
Universalizing Speech: Notes from the USI Project

Stefanie Shriver, Roni Rosenfeld, Xiaojin Zhu, Arthur Toth, Alex Rudnicky, Markus Flueckiger

School of Computer Science
Carnegie Mellon University, Pittsburgh PA USA

sshriver@cs.cmu.edu

Abstract

This paper discusses progress in designing a standardized
interface for speech interaction with simple machines – the
Universal Speech Interface (USI) project. We discuss the
motivation for such a design and issues that must be addressed
by such an interface. We present our current proposals for
handling these issues, and comment on the usability of these
approaches based on user interactions with the system. Finally,
we discuss future work and plans for the USI project.

1. Introduction

As one of the most common modes of human-human
interaction, speech holds great promise as a medium for
human-computer interaction. Speech is natural, and the vast
majority of humans are already fluent in using it for
communication. Furthermore, technology now exists for
reliably allowing machines to process and respond to basic
human speech and it is currently being used as an interface
medium in several commercial applications, such as dictation
systems (e.g. IBM ViaVoice™, L&H Voice Xpress™, Philips
SpeechPro™), web browsers (e.g. Conversay), and
information servers (e.g. TellMe, BeVocal).

However, the characteristics of human speech and
language still pose many problems for designers of speech-
based interfaces. A key feature of spoken language is its
unbounded variability, but speech recognition systems
perform best when the speaker uses a limited vocabulary and
syntax [1]. Machines are also limited in their ability to
understand the underlying meaning of words: humans do not
simply identify words as they hear them – rather, they extract
semantic and pragmatic meanings from a string of words
based on their order, their prosody, and the context (both
spoken and situational) in which they were uttered.

Additionally, humans tend to follow certain rules when
engaging in conversations with others. Grice, for instance,
proposes that humans follow certain conversational maxims,
such as being brief, being “orderly,” and making one’s
contribution to the conversation no more and no less
informative than is required by the situation [2]. Clark further
stresses that language is a joint activity in which both
participants must work to make a conversation succeed,
especially with respect to problems that could (and do) arise
over the course of the conversation [3].

Well-designed speech interfaces must take all of the
above issues into account. In short, they must be able to

• handle problems that result from speech recognition
errors,

• give user input a fine enough interpretation to perform
the appropriate task, and

• play the proper role of a participant in a conversation.

This last item includes making the user aware of problems
that may have arisen, apprising them of the state of the
system, and facilitating the progress of the conversation by
conveying just the right amount of information. Given the
limitations of speech recognition and language processing, the
interface should also convey to the user the fact that their
conversational partner is simply a tool, in order to discourage
the user from ascribing too much intelligence to the system
and exceeding its functional capabilities.

We have been working on designing the Universal Speech
Interface (USI), which we hope addresses many of the above
issues for speech user interface design. Our general approach
to these issues is to have the user and the machine meet
halfway. That is, rather than allowing unrestricted natural
dialog (which is hard for the system, but easy for the user) or
requiring adherence to strict command-and-control sequences
each of which is unique to a single application, we ask the
user to adapt a bit to a universal style which makes it easier
for the system to handle the issues noted above.

2. Current Systems

Our first application was a USI MovieLine – a telephone-
based application providing information on movie theaters
and current films in the Pittsburgh, Pennsylvania, area. This
work was first reported in [4]. Since part of our goal is to
investigate in what ways universal interfaces can reduce
learning time and increase user efficiency and proficiency
across applications, designing USI interfaces for multiple
applications has been central to this project.

We have recently developed our second application, a
USI ApartmentLine, which provides listings of available
rental properties in Pittsburgh neighborhoods adjacent to
Carnegie Mellon University. We chose to make our second
application another telephone-access database application, as
we felt that this would require the least amount of hardware
and backend adjustment from our MovieLine setup, and
would allow us to focus our efforts on porting the interface
design. Indeed, porting the USI to another application was
generally quite simple, and required only very minor
modifications to the USI code.

