusions: Additional waves in an epidemic can be mitigated by vaccination even when an
epidemic appears to be waning.
(Am J Prev Med 2010;39(5):e21–e29) © 2010 American Journal of Preventive Medicine
rom the Department of Medicine (Lee, Zimmer, Wiringa, Bacon), Biomedical
nformatics (Lee, Wiringa, Burke, Bacon), and Family Medicine (Zimmerman),
niversityofPittsburgh, SchoolofMedicine;Epidemiology (Lee,Wiringa,Burke,
acon), Biostatistics (Brown, Grefenstette), and Health Policy and Management
Potter), University of Pittsburgh, Graduate School of Public Health; Pittsburgh
upercomputingCenter (Brown); School of Computer Science, CarnegieMellon
niversity (Rosenfeld); RTI International (Cooley,Wheaton)

Address correspondence to: Bruce Y. Lee, MD MBA, Medicine,
Epidemiology, and Biomedical Informatics, University of Pittsburgh, 200
Meyran Avenue, Suite 200, Pittsburgh PA 15213. E-mail: BYL1@pitt.edu.

0749-3797/$17.00
doi: 10.1016/j.amepre.2010.07.014

2010 American Journal of Preventive Medicine • Published by Elsevier Inc. Am J Prev Med 2010;39(5)e21–e29 e21

mailto:BYL1@pitt.edu


I

I
o
w
H
a
2
t
f
e
a
a
o
c
t

t
t
F
r
u
p
j
p
t
c
d
H
d
p
w
w

r
i
d
a
i
s
t
a
o
o
h
b
a
t
w
m

u
a
p
p
t
t
d
o
w

●

●

●

●

O
R
f
I
p
(
(
d
n
e
r
i
u
a
E
w
o
S

e22 Lee et al / Am J Prev Med 2010;39(5):e21–e29
ntroduction
n December 2009, when the H1N1 influenza pan-
demic appeared to be subsiding, public health offı-
cials and unvaccinated individuals faced the question

f whether continued H1N1 immunization was still
orthwhile. The limited time between the Northern
emisphere’s fırst “epidemic wave” in the spring of 2009
nd the second epidemic wave in September–December
009 left little time to surmount developmental, regula-
ory, and logistic hurdles involved in bringing the vaccine
rom its conception to the population. Despite massive
fforts, large supplies of vaccine were still undelivered
nd much of the population had not yet been vaccinated
s the second wave subsided. This same issue will likely
ccur in the future unless technologic advances help
ompress the novel influenza strain vaccine development
imeline.
Central to the decision of whether to continue vaccina-

ion is the probability of vaccinationmitigating a possible
hird epidemic wave occurring in January–March 2010.
irst, public health agencieswere diverting staff and other
esources to vaccination clinics, and these were resources
navailable for other programs and priorities. Continued
rioritization of theH1N1 vaccination programhad to be
ustifıed on the grounds of a likely positive benefıt to
opulation health. Second, individuals receiving vaccina-
ions also expended time—and sometimes out-of-pocket
osts. So, if the threat of disease had passed, these expen-
itures were unwarranted. Third, acceptance of the
1N1 vaccination1,2 had been poor even when available
uring the fall of 2009 among some communities and
opulations. Continued urgings by public health offıcials
hen the threat of disease was substantially diminished
ould likely lessen their credibility with those groups.
Historically, there is evidence for multiple wave occur-

ences. Multiple waves have occurred3–5 during previous
nfluenza pandemics in 1918 and 1957. The 1918 pan-
emic beganwith a heraldwave in the spring, followed by
second surge of cases in October and then a third surge
n February of 1919. The 1957 pandemic also included
everal pandemic waves: a series of small outbreaks over
he summer of 1957 followed by a higher peak inOctober
fter children returned to school and then another wave
f illness that afflicted the elderly in January and February
f 1958. At the peak of the 1957 U.S. pandemic, less than
alf of the approximately 60 million doses produced had
een delivered. This second surge subsided until January
nd February 1958, when another wave of illness afflicted
he elderly. The 1968–1970 pandemic6 also had multiple
aves: an initial milder wave in early 1968 followed by a

