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ABSTRACT
We describe several language and pronunciation modeling tech-
niques that were applied to the 1996 Hub 4 Broadcast News tran-
scription task. These include topic adaptation, the use of remote
corpora, vocabulary size optimization,n-gram cutoff optimization,
modeling of spontaneous speech, handling of unknown linguistic
boundaries, higher ordern-grams, weight optimization in rescoring,
and lexical modeling of phrases and acronyms.

1. INTRODUCTION
The language modeling component of the CMU 1996 Hub 4 system
was developed through a series of experiments in topic adaptation,the
use of remote corpora, vocabulary size optimization,n-gram cutoff
optimization, modeling of spontaneousspeech,handling of unknown
linguistic boundaries, higher ordern-grams, weight optimization in
rescoring, and lexical modeling of phrases and acronyms. These
experiments were carried out using the Sphinx-III speechrecognition
system: one language model was used with the Sphinx-III decoder
to generateN -best lists for each utterance, and these lists were then
rescored with an additional language model to produce the final
hypotheses.

Much of the work was focused on topic adaptation. Experiments
in topic adaptation have shown promise in terms of perplexity and
word error rate (WER) reduction. We present initial results in fine-
tuned story adaptation, where the most similar topic-specific lan-
guage models to a particular story are identified from over 5000
possible models. The chosen models are then interpolated at the
word level with a general model, and the resulting model is used for
N -best rescoring.

2. LANGUAGE MODELING
The language model vocabulary was chosen to be the 51,000 most
frequent words in the Broadcast News training data also present in the
CMU pronunciation dictionary. The baseline language model was a
trigram model with Katz smoothing trained on the 130M words of
Broadcast News training data with singleton bigrams and trigrams
excluded. The perplexity of the Hub 4 development set using this
model is 231.

2.1. Vocabulary Size Optimization
To investigate the effect of vocabulary size on recognition WER,
we used the methodology developed in [8]. The change in WER
produced by an increase in vocabulary size is composed of two main
factors: an increase in WER due to the increased acoustic confus-
ability between words in the vocabulary, and a decrease in WER due
to a decreased out-of-vocabulary (OOV) frequency. To estimate the
contribution to WER of acoustic confusability, we compared a tri-
gram model built using a 51k word vocabulary with a trigram model

built using a 20k word vocabulary supplemented with words from
the development set such that both models have the same coverage
on the development set. Any increase in WER for the 51k model
can be attributed to increased acoustic confusability since both the
51k model and the supplemented 20k model have the same OOV
rate on the development set. We ran experiments for the F0 and
F1 conditions of the development set: the 51k model results in a
0.92% higher WER on F0, a 0.36% higher WER on F1, and a 0.61%
higher WER on F0 and F1 combined. If we assume that acoustic
confusability grows at most linearly and at least logarithmically with
vocabulary size, we arrive at the slope values shown in Table 1.

Linear Slope Logarithmic Slope
Condition (per 10 kW) (per doubling of vocab)
F0 +0.29 +0.68
F1 +0.11 +0.27
F0+F1 +0.19 +0.44

Table 1: Increases in WER due to acoustic confusability as vocabu-
lary size increases.

OOV Rate WER %WER
Condition difference difference per %OOV
F0 1.29% +1.53% 1.19
F1 0.84% +1.03% 1.23
F0+F1 1.03% +1.25% 1.21

Table 2: Increase in WER due to OOV’s.

To estimate the contribution to WER of changes in OOV rate, we
compared the trigram model built with the supplemented 20k vo-
cabulary with a trigram model built with the 20k vocabulary unsup-
plemented with extra words from the development set. As the two
vocabularies are nearly the same size, any difference in performance
can be attributed to the change in OOV rate. Table 2 shows the in-
crease in OOV rate and WER of the 20k unsupplemented vocabulary
over the 20k supplemented vocabulary. The resulting WER increase
per OOV-point is also shown for each condition.

Given an estimate of the OOV rate for a given vocabulary size, we
can then estimate the associated WER using the above coefficients.
The results of this calculation for F0 and F1 combined are plotted
in Figure 1 and show how WER varies with vocabulary size. This
figure suggests that a vocabulary in the range of 40k – 60k would be
appropriate for the Broadcast News task, at least for F0 and F1. See
[8] for analogous experiments on the NAB corpus.
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Figure 1: Projected WER based on estimated slopes for acoustic
confusability and OOV rate, F0+F1 condition.