The most challenging issue we faced when developing the
ApartmentLine was the realization that, although it is still
based on a queryable database like the MovieLine is, the type
of information that users retrieve from the ApartmentLine is
quite different. In the MovieLine, users specify a simple piece
of information that they would like to retrieve from the
system, such as movie names (given theater x) or show times
(given theater x and movie y). In the ApartmentLine, this kind
of simple information is not generally helpful – we would not
have much use for a simple list of addresses (given a
constraint like ‘2 bedrooms’) or a list of neighborhoods
(given price range x and a constraint like ‘unfurnished’).

Instead, the type of information we are likely to find useful
from the ApartmentLine is complex, summary information: a
description of each available property that meets a certain set
of constraints. This structural difference led us to revise our
list navigation strategies, and reiterated the importance of
developing multiple applications in this project.

3. Basic Design Principles

The principal features of the USI approach are a set of
universal keywords and interaction guidelines. We have
approached the development of the USI as an iterative
process, with feedback from user interactions guiding the
design of the system. The keywords have been discussed
previously in [4] and have remained fairly static to this point;
we will review them briefly here before discussing in more
depth the current interaction structure of the USI. Fig. 1 shows
an example USI ApartmentLine interaction; in the rest of this
paper, the notation (n) will refer to line numbers in this figure.

Figure 1. Sample ApartmentLine interaction.
User utterances in bold; system responses in italics.

3.1. Keywords

The USI keywords are designed to provide regular
mechanisms for performing interaction universals, which
were derived by analyzing several applications and
application categories prior to developing the USI vocabulary.
These universals include help, orientation, navigation, error
correction, and general system interaction. Our goal is to limit
the regular set of USI keywords to around ten. Currently the
system incorporates the following keywords:

• NOW WHAT? allows the user to find out what can be said
next at any point in the application (3,7).

• GO! sends the user’s command to the application (9).

• SCRATCH THAT cancels the user’s last utterance (15).

• START OVER erases all accumulated context (11).

• REPEAT replays the system’s last utterance.

• RESTATE tersely restates the accumulated context.

• Navigation keywords allow users to move through lists of
information. Our current set includes MORE, NEXT,
PREVIOUS, and STOP.

3.2. Interaction structure

By incorporating a standard interaction structure as part of the
USI design, we feel that users will be able to work more
efficiently and accurately with USI applications. We also
hope that introducing a structure that is intended to be used
with many different applications will mitigate any negative
effects that may otherwise be associated with learning unique,
specialized command languages. The USI uses standard
interaction structures for both input and output. By
standardizing user input we hope to reduce the negative
effects of variability on system complexity, since a less
complicated grammar and smaller vocabulary can be used.
Additionally, by standardizing the output of the system, we
believe we can improve the learnability of the USI across
applications by improving the user’s ability to understand the
information presented by the machine. Standardization in the
USI takes the form of principles governing the regularities in
the interaction and includes the following items.

3.2.1. Phrases

USI input is always provided in phrases, each of which
conveys a single information element. Phrasal units map to
<slot> + <value> pairs in a form-filling paradigm.
Users can enter a single phrase per utterance (1), or they can
string together several phrases in one turn (17).

In our current applications we have been using a strict
<slot> is <value> syntax for our phrases. The form
<slot> is what? allows the user to get specific, as
opposed to summary, information from database applications
(for example, in a flight information system, a user might say
departure gate is what? in order to find out what
gate a specific flight is leaving from).

In general however, the USI gives each application
designer the flexibility to specify the syntax for phrases within
an application, and we plan on experimenting in the future
with freer, more natural phrase structures. At this point we do
allow common synonyms in phrases, however, and have
found that these are often intuitively used by users (21,23).
For instance, in the USI MovieLine, users can and often do
say movie is what? or titles are what? even
though title is what? is the only form that is ever
given by the system as an example or prompt.