ore severe second wave in late 1968–early 1969. r
The mechanisms for these additional waves are still
nclear. Moreover, epidemic waves are usually presented
s aggregated national data. So the question remains, is it
ossible for a region that has experienced one or two
revious waves to experience an additional wave, or did
he previously observed third waves represent regions of
he country experiencing the different waves of the epi-
emic at different time periods? If the former scenario
ccurred, then several possible mechanisms for a third
ave exist:

Seasonal forcing: Environmental changes (tempera-
ture, humidity, less sunlight or other factors) accompa-
nying the transition from autumn to winter may in-
crease the transmissibility of the virus or susceptibility
to influenza.
Changes in social mixing: Changes in social contact
patterns may expose individuals who are still suscepti-
ble to infection to infectious individuals. Travel during
the winter holidays, schools closing and then re-open-
ing, and relaxation in concerns over influenza trans-
mission may contribute to such changes. Holiday
travel may increase contact among susceptible individ-
uals (e.g., the elderly) and individuals more likely to be
infectious (e.g., children).
Progressive viral adaptation with increased human-to-
human transmissibility: Viral mutation can result in a
modifıed virus7 that has increased transmissibility.
Emergence of new immune escape variant: Viral mu-
tation can progress to the degree that a new virus vari-
ant emerges against which previously infected individ-
uals are either only partially immune or not immune at
all.

In December 2009, as part of ongoing work with the
ffıce of the Assistant Secretary for Preparedness and
esponse (ASPR) at the USDHHS during the H1N1 in-
luenza pandemic, theUniversity of PittsburghModels of
nfectious Disease Agent Study (MIDAS) team em-
loyed an agent-based computer simulation model
ABM) of the Washington DC metropolitan region
which included fıve metropolitan statistical areas) to
elineate what combinations of these possible mecha-
isms could generate a third pandemic wave and then
xplored whether vaccinating the population at different
ates and times would mitigate the wave. This model
ncluded explicit representations of the region’s individ-
als, school systems, workplaces/commutes, households,
nd communities and incorporated a Susceptible–
xposed–Infectious–Recovered (SEIR) disease frame-
ork. This model incorporated many methods from
ther previously published8,9MIDAS simulationmodels.
eparate scenarios explored10 the impact of changing the

ates of vaccination and vaccinatingAdvisoryCommittee
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n Immunization Practices (ACIP) priority groups fırst
versus anyone who wanted the vaccine), an issue that
rose during the 2009 H1N1 pandemic.

ethods
odel Structure and Synthetic Census-Based
opulation

previously published study11 provides details on the DC metro-
olitan region model, which encompassed the following fıve cen-
us metropolitan statistical areas:

Baltimore–Towson MDMetropolitan Statistical Area
Washington–Arlington–AlexandriaDC–VA–MD–VAMetropol-
itan Statistical Area
Winchester VA–WVMetropolitan Statistical Area
Lexington Park MDMicropolitan Statistical Area
Culpeper VAMicropolitan Statistical Area.
The model consisted of a total of 7,414,562 computer “agents,”
irroring the actual population of the DC metropolitan region.
ach agent served as a virtual person, complete with a set of as-
igned sociodemographic characteristics and daily behaviors (e.g.,
ge, gender, occupation, household location, household member-
hip, school assignment for students and teachers, work location
ssignment for employed adults, work status as employed or un-
mployed, and disease status).12

