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Statistical language models estimate the distribution of natural language for
the purpose of improving various language technology applications. Ironically, the
most successful models of this type take little advantage of the nature of language.
I review the extent to which various aspects of natural language are captured in
current models. I then describe a general framework, recently developed at our lab,
for incorporating arbitrary linguistic structure into a statistical framework, and
present a methodology for eliciting linguistic features currently missing from the
model. Finally, I ponder our failure heretofore to integrate linguistic theories into
a statistical framework, and suggest possible reasons for it.
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1. Introduction

Statistical language models (SLMs) estimate the probability of sentences in natural
language using large amounts of training data. SLMs are used in a variety of lan-
guage technology applications, such as speech recognition, document classification,
optical character recognitions, machine translation, and more. In speech recogni-
tion, for example, an incoming acoustic signal a is given. The goal is to find the
sentence s* that maximizes the posterior P(s|a):

s* = arg max P(s|a) = arg max P(als) - P(s) (L.1)
£ E

where the language model P(s) plays the role of the prior.
A given language model M is often evaluated by its perplezity:

perplexity (M) = 2H#(PriPu) (1.2)

where H(Pr; Pypr) is the cross entropy between the distribution Py described by
the model and Pp, the true disribution of the data.

Ironically, the most successful SLM techniques use very little knowledge of what
language really is. Attempts to incorporate linguistic theories or even linguistic
intuition into statistical language models have met with very limited success. In
what follows, Section 2 lists various aspects of natural language, and reviews the
extent to which they are captured in current models. Section 3 describes a general
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2 R. Rosenfeld

Table 1. Natural language sentences

(Example average length sentences from the Broadcast News corpus.)

WANDILE ZOTHE DO YOU PERSONALLY KNOW PEOPLE WHO WERE ARRESTED AND TORTURED DURING THE APARTHEID ERA </s>
SO HE PROBABLY WILL HAVE TO HAVE THEM TAXED BECAUSE THEY’RE NOT A TRADITIONAL PENSION FUND </s>

BUT THE TOBACCO COMPANIES AND NASCAR OFFICIALS SAY THEIR FANS ARE WILDLY LOYAL TO RACE ADVERTISERS </s>
THERE ARE A LOT OF QUALITY SWEATERS IN THE MARKET RIGHT NOW CASHMERE AND CASHMERE BLENDS </s>

POLICE SAY THE MAN RAN FROM THE FRONT OF THE HOUSE AND CAME AROUND THIS CORNER </s>

framework, recently developed at our lab, for integrating linguistic features into a
statistical framework. Finally, in section 4 I ponder the SLM community’s failure
to integrate linguistic theories into a statistical framework, and suggest possible
reasons for it.

2. Linguistic structure in statistical language models
(a) Baseline: the n-gram

Almost all language models estimate the probability of a sentence s by using
the chain rule to decompose it into a product of conditional probabilities:

Pr(s) C Pr(ws .. wa) = [ Pr(wilwn .. wizt) € T] Pr(wlhi) (2.1)
i=1 i=1
def . . ..
where h; = {ws,...,w;j_1} is the history when predicting word w;.

The most commonly used language model, the n-gram, makes the further sim-
plifying assumption:

P(wl|hl) ~ P(wi|wi_n+1,... ,wi_l) (22)

The n-gram captures reasonably well correlations among nearby words. Not
surprisingly, it captures little else. This can be best appreciated by observing ‘sen-
tences’ generated from this model. Table 1 lists example sentences from the Broad-
cast News corpus — a corpus of some 13 million sentences transcribed from TV and
radio news related programs during 1992-1996 (Graff 1997). This complete corpus
was used to train a state-of-the-art trigram language model, which was in turn used
in generative mode to produce ‘pseudo sentences’, examples of which are listed in
table 2.

It is not difficult for people to tell these two language sources apart. In an infor-
mal blind study we conducted on Carnegie Mellon’s Sphinx speech research group,
classification accuracies of 95% were achieved. It is also easy to appreciate how such
judgements are made, since just about every aspect of natural language (with the ex-
ception of short-distance dependencies) are being violated by the pseudo-sentences.
These include lexical relationships, topic and discourse coherence, syntax and se-
mantics. One would expect that such glaring deficiencies in this simple model will
be quickly remedied. Not so. We will now review these aspects of language and
what attempts have been made to model them.
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Table 2. Trigram-generated sentences

(Average length sentences generated by a trigram trained on the BN corpus.)