3.2.2. Command Execution

After entering a string of phrases, a keyword (currently GO!)
is used to send the command to the application (9). We
considered as an alternative design having a query phrase (i.e.
<slot> is what?) signal command execution, since it
seems natural for questions and their accompanying
intonation to signal the user’s desire for the
command/question to be answered – indeed, we have found

1 Neighborhood is Shadyside
2 Shadyside
3 Now what?
4 Distance to campus is, rent is, furnished is,

<ellsig>
5 Rent is less than 700 dollars
6 Less than 700 dollars
7 Furnished is now what?
8 Furnished can be yes, no, partially furnished
9 Furnished is no, number of bedrooms is two. Go!
10 Unfurnished, two bedrooms. 4 matches.

At 5555 Forbes Ave, apartment, $650,
 0.5 miles from campus <ellsig>

11 Start over
12 Starting over
13 Neighborhood is Regent Square
14 Wilkinsburg
15 Scratch that. Neighborhood is Regent Square
16 Regent Square
17 Distance to campus is less than 3 miles, number

of bedrooms is at least 2
18 Hmmm… at least 2 bedrooms
19 Distance to campus is less than 3 miles
20 Less than three miles
21 Rent is less than $1200
22 Hmmm… I didn’t understand ‘rent is less than

Oakland’
23 Rent is under $1200
24 Less than $1200

that users often tend to forget to say GO! in those situations
where they end their commands with a query phrase.

However, by delaying command execution until it is
explicitly specified by the user, we accomplish several things.
First of all, we can allow user utterances to contain less than a
full command. This in turn allows novice users to proceed
more slowly and allows users who are experiencing speech
recognition problems to better pinpoint where errors are
occurring and to correct them in a stepwise manner. We
would also like to allow users some freedom in the order in
which they enter their phrases, rather than requiring the query
phrase to fall at the end of an utterance.

Using an execution keyword also enables the USI to
accept different types of commands. One example is
commands that do not require or need a query phrase: for
instance, in a non-database situation such as setting the radio
station on a car stereo, or when querying for summary rather
than discrete information in a database application.

Furthermore, at times a user might want to include more
than one query phrase in a command in order to receive a
matrix of information (for example, in the USI MovieLine:
movie is Casablanca, theater is what,
show times are what?), and this is easily
accommodated by using an execution keyword.

3.2.3. Output, general

In many speech interface environments, no visual display is
available, so extra care must be given to the design of audio
output to ensure that the system is able to convey information
and express concepts to the user clearly yet concisely. We
believe, and others have noted as well [5, 6], that often
information can and should be conveyed tersely.

Unnecessary verboseness and repetition in a system can
become tiring; since we propose the USI as a universal
interface, we envision that people might interact with USI
applications many times each day, which would magnify the
effect of unnecessary verboseness. Therefore, the general
paradigm for USI output is to convey information as
succinctly as possible, and to prompt the user for information
only when absolutely necessary.

3.2.4. Confirmation and Error Detection & Correction

In keeping with our general strategy of concise output, we
have adopted a succinct confirmation strategy in which the
system only confirms that input which it has understood and
therefore does not have to distinguish between different types
of errors. There are several different contexts in which
confirmation and error detection can occur.

In general, the USI confirms each entered phrase with a
paraphrase of its value (2,5,24). In (13-14) a parsable
recognition error occurs, and so it is up to the user to correct
this using SCRATCH THAT. In (17-18), one phrase fails to
parse (in this case because of a recognition error, since the
input uses the correct syntax and vocabulary), and the user
can simply repeat the phrase which was left out of the
confirmation. Note that whenever a problem phrase is left out
of the confirmation, the system precedes the confirmation
with a signal to the user that something was missed – a
“hmmm…” in our current applications.

The real exception to the confirmation strategy occurs in
cases like (21-22), where only a single phrase has been
spoken and it generated an error. Rather than respond with

silence in this case, we tell the user what the system “heard,”
in order to help them figure out where things went astray.