2.2. Linguistic Boundaries
In the Hub 4 task, the test data is divided into acoustic segments that
do not generally correspond to linguistic segments such as sentences;
acoustic segments often contain multiple sentences. While the test
data does not contain sentence boundary information, this informa-
tion is present in the training data. To model those trigrams in the test
data that cross sentential boundaries, counts for cross-boundaryn-
grams were added into the trigram model. That is, for every sentence
boundaryw

�2w�1</s><s> w0w1 in the training data, the trigrams
w
�2w�1w0 andw

�1w0w1 were given counts, in addition to the stan-
dard trigrams. Adding the cross-boundary trigrams to the standard
51k language model lowered the perplexity on the development set
from 231 to 224.

2.3. Spontaneous Speech
Filled pauses were not adequately represented in the language model
training data, and their probabilities were severelyunderestimated
in the baseline trigram model. In addition, silence (unfilled pause)
events are never represented in transcripts. These problems were ad-
dressed by creating a special pause dictionary in the decoder. Each
filled pause entry in the pause dictionary was assigned a unigram
probability which was estimated from its frequency in the acous-
tic training data transcripts. The unigram probability of the silence
event<sil> was estimated from the forced alignments of the acous-
tic data. The unigram probabilities were used as the language model
score for these events in the decoder. All entries in the pause dic-
tionary along with their unigram probability estimates are shown in
Table 3. These events were also skipped by the trigram when it pre-
dicted words that follow them. Using this method with a Kneser-Ney
smoothed trigram model, perplexity decreased from 211 to 180.

2.4. Weight Optimization
As in common practice, the total scores(H) we assign to a hypoth-
esis transcriptionH is

s(H) = logp(AjH) + � logp(H) + pil(H)

where logp(AjH) is theacoustic score, logp(H) is the language
score,� is thelanguage weight, pi is theword insertion penalty, and
l(H) is the number of words in the hypothesisH. We can re-write

Event Probability
UH 0.00866
AH 0.00288
UM 0.00147
EH 0.00071
<sil> 0.10792

Table 3: The pause dictionary.

this equation as

s(H) =

3X
i=1

wisi(H) (1)

wherew1 = 1, s1(H) = logp(AjH), w2 = �, s2(H) = logp(H),
w3 = pi, ands3(H) = l(H); i.e., the total score of a hypothesis is
a linear combination of several individual scores of the hypothesis.
Clearly, we need not restrict ourselves to three scores: as touched
on later, we attempted to improve performance by using multiple
language scores instead of just one.

In order to combine multiple scores effectively, it is necessary to
choose appropriate values for the weightswi in equation (1). To
do this, we use a similar methodology as developed in [6]. We
implemented Powell’s algorithm as described inNumerical Recipes
in C [7, pp. 309-317] to automatically search for optimal weights
given a set ofN -best lists and the corresponding hypotheses’ error
rates. We search for the values ofwi that minimize the WER of the
highest scoring utterance in eachN -best list.

To evaluate the WER of a given set of acoustic and language scores
on test data, we use two-way cross validation. We split the test
data into two halves; in evaluating the number of errors in each half
we use weightswi optimized on the other half of the data. Unless
otherwise specified, all WER’s in this paper were produced using
this methodology.

2.5. Smoothing

We compared two different smoothing techniques for trigram mod-
els: Katz smoothing [4] and Kneser-Ney smoothing [5]. Training
on 130M words of Broadcast News data, we measured a perplexity
of 237 for Katz smoothing and a perplexity of 219 for Kneser-Ney
smoothing on the first two-thirds of the development set. By adding
extra parameters to Kneser-Ney smoothing,1 we lowered the per-
plexity to 211.

We then compared these smoothing techniques on speech recognition
WER, by rescoringN -best lists producedfrom BroadcastNews data.
On F0 data, Katz smoothing and Kneser-Ney smoothing yielded
nearly identical WER’s: 19.4% v. 19.5%.2

1Instead of using a single absolute discountD, we use separate discounts
D1, D2, andD3+ for 1-counts, 2-counts, and counts 3 and above, respec-
tively. The values of these parameters are optimized on held-out data.