YOU CALL PORK MITCHELL IS THOSE THREE WIRE LUCK AFTER ATTENDANT S. COMPETITIVENESS AND KNOWS THAT </s>
ARE YOU REFERRING TO IS EXTREMELY RISKY BECAUSE I’VE BEEN TESTED WHOSE ONLY WITH A MAIN </s>

THE FIRST BLACK EDUCATORS CATACOMBS DOWN ROMAN GABRIEL SLEEP IN A WAY TO KNOW IS PROPER </s>

MY QUESTION TO YOU THOSE PICTURES MAY STILL NOT IN ROMANIA AND I LOOKED UP CLEAN </s>

YOU WERE GOING TO TAKE THEIR CUE FROM ANCHORAGE LIFTED OFF EVERYTHING WILL WORK SITE VERDI </s>

(b) Lezical relations

To an n-gram, the vocabulary is a long list of indistinguishable categories. But of
course, words in a language form complex and not fully understood lexical relations.
Surely TUESDAY is closer in some sense to WEDNESDAY than to, say, CHAIR.

The simplest attempt to consider lexical relations concentrates on Part-Of-
Speech (POS) information. The POS-based n-gram (Jelinek 1989) comes in several
varieties. For example, for a trigram, one could try:

Pr(wi|w;—2, wi_1) = Pr(w;|P0OS;) - Pr(POS;|POS;_2,POS;_1) (2.3)

where POS; is the POS class of w;. The main motivation for such a model is to
reduce the number of parameters and hence the variance of the estimation. One
practical problem is that in a language as polysemous as English, the correct POS of
each word token is often hard to determine. State-of-the-art POS taggers, boasting
95%—97% accuracy under ideal conditions, can be helpful. Alternatively, a hidden-
variable model can be used, in which all possible POSs are considered simultane-
ously. Nonetheless, these models are not usually very successful, as measured by
perplexity improvement over the baseline word based n-gram. Apparently, what is
a useful linguistic distinction does not translate into a useful predictive distinction.

An improvement over the POS-based model is to use a class-based model, where
classes may get their origin in POS categories, but are further optimized over the
data. Several algorithms have been suggested for automatically clustering the vo-
cabulary based on information theoretic measures (e.g. Brown et al. 1991, Kneser
& Ney 1993), in an either bottom-up or top-down fashion. In some of these, the
algorithm yields not just a partition into classes but rather a word tree, namely a
complete (usually binary) hierarchy of word types. These classes are then used by
an n-gram similar to the one in equation 2.3. Yet another variation is to assume
that each word type can belong to several different categories (‘soft classes’), and
use a hidden-variable model.

Examples of word classes derived by [S. F. Chen 1998, unpublished work] using
such an algorithm are shown in table 3. Note that, although most of the members of
a class seem appropriate, some are not. Not surprisingly, the ‘misfits’ are rare word
types, which only occurred a handful of times in the data on which the clustering
algorithm was run. Ironically, it is exactly these word types, at the tail end of the
vocabulary distribution, that stood to benefit the most from clustering. This is true
for all data-driven vocabulary clustering algorithms: the more common the word is,
the more reliably it can be assigned to an appropriate cluster, but the less it will
benefit from such an assignment.

For this and other reasons, class-based n-gram models have only seen moderate
success. For any amount of training data, these models do not perform as well as
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4 R. Rosenfeld

Table 3. Automatically derived word classes

(Word classes derived automatically from data; Notice the ‘misfits’ are infrequent words.)

MY THY JESSICA’S SARAH’S KEVIN’S CONGESTIVE KAREN’S HEIDI’S

THEN THEREFORE CONSEQUENTLY THIRDLY LASTLY BEHOLD FRO ABETTING

DOWN ASIDE ASHORE INS OVERBOARD IDLY ... AFIRE ROUGHSHOD

LET EXCUSE FORGIVE PARDON TICKLE

STATE CENSUS COMMONWEALTH PROVISIONAL FOOTHILLS

WASHINGTON LONDON MOSCOW PARIS TOKYO ... ISLAMABAD EDGEWISE

DONE RESOLVED ACCOMPLISHED ACHIEVED FORGOTTEN SOLVED TOLERATED UNDERTAKEN NOTS FORESEEN

their word-based counterparts. When the two are interpolated together, a modest
improvement is usually achieved, but only for large corpora.