3.2.5. Lists

Particularly in database applications, information that is
returned to the user often takes the form of a list. We have
implemented standard USI structures for the output and
navigation of two varieties of lists: simple/simple, and
simple/complex, as shown in Fig. 2. We have also considered
strategies for the third type of list information,
complex/simple, but have not yet implemented or tested our
approach for this.

Figure 2: List categories with examples.

In keeping with our philosophy of presenting just as much
information as is useful, our general strategy is to output
information in small, manageable chunks. Therefore, in
simple/simple lists, we output three to four items at a time. In
simple/complex lists, such as those which occur in the USI
ApartmentLine output, the long, summary information for
each item is split into chunks. We use the MORE keyword
with lists to access additional information of the same type –
i.e. the next chunk at the same level of information. We use
an auditory icon (specifically a short triple-beep, represented
by <ellsig> in our text examples (4,10)) at the end of each
non-final chunk to signal that users can say MORE at those
points. In simple/complex lists the user can jump to the next
item in the list (as opposed to the next chunk) by using the
keyword NEXT (in simple/simple lists this keyword simply
acts the same as MORE).

Splitting complex output into chunks not only helps avoid
information overload, but also enables the REPEAT keyword
to act on current, smaller segments of information that the
user might be interested in hearing again, rather than having
to repeat all the summary information from the very
beginning. For instance, in the USI ApartmentLine, this can
be particularly useful for the contact information segment,
which comes at the very end of the summary information, and
which users are likely to want to hear repeated.

3.2.6. Tutorial

An important component of our approach is that given an
initial training investment of about five minutes, users should
be well-enough acquainted with the keywords and structure of
the system to be able to successfully use new USI
applications. Currently our systems include two training
components: a generic tutorial and application-specific

1. SIMPLE LISTS OF SIMPLE INFORMATION
 theater is the Squirrel Hill theater,
 movies are what? go!
 Squirrel Hill theater, 6 movies.
 Traffic, Gladiator, Chocolat, <ellsig>
2. SIMPLE LISTS OF COMPLEX INFORMATION

rent is under $700, neighborhood is
 Shadyside, go!

Under $700, Shadyside, 4 matches.
At 5942 S Aiken Ave, one bedroom

 unfurnished apartment, $650, <ellsig>
3. COMPLEX LISTS OF SIMPLE INFORMATION

theater is the Manor theater, movies
are what? show times are what? go!

 Manor theater, 4 movies. Traffic:
 4:50, 6:55, 8:20 <ellsig>

introductions.
The generic tutorial is intended to be a more substantial

introduction to the USI approach and is currently
implemented as a series of web pages explaining the system,
using examples from fictitious USI flight and hotel
information systems. Currently users read and click through
the web pages on their own, preferably with a project member
nearby to answer questions (which helps us further refine the
tutorial content) and to act as a sort of wizard-of-oz with
which users can test their understanding of the system. Our
plan is to make this generic tutorial even more interactive,
first as a web implementation that can accept and correct
typed user input, and then as a speech-based automatic
tutorial that will do the same.

The application-specific introductions consist of
approximately 90-second-long recordings of a hypothetical
user’s interaction with an application. The user in the
examples generally speaks in a confiding, casual, “thinking”
voice to explain a feature to the listener (e.g., “If I make a
mistake, I can always say scratch that to cancel my
utterance”), and then issues an example command in a more
assertive, “command” voice. The listener also hears the
system’s response to each command. These introductions are
played at the beginning of each interaction, following a brief
welcome and experimental-system disclaimer, and functions
primarily as a reminder of that particular application’s
functionalities and of the general USI paradigm. More
advanced users can skip the introduction by barging in.