The count of households by size was as follows: 753,909 (26.4%)
ouseholds had only a single occupant; 888,571 (31.1%) had two
ccupants; 490,984 (17.2%) had three occupants; 418,073 (14.6%)
ad four occupants; 189,606 (6.6%) had fıve occupants; 74,900
2.6%) had six occupants; 43,146 (1.5%) had seven or more occu-
ants. More than one third (36.9%) of households had children,
ith 448,099 (42.5%of householdswith children) having one child;
97,789 (37.7%) having two children; 148,116 (14.0%) having three
hildren; 43,959 (4.2%) having four children; and the rest having
ıve ormore children.Amajority of the households, 53.6%, had two
dults whereas 33.8% had one adult and the rest had three ormore.
Each simulation day, agents moved among the region’s work-
laces, schools, and community locations, similar to the move-
ents of actual people. The day of the week and agent characteris-

ics governed their movement and interaction with each other. A
ethod modifıed from that developed by an earlier study13 helped
xtract the agent population fromU.S. Census Bureau’s Public Use
icrodata fıles and Census aggregated data.12 The following data

ources generated school and workplace locations and assign-
ents: U.S. Department of Education National Center for Educa-

ion Statistics (public schools data); private data vendor (private
chools); U.S. Census Standard Tabulation Product (STP64) com-
uting pattern data; and ESRI Business Analyst (InfoUSA busi-
ess data).

isease Parameters and Model Calibration

reviousMIDASmodels8,9,11,14–18 provided disease parameters
nd assumptions. In each individual, disease progressed
hrough an underlying SEIR disease model. At the start of each
imulation run, individuals who had already been vaccinated or
nfected (recently or remotely) began as recovered (R) from and
herefore immune to infection. All other individuals were ini-
ially susceptible (S) to influenza. The start of each simulation

un involved introducing an infectious seed (a set of 100 ran-

ovember 2010
omly chosen infectious agents) to generate the epidemic. Every
usceptible individual who contacted an infectious individual
ad a probability of contracting influenza.8,19 Table 1 lists these
robabilities. A newly infected agent then progressed into the
xposed (E) state where the agent remained for the duration of
he disease’s incubation period and then to the infectious state
I) where the person could infect others. Agents remained in the
nfectious state for a period of 4–7 days.20 Half of infectious
atients manifested symptoms, whereas the other half remained
symptomatic but could still transmit disease. An infected agent
emained infectious for the duration of the infectious period
efore transitioning into the recovered state (R).
Initial model calibration utilized the approach employed by

arlier studies8,9,11,15,19 and targeted an epidemic with a daily
eproductive rate (R0) of 1.4 (Attack Rate [AR]�33%; see be-
ow) as seen in the 1957–1958 pandemic. Additional runs used
0 values of 1.2 and 1.7, corresponding to attack rates of 19%
nd 38%, respectively. The base-case scenario used the follow-
ng assumptions from previous studies8,9,21–25: 20% of working
dults work on weekends, 50% of symptomatic students and
orkers stayed home with no community contacts unless they
aw a doctor, and 40% of symptomatic patients visited a clinic or
mergency department.

odeling Possible Third-Wave Mechanisms

odeling the third-wavemechanismsentailedadjusting the following
odel components in various degrees, ways, and combinations:

Daily reproductive rate (R0): The reproductive rate is the ex-
pected number of additional new cases that a single infectious
individual would generate if he or she entered a fully susceptible
population, and can be adjusted to different levels each day.26

The R0 is directly related to the transmissibility of the virus.
Cross-protection (x): Cross-protection is the degree to which a
previously infected individual is immune to subsequent infec-
tion. When cross-protection is 100%, all previously infected
individuals remain recovered and are immune to additional
infection. Lowering the level of this variable allows previously
infected individuals to be infected again. If x% is the degree of
cross-protection, then each previously infected individual has a
(1–x)% chance of being infected during an effective contact with
an infectious individual.
Opening and closing locations: Schools and workplaces can be
opened and closed each day. When they are closed, agents that
normally go to these locations and mix with each other instead
stay at home and increase their community contacts by 20%.24

The third-wave mechanisms were as follows:

Seasonal forcing: Seasonal forcing entails a gradual increase in
viral transmissibility as time progresses from the autumn to the
winter. The exact mechanism and degree to which this may
happen is unclear. To model gradually changing viral transmis-
sibility, an equationwas selected that would generate a gradually
sloping curve and contain parameters that can allow us to alter
the amplitude and slope of the curve. Previous studies7,27 used
sine/cosine functions to model seasonality. Similarly, the
current study employed the following sine-wave function of
time (t):
Y(t)�Asin(�t��),

where
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A, the amplitude, is the peak deviation of the function from its
enter position;

�, the angular frequency, specifıes how many oscillations occur
n a unit time interval (in radians per unit of time);

�, the phase, specifıes where in its cycle the oscillation begins at
� 0.
For model simulations, Y(t) represents the transmission multi-
lier correction that describes the increase or decrease in seasonal-
ty as a function of time. The cycle (angular frequency) was the
umber of days in 1 year (� � 1/365); the amplitude (A) was the
ncrease/decrease from the initial R0 level to themaximumR0 level;
nd the phase shift (�) is the time (in days) that the seasonality
ultiplier begins to increase/decrease.

Changes in social mixing: Closing and opening schools and
workplaces allowed for the simulation of vacations and holidays
that would affect agent movement and social contacts. For the
purposes of simulating the November (Thanksgiving) and the
winter holidays, simulation runs assumed that the epidemic
began September 1, 2009, correlating to the second wave of the
2009H1N1 pandemic. Additional scenarios explored the effects
of increasing the amount of social mixing during the winter
holidays, a timewhen contact between school-aged children and
the elderly increases sharply. This simulated a relaxation of
voluntary social distancing during the heart of the fırst wave.
Viral adaptation: The influenza virus progressively changes so
that it is more transmissible (increasing R0); overcomes ex-
isting immunity (loss of cross-protection); or both.
Immune escape variant: Either the original virus mutates sub-
stantially to become an effectively different virus, or a second
completely distinct virus enters into the population. This mech-
anism can both increase R0 and decrease cross-protection.

accination

accination schedules were then implemented in each of the
hird-wave scenarios to determine whether vaccination could
itigate the third wave. Each newly vaccinated susceptible (S)

ndividual had a probability (i.e., vaccine effıcacy) of becoming
ecovered (R). Effıcacy of the one-dose vaccine was 80% for
hose aged �10 years and 50% for those aged�10 years. Effıcacy
fter a second vaccine dose28,29 was 80% for those aged �10
ears. Additional sensitivity scenarios explored the effect of
anging vaccine effıcacy down to 50%. Each dose took 2 weeks
fter administration to achieve its effects. Although the recom-
ended interval between the fırst and second dose of vaccine is
pproximately 4 weeks (21 or more days is considered accept-
ble) for children aged 6 months to 9 years,30 the ideal time
ramemay vary on an individual basis. Moreover, some children
ill never receive a second dose of the vaccine.
Different scenarios commenced vaccination at different
oints in the epidemic (8 weeks before the fall wave peak, 4
eeks prior to the peak, and concurrently with the peak). Sen-
itivity analyses explored changing the rates at which vaccina-
ion occurred (vaccination of the population was completed
fter 30, 90, and 180 days). The base case assumed 50% vaccine
overage; additional simulations ranged coverage down to 30%
nd 10% to span the values reported during the H1N1 pandem-
c.1 Separate scenarios also explored10 prioritizing versus not
able 1. Model transmission and person-to-person
ontact parameter values