The only circumstance where lexical relations are exploited successfully for lan-
guage modeling is in very narrow discourse domains, where class-based n-gram
models are used with hand tailored classes. For example, in the ATIS domain (Air-
line Travel Information System, Price 1990), classes consisting of city names, airline
names, aircraft types, etc., proved very useful in the face of limited training data.

See for example (Ward 1990).

(¢) Syntactic structure

Several attempts have been made to integrate theories of syntax into language
modeling. We will mention three of them here:

(1) Probabilistic context-free grammars

Context-free grammars (CFGs) are inaccurate as models of natural language,
yet can arguably serve as a first order approximation. Probabilistic context-free
grammars (PCFGs) are CFGs with a probability distribution defined over all pro-
ductions that share their left-hand side. To use PCFGs to model unconstrained
language, one must decide on both the CFG itself (set of non-terminals and pro-
duction rules) and the (usually context-free) production probabilities. As of today,
no CFG has been suggested that sufficiently covers unconstrained English. Given a
large parsed and annotated corpus such as the Penn Treebank (Marcus et al. 1993),
a CFG can be created to cover it, although its coverage of new, unseen data will be
more limited. Furthermore, given a CFG and annotated data, the Inside-Outside al-
gorithm (Baker 1979), an EM algorithm, can be used to find locally optimal context
free production probabilities. However, the local optima found by the algorithm are
unlikely to be as good as the global optimum, which is computationally infeasible
to find. Even if the global optimum were to be found, it is likely that context free
production probabilities do not have sufficient expressive power to capture the true
distribution of parses. For these reasons, no PCFGs have been suggested that can
compete (statistically) with the conventional n-gram, let alone surpass it.

An interesting attempt to combine n-grams and PCFGs was reported by Miller
(1995). The CFG structure was formulated as a Markov Random Field (MRF), and
a family of additional constraints were imposed on transitions between successive
words, effectively capturing bigram information. This fusing of CFG and bigrams
resulted in a model with size (number of parameters) comparable to a bigram yet
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performance comparable to a trigram. However, no improvement over the state-of-
the-art trigram has been reported.

(ii) Probabilistic link grammar

Link Grammar is a lexicalized grammar formalism introduced by Sleator & Tem-
perley (1991), where a specific link grammar for English has also been constructed
by hand, with encouraging coverage. In a specialized form of the grammar known
as ‘grammatical trigrams’ (DellaPietra et al. 1994), a word can be predicted from
any pair of adjacent words that precede it in the sentence. The choice of which
such pair to use is encoded in the link grammar, which is trained automatically
from a corpus. Grammatical trigrams have achieved a modest yet consistent per-
plexity improvement over the state-of-the-art trigram. Other promising forms of a
dependency grammar were also attempted (Stolcke et al. 1997, Alshawi & Douglas
2000).

(iii) Structured language model

Recently, Chelba & Jelinek (1999) introduced a model which predicts the next
word based on a set of linguistic equivalence classifications of the history. Given
a history, a lexicalized parser proposes several possible equivalence classifications,
each with its own weight. The predictions from the various classifications are com-
bined linearly. The parser uses a natural probabilistic parameterization of a push-
down automaton, and an EM algorithm is used for training. Experiments on the
Switchboard corpus (Godfrey et al. 1992) show modest improvements in both per-
plexity and word error rate over the baseline trigram.

(d) Topic and semantic coherence

One of the most striking aspects of the pseudo sentences in table 2 is their lack
of topic and semantic coherence. There is a strong sense in reading these sentences
that they are not about anything.

(1) Model interpolation

The earliest attempts to capture topic coherence were through the use of inter-
polated language models. Typically, the training data were partitioned into multiple
sets, each containing documents about a particular topic or set of topics. Each such
set was used to create a separate topic-specific language model Pi(w|h), and the
various models were interpolated together at the word level:

P(wlh) = Y A\ Pi(wlh) | (2.4)

where the interpolation weights {A\1, A2, ..., } varied based on the expected topic
of the test data, and were generally determined from held-out data.