We have found that these application-specific
introductions are not quite adequate for pure novice USI
users. In user studies, we have found that new users
introduced to the USI only via the application-specific
introductions often need to listen to the introduction more
than once in order to feel comfortable with the system, and
key features of the USI (such as using the execution keyword
GO!) are frequently missed. We suspect that the inadequacy
of this method for first introductions is largely related to the
lack of user interaction in it, and we hope that the further
development of the interactive general tutorial will solve or at
least ameliorate this problem.

4. Observations

From our observations of user interactions with the USI
MovieLine, we have discovered several positive features of
our design. Nearly all users were able to grasp the basic
concepts of the USI such as phrase structure and the use of
major keywords like NOW WHAT and SCRATCH THAT
almost immediately. Also, our earlier designs did not include
an explicit confirmation strategy, which created problems for
error correction since users were never quite sure of the cause
or location of the error. Our current confirmation strategy is
much more user-friendly; most users who have tried the
current implementation have commented on the resulting
transparency of the system as one of its strongest assets.

Following our latest refinements and the introduction of
the second application (ApartmentLine), we conducted the
following pilot study. We asked six new users to try the USI
ApartmentLine after having gone through the generic web
tutorial (and listening to the application-specific
introductions). Two of these users also used the MovieLine
application between the generic tutorial and the
ApartmentLine interaction; another used the MovieLine after

finishing the ApartmentLine interaction. Users were first
asked to simply interact with the system to find out some
information that they thought might be useful. Then they
were asked to accomplish specific tasks, such as “find out
how many 2-bedroom apartments are available in Shadyside.”
Our goal in these initial observations was not to make
quantitative judgments about task completion rates and times,
but rather to see if the overall interaction patterns in the
ApartmentLine applications matched our earlier observations
with the MovieLine.

The results were positive. Users issued correctly formed
phrases nearly all the time, even generalizing correctly to slot
types they had not seen before. Interestingly, users also over-
generalized, by constructing USI-correct phrases for slots that
were not actually queryable, such as “parking.” NOW WHAT
and SCRATCH THAT were again used readily, and users did
not forget to say GO! as frequently as in the MovieLine –
perhaps because of the non-specific nature of the
ApartmentLine queries, or because of the increased emphasis
on GO! in the general tutorial.

5. Conclusions & Further Work

Our work to date on the USI project seems to indicate that the
USI approach is indeed viable and holds promise as an
interface style for many different applications. In addition to
general design refinement, we have plans for investigating a
number of different extensions to and aspects of the USI.
Among these are:

• Implementing USI for non-database applications,
specifically device control and “interactive guidance
systems,” by which we mean systems that lead the user
through some task external to the USI application, such
as changing a tire, driving to a given address, or cooking.

• Designing an effective, speech-based interactive tutorial
to introduce users to USI systems, which can be used for
non-application-specific user training.

• Creating a toolkit allowing application developers to
design USI interfaces for their projects with a minimum
of effort and without much knowledge of speech
interface issues and speech recognition technology.

6. References

[1] Helander, M. “Systems Design for Automatic Speech
Recognition,” Handbook of Human-Computer
Interaction. Elsevier Science BV, Amsterdam, 1988.
301-319.

[2] Grice, H. “Logic and Conversation,” Syntax and
Semantics, Vol. 3: Speech Acts. Academic Press, New
York, 1975. 41-58.

[3] Clark, H. “Managing Problems in Speaking,” Speech
Communication 15, 3-4 (December 1994), 243-250.

[4] Rosenfeld, R., et al. “Towards a Universal Speech
Interface,” in Proceedings of ICSLP ’00, October 2000.

[5] Marx, M. and Schmandt, C. “MailCall: Message
Presentation and Navigation in a Nonvisual
Environment,” in Proceedings of CHI 96.

[6] Stifelman, L., Arons, B., Schmandt, C. and Hulteen, E.
“VoiceNotes: A Speech Interface for a Hand-Held Voice
Notetaker,” in Proc. INTERCHI ’93, Apr. 1993. 179-186.