2There was a difference in performance when the word-insertion penalty
was excluded: Kneser-Ney smoothing yielded 19.9% WER while Katz
smoothing yielded 20.8% WER. This indicates that perhaps the word-
insertion penalty compensates for the difference in performance seen in
perplexity between the two smoothing techniques.
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Figure 2: Perplexity of test data ofn-gram models for variousn
relative to a trigram model, for a range of training set sizes, AP news
data.

2.6. n-Gram Cutoff Optimization
Several different bigram and trigram cutoff combinations were tested
for the language model with Katz smoothing. Perplexity results are
shown in Table 4. Neither singleton trigrams nor singleton bigrams
proved significant inN -best rescoring.

Bigram Trigram Cross-boundary
Cutoff Cutoff Trigrams? Perplexity

0 0 yes 223
0 1 yes 222
1 1 yes 224
1 1 no 231
0 2 no 230

Table 4: Perplexity results using different bigram and trigram cutoffs.

2.7. Remote Corpora
A language model was built from the 230MW North American Busi-
ness News corpus, and was interpolated with the 51k baseline lan-
guage model at the word level. Using a weight of 1/3 for the NAB
model, development set perplexity was reduced by about 10%. Using
the interpolated language score forN -best rescoring did not improve
recognition results for F0 and F1, and only slightly improved results
for F2.

2.8. Higher-Order n-Gram Models
We investigated the use of higher-ordern-gram models, considering
models as large as a 7-gram with no cutoffs. To make these models
practical, we construct only those parts of the models required to
evaluate the given test data.

In Figure 2, we display the reduction in perplexity on test data
relative to a trigram model ofn-gram models for variousn on AP
news data.3 Thex-axis describes the size of the training set used.
For the right-most point in the graph (corresponding to a training

3We use Kneser-Ney smoothing [5].

set of about 75M words), a 7-gram model has 15% lower perplexity
than a trigram model. In addition, from the graph it seems likely
this difference will be greater for larger training sets. These results
indicate that it may be worthwhile to use higher-ordern-gram models
when a large amount of training data is available. When trained on
130M words of Broadcast news data, a 7-gram model yielded about
a 10% lower perplexity than the corresponding trigram model.

However, using higher-ordern-gram models produced mixed results
in terms of speech recognition WER on Broadcast News data. With
one acoustic model, the use of a 7-gram model inN -best list rescor-
ing resulted in a reduction in WER from 19.5% to 18.8% on F0
and 40.8% to 39.8% on F3 over a trigram model. However, with a
different acoustic model the use of a 7-gram model resulted in an
increase in WER of about 0.1% absolute.

3. LEXICAL MODELING
In lexical modeling, we tried to better represent increased coartic-
ulation for spontaneous speech as well as frequent acronyms. To
detect pronunciation modeling weaknesses, the decoder was run on
the development set and the training set (F0 and F1 only) of the 1996
data, producing a word lattice for these utterances. A reference word
or word sequencethat did not showup in the word lattice was flagged
as a potential pronunciation modeling error. The sequence was not
flagged if it showed up within 10 frames of its expected segmentation,
as defined by the forced alignment of the reference transcript. The
flagged sequences were examined manually by viewing the wave-
form, listening to the whole speech file, looking at the decode lattice,
and referring to the 51K dictionary (the SPHINX III lexicon) for the
existing pronunciations. When it was determined that the pronuncia-
tion model was lacking,corrective action was taken. For some words,
alternate pronunciations were added. In the case of strings of short
words, such asI want tobeing pronounced/AY W AH N AH/, the
whole phrase was added as a separate entry in the dictionary. About
250 phrases, including multiple pronunciations, were added in this
way.

In addition, the 147 most frequent acronyms in the BN language
corpus, representing some 85% of the acronym tokens, were added
as entries in the lexicon (besides being represented letter by letter
— i.e. C._N._N. as well as C. and N.). The main motivation
behind this was the hypothesis that sequences of short, acoustically
confusable words such as individual letter names, are likely to lead
to search errors.

Using both the phrases and the acronyms, preliminary results on the
F0 portion of the development set showed a 0.4% absolute reduction
in WER. Results on the F1 portion (where more coarticulation effects
are expected) could not be compared in a controlled way due to
changes in other components of the system, but we estimate that the
WER improvement there was significantly higher.