There are many variations on this general approach. The training data may
be provided already classified into topics (e.g. Seymore & Rosenfeld 1997), or a
clustering algorithm may need to be run to automatically derive such classification
(e.g. Iyer & Ostendorf 1999). The topic classes themselves can be hard, soft (i.e.
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6 R. Rosenfeld

allow overlaps), or even be arranged to form a hierarchy (Seymore & Rosenfeld
1997). Finally, interpolation can take place at the word level, as in equation 2.4
above, or at the sentence level:

P(S) = D> X P(S) = Z/\t-HPt(wﬂhi) (2.5)

or at both (Iyer & Ostendorf 1999). Generally speaking, topic interpolation re-
sults in moderate yet consistent reductions in perplexity, and often also in speech
recognition error rates.

However, interpolation is seriously deficient as a method for modeling topic
coherence. This is because it fails to separate those aspects of language that vary
from topic to topic from those that are invariant across all topics. As a result, the
limited amount of training data in each topic means that the out-of-topic training
data must be pulled in for more robust estimation, resulting in a dilution in the
topicality of the interpolated model.

(i1) Cache

Another attempt to capture topic coherence and word correlations was through
the use of an n-gram cache (Kuhn & DeMori 1990). Caches are easy to implement,
and capture word auto-correlations, which are a very pronounced phenomenon
across sentences. Both Kuhn & DeMori (1990) and Jelinek et al. (1991) report
improvements in perplexity over the baseline trigram, and the latter also reports
a modest reduction in word recognition error rate. Since then, caches have been
implemented in many systems, with similar results, and have now become part of
the ‘baseline’ in language modelingj.

(iii) Word triggers

A generalization of the cache idea to correlations between different words lead
to work on word triggers (Rosenfeld 1996, Beeferman et al. 1997). In principle, cor-
relations between any pair of words or phrases can be captured and modeled. In
practice, Rosenfeld (1996) showed that linear interpolation of the trigger component
is suboptimal, and that an exponential model, trained using the maximum entropy
principle, is superior. Unfortunately, the computational requirements of training
such a model grow supra-linearly with the number of independently-modeled word
trigger pairs, and are prohibitive even for a moderate number of such pairs. Al-
though such a model achieves significant perplexity reduction over the baseline
trigram, the computational difficulties render it impractical in most cases of inter-
est.

(iv) Dimensionality reduction

An improvement over modeling individual word correlations can be achieved by
using Singular Value Decomposition (SVD) to reduce the dimensionality of the topic

t We did not use a cache in generating the sentencesin table 2 because these sentences are eval-

uated in isolation, whereas the auto-correlations a cache is designed to capture are predominantly
cross sentence effects.
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space. In Bellegarde (1998), a matrix of word-document occurrences is reduced to
a relatively small size (100x100) via SVD. The resulting matrix captures succinctly
the most salient correlations between groups of words on one hand and clusters of
documents on the other. The SVD process also provides the necessary projections
from document-space and word-space into the new, combined space. As a result,
any new document or partial document can be projected into the combined space,
effectively being classified as a combination of the 100 underlying semantic dimen-
sions. When combining SVD decomposition with an n-gram, significant reductions
in perplexity are reported, as well as in speech recognition errors (Bellegarde 2000).

3. A general framework for integrating linguistic structure

The modeling attempts described in the previous section suffer from two major
deficiencies. First, the statistical methodology in these attempts varied greatly. Each
such model was aimed at a specific linguistic phenomenon, which in turn affected the
choice of model structure, parameter family, training algorithms, etc. In addition,
a new method had to be found for combining the new model component with the
existing n-gram baseline. If a new linguistic knowledge source were to suggest itself,
a new modeling methodology would have to be developed and tested, and many
practical estimation issues would have to be worked out.