Transmission parameters

Contact
group Infected Susceptible

Transmission
probability18,a

Household Adult Adult 0.4

Household Child Adult 0.3

Household Adult Child 0.3

Household Child Child 0.6

Elementary
school

Student Student 0.0435

Middle school Student Student 0.0375

High school Student Student 0.0315

Workplace Adult Adult 0.0575

Hospital HCW HCW 0.0575

Hospital HCW Patient 0.01

Hospital Patient HCW 0.01

Community All Child 0.0048

Community All Adult 0.0048

Social network parameters

Name Participant

Contacts
per
day (M)b

Social
network

Classroom Teachers 15 School

Classroom Students 15 School

School outside
of classrooms

Students 13.5 School

School outside
of school

Student 16.2 Community

Weekend
activity

Student 24.1 Community

Per office Worker 8 Workplace

Per firm Worker 2 Workplace

Community All
(including
students)

32.4 Community

Per hospital/
clinic ward

HCW 2 Workplace

Per hospital/
clinic building

HCW 8 Workplace

Doctor seeing
patient

HCW that
sees
patients

30 Workplace

Represents the transmission probability for both symptomatic and
asymptomatic infections
Estimated by agent-based computer simulation model
rioritizing the ACIP-recommended priority groups.

www.ajpm-online.net
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omputational Specifics

he ABMwas programmed in C��. Simulations were performed
t the Pittsburgh Supercomputing Center on Axon, an Intel Xeon–
ased Infıniband cluster.

esults
ll of the presented epidemic curves are the averages of
0 simulation runs that resulted in epidemics (i.e., the
irus persists in the population for at least 20 days and
nfects at least 1000 individuals) after seeding the popu-
ation with 100 randomly infected individuals. The con-
inuous lines in the fıgures represent 4-day moving aver-
ge trend lines, which smooth out irregular patterns
roduced by the weekend effect (i.e., students and work-
rs having different weekend contact patterns).

hird-Wave Scenarios
he simulations assumed that the seeded epidemic was a
econd wave, such as occurred with H1N1 in the fall of
009. The following combinations of mechanisms gener-
ted an additional epidemic wave thereafter:

able 2. Results from 90-day vaccination scenarios with

Scenarios
Total
attack rate <4

INCREASING VIRAL
TRANSMISSIBILITY

No vaccination 24.9 39.0

Vaccination initiated

8 weeks before peak 3.0 5.0

4 weeks before peak 9.2 15.0

At peak 15.3 25.0

LOSS OF CROSS-PROTECTION

No vaccination 26.7 43.0

Vaccination initiated

8 weeks before peak 7.5 12.0

4 weeks before peak 13.0 21.0

At peak 20.7 34.0

CHANGE IN SOCIAL MIXING

No vaccination 26.7 22.0

Vaccination initiated

8 weeks before peak 2.6 4.0

4 weeks before peak 6.0 10.0

At peak 7.2 12.0

SEs for all attack rates were �1%.

CIP, Advisory Committee on Immunization Practices

ovember 2010
Increasing-viral-transmissibility: Baseline scenarios
began the influenza virus as an R0�1.2 (AR�19%)
strain, which then changes to an R0�2.0 onDay 120, as
this is the lower limit estimated for the 2009 H1N1
pandemic.31 Additional scenarios began the influenza
virus as R0�1.4 and R0�1.7 strains.
Loss-of-cross-protection:The influenzavirusbeginsas an
R0�1.2. On Day 120, a new strain, against which the
individuals have 25% immunity, enters the population.
This new strain also has an R0�1.2. Additional scenarios
began the influenza virus as R0�1.4 and R0�1.7 strains.
Change-in-social-mixing: The influenza virus has an
R0�1.2. Assuming a September 1 start of the epidemic,
schools close duringThanksgiving (Wednesday,Novem-
ber 25, 2009, through Sunday, November 30, 2009) and
the winter holidays (from Saturday, December 19, 2009,
through Sunday, January 4, 2010).During school closure,
students continue to mix with other students and adults
in the community. Additional scenarios began the influ-
enza virus as R0�1.4 and R0�1.7 strains.