4. TOPIC ADAPTATION
We are currently looking at methods of topic adaptation in unre-
stricted domains, using the BN domain as our testbed due to its
semantic richness. Adapting statistical language models using topic
information has been successful in the past (for example, [1, 3, 10]),
but the majority of adaptation attempts have focused either on a one-
of-N classification, where a new document is assumed to belong to
only one of a (typically small) number of disjoint topic sets, or on
coarse topic classification, where only a few topics are defined. But
in real applications, every document, story or conversation is typi-
cally a unique and hitherto unseen combination of several elemental



topics. We are experimenting with a language model adaptation
scheme that takes a new piece of text and finds the most similar
topics from over 5000 clusters from the training data. Stories from
the Broadcast News corpus that share similar topics are gathered
into a set of clusters based on manually-assigned keywords that were
present in the corpus. The(tf� idf)measure, popular in information
retrieval, is used to find the clusters that are most similar in topic
to the text we are decoding. Language models built from the most
similar topic-specific training clusters are interpolated with a general
trigram language model, andN -best hypotheses are rescored with a
topic-specific language model score. We report on a series of exper-
iments designed to investigate the reductions in perplexity and word
error rate made possible by such adaptation.

4.1. Clustering

In the Broadcast News corpus, story boundaries are marked and
keywords have been manually assigned to each story. Topic clusters
are created by defining each unique keyword as a label for a cluster.
For each keyword, all stories that have that keyword are assigned to
its particular cluster. Each keyword-cluster is then a candidate to be
used in future adaptation.

An interesting feature of this type of clustering is the presence of
data overlap between clusters. If one story contains five different
keywords describing its content, then the text for the story will ap-
pear in five different clusters. Data overlap between clusters does
not present a problem when calculating the similarity between each
cluster and a new piece of data. However, if agglomerative clustering
were to be used to merge similar clusters in order to reduce the num-
ber of distinct topics in the training data, the effects of data overlap
on the measure of cluster similarity would need to be considered.
Excluding the overlapping data from all similarity calculations may
be sufficient; however, valuable topic information is lost in the clus-
tering decision process by not considering stories where two nodes
are obviously related. Other possible solutions include assigninghalf
of each duplicated story to each leaf, or using supervised clustering
to make reasonable decisions.

Agglomerative clustering has been used successfully for topic adap-
tation in a mixture modeling framework [1, 3]. However, one advan-
tage of retaining a high number of individual topic clusters, instead
of merging the clusters down to a small number, is the ability to
make fine distinctions between different subjects and mix unusual
topics together that may occur in a future story. As similar clusters
are merged together, they lose their topic focus, but they acquire the
advantage of having additional data to build more statistically sound
language models.

One way to combine the advantages of having larger clusters due to
agglomerative clustering and having the topic focus of a large number
of individual clusters is to build atopic tree. The basic clusters
defined by the keywords from the corpus constitute the leaves of the
tree, and agglomerative clustering is used to merge similar clusters
together up towards the root. When complete, each path from leaf
to root specifies a set of nodes that start out in a very distinct topic,
and then gradually become more general as the clusters become
larger. At runtime, automatic topic identification is performed on
a decoded document and results in a small number of active leaf
topics. Language models built at various nodes along the active
paths from leaf to root can be combined to best model the current
document. The language models along the active paths benefit from
additional data, whereas leaf models, which may be quite small,
retain the advantage of being very specific. Since automatic topic

clustering does not always result in optimal clustering decisions, we
are currently investigating semi-automatic methods where the system
asks for cues whenever its confidence in its clustering decision is
weak.

4.2. Finding Similar Clusters
Once we have a set of topic clusters, the text in each cluster can
be represented as a vector containing a weighted entry for each
unique word. Formally, if a cluster containst distinct words, the
cluster text can be represented as at-dimensional vector of weights
Di = (wi1; wi2; wi3; : : : ; wit), where one weight is assigned to
each unique word. The weight of each word in the vector is given by
the(tf � idf) measure frequently used in information retrieval [9]:

wik = tfik log(N=nk) (2)

The term frequency,tf, is the number of times wordk appears in
clusteri. The inverse document frequency component,idf, computes
the log of the ratio ofN , the total number of clusters, tonk , the
number of clusters containing wordk. This weighting function
assigns high values to topic specific words, which are those words
that appear with high frequency within one cluster but appear in
relatively few other clusters. Words that occur in many clusters,
or that occur with low frequency, are deemed more general and are
assigned low weights.