Second, virtually all the models described above estimate the probability of a
sentence s by using the chain rule, as in equation 2.1, to break it into a product
of conditional probabilities (typically P(w|h)). While this practice is understand-
able from a historical perspective (n-gram modeling cannot be done on whole sen-
tences), it is not desirable for capturing linguistic phenomena. Linguistic aspects of
sentences, such as their grammar, syntax, semantics or pragmatics, are impossible
or at best awkward to think about, let alone encode, in a conditional framework.
Also, external influences on the sentence (e.g., the effect of preceding utterances,
or dialog level variables) are equally hard to encode, and factoring them into the
prediction of every word in the current sentence causes small but systematic biases
in the probability estimation to be compounded.

We have recently introduced a new language modeling framework that addresses
these two deficiencies (Rosenfeld 1997). The exponential model we use directly
models the probability of an entire sentence or utterance. By avoiding the chain rule,
the model treats each sentence or utterance as a ‘bag of features’y, where features are
arbitrary computable properties of the sentence. Furthermore, the unified structure
of the model means that any linguistic theory can be incorporated without any
change to the model itself. This solves the two problems mentioned above. In this
section we describe the model and review the various features it has been used with
so far.

t Not to be confused with a bag of words: features may take account of sequentiality, if so
desired.
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8 R. Rosenfeld

(a) A whole-sentence exponential model

A whole sentence exponential language model has the form:
P(s)= - Po(s) -exp > Aifils)] (3.1)

where the A;s are the parameters of the model, 7 is a universal normalization
constant which depends only on the A;s, and the f;(s)s are arbitrary computable
properties, or features, of the sentence s. The distribution Py(s) is an arbitrary
probability distribution. It can be thought of as the starting point, or baseline,
for further modeling improvements. Often, Py(s) will be simply derived from the
baseline trigram.

The features {f;(s)} are selected by the modeler to capture those aspects of the
data they consider appropriate or profitable. These can vary from conventional n-
grams, longer-distance dependencies, or simple global sentence properties, to more
complex functions based on part-of-speech tagging, parsing, or other types of lin-
guistic analysis (person and number agreement, semantic coherence, etc.).

For each feature fi(s), its expectation under P(s) is constrained to a specific
value K;:

Epfi=K; . (3.2)

These target values are typically set to the expectation of that feature under the em-
pirical distribution P of the training corpus 7' = {s1,...,sn} (for binary features,
this is simply the prevalence of that feature in the corpus.) Then, the constraint (3.2)
becomes:

S P) Sils) = Bpfi = D filss) (3.3)

If the constraints (3.2) are consistent, there exists a unique solution {\;} within
the exponential family (3.1) which satisfies them. Among all (not necessarily expo-
nential) solutions to equations (3.2), the exponential solution is the one closest to
the baseline Py(s) (in the Kullback-Liebler sense), and is thus called the Minimum
Divergence or Minimum Discrimination Information (MDI) solution. If the baseline
P(s) is flat (uniform), this becomes the Maximum Entropy solution. Furthermore,
if the feature target values K; are the empirical expectations over some training
corpus (as in equations (3.3)), the MDI or ME solution is also the Maximum Like-
lihood solution of the exponential family. For more information, see (Jaynes 1957,
Berger et al. 1996, Rosenfeld 1996).

It is instructive to compare this model to the conditional exponential model,
which has seen considerable success recently in language modeling (DellaPietra et
al. 1992, Lau et al. 1993, Berger et al. 1996, Rosenfeld 1996). The conditional model
has the form:

1

P(w|h) = 0] - Py(wlh) -exp[Z/\ifi(h,w)] (3.4)

where the features are functions of a specific word-history pair, and so is the baseline
Py. More importantly, Z is no longer a true constant — it depends on h and thus
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must be recomputed for each word in each sentence. The main drawbacks of the
conditional model are the severe computational bottleneck of training (especially
of computing Z(h)), and the difficulty in modeling whole-sentence phenomena.

(b) Training the model

The MDI or ME solution can be found by an iterative procedure such as the
Generalized Iterative Scaling (GIS) algorithm (Darroch & Ratcliff 1972). GIS starts
with arbitrary A;s. At each iteration, the algorithm improves the {\;} values by
comparing the expectation of each feature under the current P to the target value,
and modifying the associated A. In particular, we take

Ep[fi]
Ep[fi]

where Fj is a parameter affecting the step size.