Table 2 shows the effects of the various third-wave

rioritization of ACIP groups, %

Attack rate by age group (years)a

–18 19–24 25–49 50–64 >65

4.0 26.0 19.0 16.0 14.0

6.0 3.0 2.0 2.0 1.0

9.0 9.0 6.0 5.0 5.0

0.0 15.0 11.0 9.0 8.0

1.0 26.0 19.0 16.0 14.0

6.0 7.0 5.0 4.0 4.0

7.0 12.0 9.0 7.0 6.0

1.0 20.0 14.0 12.0 10.0

4.0 14.0 10.0 8.0 7.0

5.0 2.0 2.0 1.0 1.0

1.0 6.0 4.0 4.0 3.0

2.0 8.0 5.0 5.0 4.0
no p

5

4

1

3

5

1

2

4

2

1

1
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cenarios of overall and age-specifıc attack rates. Increas-
ng the initial R0 to 1.4 and 1.7 increased the overall attack
ate, but decreased the additional wave attack rates, be-
ause increasing the R0 consumes susceptible individuals
aster, leaving fewer susceptible individuals to maintain
n additional wave. For the increased-viral-transmissibil-
ty scenario, an unmitigated epidemic that starts at
0�1.4 and then increases to R0�2.0 generates an overall
ttack rate of 31.0% (0.5% additional wave) and one that
tarts at R0�1.7 generates an overall attack rate of 38.2%
0.1% additional wave). For the loss-of-cross-protection
cenario, an unmitigated epidemic that starts at R0�1.4
enerates an overall attack rate of 45.0% (14.6% addi-
ional wave) and one that starts at R0�1.7 generates an
verall attack rate of 56.1% (18.0% additional wave). For
he changes-in-social-mixing scenario, an unmitigated
pidemic that starts at R0�1.4 generates an overall attack

igure 1. Increased-viral-transmissibility scenario: compar-
ng three vaccination-timing scenarios with no vaccination

igure 2. Loss-of-cross-protection scenario: comparing

three vaccination-timing scenarios with no vaccination
ate of 28.23% (0.26%additionalwave) and one that starts
t R0�1.7 generates an overall attack rate of 37.43%
0.04% additional wave).
Of note, for two of the scenarios, the age distribution
f cases changed from the initial wave (younger) to the
dditional wave (older). In the changing-viral-
ransmissibility scenario, the age distribution of cases
or the initial wave versus the next wave was as follows:
1.7% vs 10.7% (aged �4 years); 40.4% vs 32.2% (aged
–18 years); 6.2% vs 7.1% (aged 19–24 years); 27.6% vs
2.9% (aged 25–49 years); 9.1% vs 11.02% (aged 50–64
ears); and 4.9% vs 5.9% (aged �65 years). In the
oss-of-cross-protection scenario, the age distribution
f cases for the initial wave versus the next wave was as
ollows: 11.8% vs 11.3% (aged �4 years); 40.5% vs
7.8% (aged 5–18 years); 6.2% vs 6.5% (aged 19–24
ears); 27.5% vs 29.4% (aged 25–49 years); 9.1% vs
.8% (aged 50–64 years); and 4.9% vs 5.2% (aged �65
ears). This is primarily because children, who have
igh levels of mixing, are infected early in the epi-
emic, leaving an increased number of older individu-
ls as susceptibles.
However, for the changing-social-mixing scenario, the

ge distribution grew slightly younger: 11.7% vs 11.7%
aged �4 years); 34.7% vs 39.5% (aged 5–18 years); 7.1%
s 6.3% (aged 19–24 years); 30.9% vs 28.1% (aged 25–49
ears); 10.2% vs 9.4% (aged 50–64 years); and 5.4% vs
.0% (aged �65 years). This is because changes in social-
ixing patterns are more likely to affect school-aged
hildren who are high mixers, particularly at schools.32

he Effects of Vaccination in Mitigating Third
aves
able 2 andFigures 1–3 show the effects of vaccination on