Given a new text represented by weight vectorDj, the topic simi-
larity between clusteri and the new text can be computed with the
following cosine measure [9]:

sim(Dj;Di) =

Pt

k=1 wjkwikqPt

k=1
(wjk)2

Pt

k=1
(wik)2

(3)

Equation 3 gives the cosine of the angle between the two vectors
representing the two sets of text. It is normalized for vector length, so
that large clusters are not favored. This similarity measure produces
a high value when the two texts being compared are similar, with a
value of 1 when they are identical. A similarity value of zero means
that the topics of the texts are unrelated.

4.3. Model Interpolation
The similarity between the hypothesized transcription produced by
the first decoder pass and each cluster is calculated. Even if the
error rate of the original hypothesis is significant, the errors should
not be topic correlated, and the correct content words in the hypoth-
esis should provide enough weight for the selection of appropriate
clusters. For the experiments presented here, only leaf clusters (el-
emental topics) are used for topic adaptation. Individual language
models are built from the most similar clusters, and the cluster mod-
els are interpolated together at the word level with a general language
model (the root of the topic tree) using weights obtained by mini-
mizing the perplexity of the hypothesis with the EM algorithm. The
N-best lists for the hypothesis are then rescored according to the
language score given by the interpolated language models.

4.4. Experiments
The training data used in these experiments for topic adaptation is the
Broadcast News corpus obtained from Primary Source Media. The
data covers the period from 1992–1995 and consists of 130 million
words. Story boundaries are marked, and each story is accompanied
by a set of keywords that describe the story’s content. The corpus



was split into topic clusters by collecting the keywords from all
stories and assigning each keyword to a cluster. The text for each
story was assigned to the clusters of the story’s keywords. Many of
the keywords have sub-categories, in which case the sub-categories
were separated from the main keyword and treated as keywords
themselves. For the four years worth of data, 8806 topic clusters
were created in this manner. The number of topic clusters was then
reduced by excluding from the clusters all stories that contained more
than six keywords. These stories tend to be summarization reports
of many news events. All clusters that contained only one story were
also eliminated due to a lack of sufficient data to accurately represent
that topic. Additionally, clusters belonging to non-topic keywords,
such as U. S. state names, were chosen to be excluded after manual
inspection. A total of 5883 clusters remained for topic adaptation.
No agglomerative clustering was used in this set of experiments.

The most frequent 63k words from the four years of Broadcast News
text defined the vocabulary for calculating cluster similarity. The
Hub 4 development set was used as the test set. The story boundaries
present in the development set were used to divide the set into 57
stories, with each story containing from 6 to 2131 words.

Two of the largest stories from the test set were chosen for initial
adaptation experiments. Story A (791 words) is about the Helms
Burton Act and the United States’ efforts to keep other countries
from doing business with Cuba. Story B (2131 words) discusses
the suspicions of drug use by Chinese swimmers during the 1996
Olympics. The similarities betweeneach story and the most data rich
500 and 1000 clusters, as well as all 5883 clusters, were calculated.
The 5, 10 and 20 most similar clusters were chosen for each case. The
10 most similar clusters for story B chosen by the(tf� idf) measure
when all 5883 clusters were considered are shown in Table 5.

Story B - Correct Transcript
Similarity Cluster Keyword

0.306 China
0.296 Olympic Games
0.252 Olympic Games, Barcelona, 1992
0.244 Favored nation clause
0.212 Chinese Americans
0.212 Drug testing
0.211 Olympic Games, Atlanta, 1996
0.209 Intellectual property rights
0.195 Swimming
0.183 Athletes

Table 5: Ten most similar clusters out of 5883 for Story B.

Our baseline 51k general trigram backoff language model was used
for the first-pass Sphinx III recognitionhypothesis reported below.
The 51k vocabulary was used to create trigram backoff language
models from each of the most similar clusters. The cluster language
models and the 51k general language model were interpolated at
the word level, with weights obtained using half of the correct story
transcript. The perplexity was computed using these weights on the
other half of the story. The two perplexities computed foreach story
half were combined to give the overall perplexity of the story when
using topic-specific language models. Using only the general 51k
trigram language model, we obtain a perplexity of 243 for Story A
and 262 for Story B. Perplexity results are shown in Tables 6 and 7.