(1) Sampling

In training a whole-sentence maximum entropy model, computing the expecta-
tions Ep[fi] = >, P(s) - fi(s) requires a summation over all possible sentences s,
clearly an infeasible task. Instead, we estimate Ep[f;] by sampling from the distri-
bution P(s) and using the sample expectation of f;. Sampling from an exponential
distribution is a non-trivial task, and is the subject of intense research by statisti-
cians, physicists and others. Sampling of sentences from an exponential distribution
poses additional challenges, and is discussed in Chen & Rosenfeld (1999). Efficient
sampling is crucial to successful training.

It is equally infeasible to compute the normalization constant Z = 3 po(s) -
exp(D_; Aifi(s)). Fortunately, this is not necessary for training, since sampling can
be done without knowing Z. Using the model as part of a classifier (e.g., a speech
recognizer) does not require knowledge of Z either, because the relative ranking of
the different hypotheses is not changed by a single, universal, constant. Notice that
this is not the case for conditional exponential models.

Even though the exact value of Z is not really needed, at times it may be
desirable to approximate it, for example for perplexity calculation. This can be
done to any desired accuracy by generating a large sample from P(s), observing
the frequency of one or more sentences which occur more than, say, 50 times, and
making use of equation 3.1. For situations where no such sentences exist, or in
general for a more efficient estimator, one could use:

- 1
= — [ expE,)\zfz(s) ] (36)
ol 2

where Tp is a sample of sentences generated from Py. For more details, see Zhu et
al. (1999).

(¢) Feature selection

Once the general framework and training procedure have been worked out, at-
tention can be concentrated on the art of modeling language. The goal is to choose
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features f;(s) that capture aspects of language which are not captured (or inade-
quately captured) by the current baseline modeling technique. To this end, we have
been using the following methodology for feature discovery and selection.

Given a corpus 7' of natural language sentencest with empirical distribution P,
presumably representative of the unknown target distribution P, we use it to train
our best baseline model Py. Next, we use Py to generate a corpus Ty of ‘pseudo
sentences’, like those in table 2. We then compare Ty with T (or some other dataset
from the same distribution P). We look for systematic differences between the two
corpora. Any such difference we discover points to a deficiency in the way Py models
the unknown target distribution P. Any such deficiency can now be readily fixed,
by defining an appropriate feature f(s) (or set of features) which have different
expectations under P and Py (as evidenced by their respective samples 7" and Tgp).
The new feature is then added, resulting in a new model:

1
Pi(s) = EPO(S) -expM () (3.7)

Once P; is trained, the appropriate constraint (equation 3.3) guarantees that
it consistently captures the new feature, and the previously observed difference
between our model and the target distribution has been eliminated.

The process can now be repeated by generating a corpus 77 of ‘pseudo sentences’
from the improved model P;, and comparing it to the original corpus 7', looking
for new differences. The latter will be captured with new features, and so on. In
practice, many features (or even sets of features) are added at each iteration. I

As an exampleq], suppose we observe that the trigram-generated Ty sentences
are slightly shorter on average (as measured by number of words) than their T
counterparts. We then define the simple feature:

flength (s) = number of words in s (3.8)

and observe that Ep,[fiength] # £ p[fiengtn]. But once the new feature is incorpo-
rated, we are assured that Ep, [fiength] = £p[fiengtn]-

(d) The search for features

In Chen & Rosenfeld (1999), we searched for ngram-style features that showed
significant discrepancy between P and Fj. These included 4-grams and 5-grams
(which were outside the range of the baseline Py trigram), class n-grams, and dis-
tance (non-contiguous) n-grams. All such features were ranked by a y? significance
test. Over 50,000 of these features were found to have a significance level of y? > 15.
When incorporated into the language model, they resulted in a small improvement

t Or, more generally, utterances. The model is equally suitable for direct estimation of any
spoken utterance, whether or not it conforms to conventional linguistic boundaries.

1 A process of iteratively incorporating into an exponential model the most information-bearing
feature in a given candidate set was described in DellaPietra et al. (1997). The emphasis in our
methodology, though, is on the manual inspection of two corpora and the linguistic analysis and
‘detective work’ of searching for and evaluating families of linguistically motivated features.