igure 3. Change-in-social-mixing scenario: comparing
hree vaccination-timing scenarios with no vaccination
he different “third-wave” scenarios. As can be seen, vac-

www.ajpm-online.net
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ination is effective inmitigating all three additionalwave
cenarios, even when vaccination takes as long as 180
ays to complete (assuming 50% vaccine coverage). In all
ases, initiating vaccination earlier and increasing the
evel of vaccination can further decrease the overall attack
ate. Figure 2 (the loss-of-cross-protection scenario) il-
ustrates how vaccination can mitigate the intensity of an
dditional wave caused by a new virus strain against
hich the vaccine has only 75% of baseline vaccine
ffıcacy.
Table 2 shows results when ACIP-recommended

roups are not prioritized for immunization. Simulation
uns that vaccinatedACIP priority groups fırst, especially
chool-aged children who are high mixers, achieved
reater mitigation of an additional wave: an up to a 1%
ecrease in the overall attack rates. Table 2 shows results
hen it takes 3 months to achieve target coverage of the
opulation. Decreasing this time to 30 days results in an
dditional 1.1%–2.8% decrease in the increased-viral-
ransmission scenario, a 1.1%–2.4% decrease in the loss-
f-cross-protection scenario, and a 0.2%–1.1% decrease
n the change-in-social-mixing scenario in the overall
ttack rates. Increasing the time to 180 days boosts the
ttack rates by 1.9%–2.6% in the increased-viral-
ransmission scenario, 2.2%–3.9% in the loss-of-cross-
rotection scenario, and a 0.5%–1.5% in the change-
n-social-mixing scenario.
Ranging vaccine effıcacy down to 50% and vaccine

overage down to 30% did not signifıcantly affect the
urrent results. However, further decreasing vaccine cov-
rage to 10% did decrease the effectiveness of the vacci-
ation program, increasing (compared to when vaccine
overage was 30%) the overall attack rate by 5.41% and
he additional wave attack rate by 5.35% in the increased-
iral-transmissibility scenario; 4.3% and 4.1% in the loss-
f-cross-protection scenario; and 0.68% and 0.90% in the
hange-in-social-mixing scenario, respectively.
Vaccination in higher R0 scenarios (i.e., 1.4 and 1.7)
ad some varying effects. For the increased-viral-
ransmissibility scenario, because increasing the initial R0
ubstantially reduced the size of the additional wave, vac-
ination had little effect. For the loss-of-cross-protection
cenario, initiating vaccination 4 weeks prior to the fırst
eak (completing the vaccination program in 3 months)
n an epidemic that starts at R0�1.4 then increases to
0�2.0 cuts the overall attack rate from 45.0% to 25.5%
the additional wave from 14.6% to 3.3%). In one that
tarts at R0�1.7, vaccination cuts the overall attack rate
rom 56.1% to 45.0% (the additional wave from 18.0% to
2.4%). For the change-in-social-mixing scenario, initi-
ting the same type of vaccination program in an epi-
emic that starts at R0�1.4 cuts the overall attack rate

rom 28.23% to 21.51% (the additional wave from 0.26% r

ovember 2010
o 0.01%). In one that starts at R0�1.7, vaccination cuts
he overall attack rate from 37.43% to 32.34% (the addi-
ional wave from 0.04% to 0%).

iscussion
he study delineated circumstances under which vac-
ination after an epidemic peak still confers substantial
enefıt. A vaccination program initiated too late to
ffect an epidemic’s initial wave could still mitigate a
ossible additional wave even when the virus adapts or
utates considerably. This supports continuing a vac-
ination program during the waning of an epidemic, as
n December 2009–January 2010. Although vaccinat-
ng a population before an epidemic begins is ideal,
ublic health decision makers should not rule out ini-
iating a vaccination program when they know that the
accine will not arrive in time. Study results also sug-
est that adhering to vaccinating ACIP priority indi-
iduals fırst, even late in a pandemic, may be benefıcial.
Covering an entire population before an epidemic
egins is very diffıcult, as getting new vaccines devel-
ped, tested, approved, distributed, and administered
n a very short time frame is a prodigious task. This was
learly evidenced during the 2009 H1N1 influenza
andemic. Despite swift decision making in the spring
f 2009, the fırst vaccines did not arrive until October
009, after the fall wave had started in August–September
009. Nevertheless, vaccine production and arrival was
uch more prompt than in past pandemics. Inactivated