The lowest perplexities for these two stories were obtained when

Top Number of clusters considered
Matches 500 1000 5883

5 227 226 227
10 222 200 226
20 211 203 200

Baseline Perplexity = 243

Table 6: Perplexity for Story A interpolating different numbers of
models.

interpolating the 20 most similar clusters chosen from among all
5883 clusters. Adding additional models may reduce the perplexity
even more. The experiments above have an unrealistic component in
that the correct story transcripts were used to select the most similar
clusters to use for interpolation. Therefore, instead of using the
correct transcripts, errorful transcripts for these two stories were next
generated by taking theN -best lists (N = 500) output by Sphinx III for
the development set, and choosing the highest scoring hypothesis for
each segment of the story. The transcripts for both stories have a word
error rate of 45%. The similarity between the errorful transcripts and
all 5883 clusters was computed, and the top 10 most similar clusters
for story B are shown in Table 8. It is interesting to note that even
using very errorful transcripts, many of the same clusters are chosen
as when using correct transcripts.

Interpolating the 5, 10 and 20 most similar language models, opti-
mizing interpolation weights on half of the correct story transcript at
a time, yields the perplexity values shown in Table 9. The addition of
errors into the hypothesis transcript hurts the perplexity performance
of the topic models on the correct story text. However, the adaptation
still improves perplexity over the baseline performance by 8% for
Story A and 16% for Story B.

Most importantly, we’d like to know if using the interpolated lan-
guage model weights will help improve the word error rate of Story
A and Story B in anN -best rescoring paradigm. Rescoring the com-
binedN -best lists (N = 500) from both stories (2922 words) with
the original acoustic score, a language score and a word insertion
penalty results in the WER’s shown in Table 10. TheFP column
indicates whether or not filled pauses were predicted from their un-
igram probabilities, and thePosteriorcolumn indicates whether or
not the model interpolation weights were weighted by the unigram
probability of the last word in the history [2].

Rescoring Stories A and B with the topic language score results in
a lower word error rate (41.7%) than using the Katz trigram score
(42.6%). However, more improvement was obtained by rescoring
with the Kneser-Ney trigram model (40.9%). The evaluation set was

Top Number of clusters considered
Matches 500 1000 5883

5 211 211 222
10 210 211 204
20 210 210 199

Baseline Perplexity = 262

Table 7: Perplexity for Story B interpolating different numbers of
models.



Story B - Errorful Transcript
Similarity Cluster Keyword

0.377 China
0.308 Favored nation clause
0.279 Chinese Americans
0.279 Olympic Games
0.261 Intellectual property rights
0.246 Chinese in the United States
0.243 Olympic Games, Barcelona, 1992
0.225 Wu, Harry
0.223 Civil rights
0.216 Zemin, Jiang

Table 8: Ten most similar clusters out of 5883 for Story B.

rescored using the topic language score (N = 200.) The topic score
lowers the 2nd pass decoder output WER from 35.5% to 35.3%, but
the Kneser-Ney score results in a WER of 34.9%. Although the
topic score decreases the overall WER, better results are obtained
by rescoring with a Kneser-Ney trigram model. Future work will
focus on Kneser-Ney smoothing for topic models, agglomerative
clustering, and model selection and interpolation in the context of a
topic tree.

5. EVALUATION SYSTEM
Our final evaluation system employed two different language mod-
els. A Katz-smoothed trigram language model with cross-boundary
trigrams, excluding singleton trigrams and bigrams,using the 51k vo-
cabulary that was supplemented with 208 phrases and 147 acronyms,
was used for two decoding passes. After the two passes,N -best
lists (N = 200) were generated from the decoder lattices, and the
N -best hypotheses were rescored using a Kneser-Ney-smoothed tri-
gram model with no cutoffs. Both language models predicted pauses
using the unigram probabilities shown in Table 3.

After two decoder passes,the overall word error rate on the evaluation
test set was 35.5% (PE) and 36.5% (UE).N -best rescoring resulted
in a 0.6% WER decrease to 34.9% (PE) and 35.9% (UE). In absolute
terms,N -best rescoring had the most effect on conditions F2 (-1.1%
PE, -0.7% UE), F5 (-1.6% PE, -3.3% UE) and F6 (-2.0% PE, -2.0%
UE).
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Language Score FP Posterior Story A+B WER
Oracle (best in list) 34.4%
Katz 3-gram no N/A 42.6%
Kneser-Ney 3-gram no N/A 41.8%
Kneser-Ney 3-gram yes N/A 40.9%
Topic no no 42.0%
Topic yes no 41.7%
Topic no yes 42.1%
Topic yes yes 41.7%

Table 10: WER’s for Stories A and B combined, using different
language scores.