§ A true one, it turns out: properly smoothed trigram models often do not accurately capture
unigram marginals such as Pr(</s>), the end-of-sentence probability.
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in recognition accuracy (perplexity was not computed). Although these n-gram fea-
tures do not improve the linguistic plausibility of the model, they served to verify
and demonstrate our methodology.

In Zhu et al. (1999), we used a shallow parser to map utterances from the
Switchboard corpus into a flat list of variable length constituents. Features were
then defined in terms of constituent sequences, constituent sets and constituent
trigrams. Some 7,000 such features were found statistically significant and added to
the model. Perplexity of the new model was slightly lower than that of the baseline,
and recognition accuracy was also slightly improved. Further analysis suggested that
the potential of these features was limited due to their rarity.

We have subsequently refocussed our attention on finding a small number of
much more common features. For example, among the most glaring differences be-
tween true natural language and trigram-generated sentences is the lack of semantic
and topic coherence in the latter. We have been working on modeling such coher-
ence within this framework. As building blocks for the ‘semantic coherence’ feature,
we use measures of association in 2x2 contingency table based on pairs of content
words in the same sentence.

4. Discussion

Why did the language modeling community fail thus far to integrate formal linguis-
tic theories into a statistical framework? Why do current practical language models
lack any resemblance to even a rudimentary linguistic theory? Why did 20 years of
research fail to yield practical and significant improvements over the trigram, which
was proposed in its essential form by Jelinek & Mercer (1980)7 In this last section,
I propose a few answers to these questions:

Linguistic theories and statistical models have different goals. Linguis-
tic theories deal with ezistence. They are successful if they explain (and predict)
which constructs are found in the language and which similar constructs are not. A
theory is considered deficient if there are counter-examples to it. In contrast, statis-
tical language models deal with prevalence. They are successful if they approximate
reasonably well (in log space) the prevalence of the most common constructs found
in the language. A model is considered deficient if there is a systematic bias, or dis-
crepancy, between it and the phenomenon it purports to describe. Thus, a linguistic
concept may be a useful tool in the context of a theory, yet prove far less useful
when it comes to improving a statistical model. We have already seen an example
of this in POS-based classes (section 2b).

Lack of general framework. Until recently we have lacked a general statis-
tical framework for incorporating arbitrary aspects of language into our models.
Without such a framework, accommodating each linguistic theory involves solving
a (sometimes hard) statistical estimation problem. The model described in section 3
addresses this problem.

Mental straight-jacket of the conditional formulation. Until recently
virtually all language modeling was done in the conditional framework, i.e. by es-
timating P(w|h). As was argued earlier, this is not conducive to thinking about
and modeling linguistic properties of the sentence as a whole (e.g. parsability). The
model described in section 3 addresses this problem as well.
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12 R. Rosenfeld

Impoverished priors. Viewed within a Bayesian framework, the problem may
lie in our choice of priors. A prior is supposed to capture everything that is known
about the domain before any data are observed. In our case, the prior should capture
everything that we believe to be true about human languages in general, and about
a specific language such as English in particular. The very large parameter space
of language means that any feasible amount of training data is insufficient for
overwhelming the prior. The choice of prior is therefore crucial. Yet the priors we
currently use are impoverished — they take advantage of hardly anything we know
about language.

As an example, consider the vocabulary clustering problem discussed in sec-
tion 2b: rare words stand to benefit the most from clustering, yet they do not
occur often enough in corpora for reliable automatic clustering. But much useful
information can be provided manually about many semantic classes, such as named
entities. If such information can be encoded in a ‘soft’ prior, automatic clustering
methods may yet prove successful.

In summary, it could be argued that attempts to integrate linguistic knowledge
into our models have so far failed because we don’t yet know how to appropriately
encode such knowledge, namely, how to optimally combine it with data. Put yet
another way, we haven’t figured out how to simultaneously get the most out of both
our knowledge and our data. Between knowledge without data and data without
knowledge, apparently the latter (witness the n-gram) is more successful. But there
is no inherent reason why we can’t have both.

I am grateful to Ciprian Chelba, Stanley Chen, Fred Jelinek, John Lafferty, Jerry Zhu,
and especially Mari Ostendorf for helpful discussions and suggestions. | am also grateful to
Karen Sparck-Jones and Gerald Gazdar for very useful feedback on a draft of this paper.
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