nfluenza vaccines were fırst available in the U.S. in 1945,
nd production still requires 3–6 months after strain
election, whichmakes the production of a newmonova-
ent vaccine in time for use in a pandemic challenging.33

Historical records34 suggest that vaccination in pre-
ious pandemics was limited because of vaccine short-
ges prior to the epidemic peak combined with poor
accine uptake. In 1957, the new monovalent vaccine
as available3 in small amounts by the end of August
nd not widely available until after October when the
pidemic had already had peaked. Similarly, in 1968–
969, the vaccine strain was identifıed34 only 4 months
efore the peak of the epidemic in the U.S. Therefore,
ntil the vaccine development process is substantially
ompressed, public health decision makers may face
imilar situations in the future.
Although the present study showed the potential ben-

fıt of continuing a vaccination program, the exact ex-
ected value cannot be quantifıed because the likelihood
f the proposed additional wave mechanisms is not
nown. Previous pandemics have demonstrated that ad-
itional waves can occur, but the causes of these waves

emain unclear. Social-mixing data are limited. Failure to
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ee additional waves in the 1937 H1N1 Manchester epi-
emic35 may have been due to the social-distancingmea-
ures (e.g., quarantine) implemented. Studies36 suggest
hat seasonal forcing alone can cause approximately a
0% increase in transmissibility. Moreover, it is not
lear37 how much of the impact of seasonal forcing is on
he host versus the pathogen. In simulation experiments,
iral adaptation andmutation were able to readily gener-
te additional waves. However, to date, studies have not
evealed convincing evidence of notablemutation during
revious pandemics.
There is a scant amount of molecular data on the

volution of the 1918 H1N1 strain during its fırst de-
ade.38,39 Although extensive phylogenetic analysis of the
2N2 1957 pandemic strain lineage revealed40,41 that the
riginal strain diverged into two distinct co-circulating
lades within 8–10 years of its introduction, it has not
hown that any of these changes occurred in 1957–1958.
iven that the 2009 H1N1 virus received nearly all of its
enes (except PB1) from viruses of recent non-human
rigin,42,43 it would not be surprising to see evolutionary
ates exceeding those observed for seasonal H3N2 and
1N1. On the other hand, no notable antigenic shift has
een detected so far in the evolution of H1N1 (2009),
uggesting that reassortment of the surface glycoproteins
imilar to that observed during the fırst years of H2N2 is
ess likely.

imitations
ll computer models are simplifıcations of reality and
an never account for every possible factor or interac-
ion. Rather than make decisions, computer models
rovide information to decision makers about possible
cenarios and relationships. An influenza pandemic
nd the resulting circumstances may not necessarily
onform to the data and assumptions that the model
rew from referenced sources or previously published
odels.

onclusion
he present study identifıed potential mechanisms for
multiple-wave epidemic and demonstrated how vac-
ination can mitigate additional waves, thereby sup-
orting the continuation of a vaccination program
ven when an epidemic appears to be waning, as in
ecember 2009–January 2010. Although vaccinating a
opulation before an epidemic begins is ideal, public
ealth decision makers should not rule out initiating a
accination program even though they know that the
accine will not arrive in time to affect the initial wave

f an epidemic.
Uncertainties remain for decision making by public
ealth offıcials on the question of dedicating resources
nd credibility to the H1N1 vaccination program. How-
ver, these simulations do lend support for continuation
f the program and to continued public education on the
enefıts of receiving the vaccine.
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