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A Survey of Smoothing Techniques for ME Models
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Abstract—In certain contexts, maximum entropy (ME) mod-
eling can be viewed as maximum likelihood (ML) training for
exponential models, and like other ML methods is prone to
overfitting of training data. Several smoothing methods for ME
models have been proposed to address this problem, but previous
results do not make it clear how these smoothing methods compare
with smoothing methods for other types of related models. In this
work, we survey previous work in ME smoothing and compare
the performance of several of these algorithms with conventional
techniques for smoothing -gram language models. Because of the
mature body of research in -gram model smoothing and the close
connection between ME and conventional -gram models, this
domain is well-suited to gauge the performance of ME smoothing
methods. Over a large number of data sets, we find thatfuzzy ME
smoothing performs as well as or better than all other algorithms
under consideration. We contrast this method with previous

-gram smoothing methods to explain its superior performance.

Index Terms—Exponential models, language modeling, max-
imum entropy, minimum divergence, -gram models, smoothing.

I. INTRODUCTION

M AXIMUM entropy (ME) modeling has been success-
fully applied to a wide range of domains, including

language modeling as well as many other natural language
tasks [2]–[5]. For many problems, this type of modeling can be
viewed as maximum likelihood (ML) training for exponential
models, and like other ML methods is prone to overfitting
of training data. While several smoothing methods for ME
models have been proposed to address this problem [1], [5]–[7],
previous results do not make it clear how these smoothing
methods compare with smoothing methods for other types of
related models.

However, there has a been great deal of research in smoothing
-gram language models, and it can be shown that ME-gram

models are closely related to conventional-gram models. Con-
sequently, this domain is well-suited to gauging the performance
of ME smoothing methods relative to other smoothing tech-
niques.

In this work, we survey previous work in ME smoothing
and compare the performance of several of these algorithms
with conventional techniques for smoothing-gram language
models. Evaluating the perplexity of each method over a large
number of data sets, we find thatfuzzy MEsmoothing [1] per-
forms as well as or better than all other algorithms under consid-
eration. This method can be viewed as relaxing the requirement
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of exact constraint satisfaction in the ME framework by using
a quadratic penalty for inexact constraint satisfaction. Equiva-
lently, this method can also be viewed as applying a Gaussian
prior on model parameters and selecting maximuma posteriori
instead of ML parameter values. While simple and efficient, this
method exhibits all of the behaviors that have been observed by
Chen and Goodman to be beneficial for-gram smoothing [8].

In the remainder of this section, we present an introduction to
ME modeling and discuss why smoothing ME models is neces-
sary. In Section II, we introduce-gram language models and
summarize previous work on smoothing these models. We list
the desirable properties of smoothing algorithms observed by
Chen and Goodman. In Section III, we introduce ME-gram
models and discuss their relationship with conventional-gram
models. In Section IV, we survey previous work in smoothing
ME models including the fuzzy ME technique. In Section V, we
contrast fuzzy ME with smoothing algorithms for conventional

-gram models and show that it satisfies all of the criteria of
Chen and Goodman. In Section VI, we present results of exper-
iments comparing a number of ME and conventional smoothing
techniques on -gram language modeling, evaluating models
through both perplexity and speech recognition word error rate.
Finally, in Section VII, we discuss our conclusions.

A. ME Modeling

Consider the task of estimating a probability distribu-
tion over a finite set given some training data set

. Intuitively, our task is to find a distribu-
tion similar to the empirical distribution given by the
training data

where is the number of times occurs in and is
the size of the training set. In the extreme case, we can take
to be identical to , but this will typically lead to overfitting
to the training data. Instead, it would be better to require that

match only those properties of that we deem to be
significant and that can be reliably estimated from the training
data.

For example, consider where and are
English words, and let the training databe the list of consec-
utive word pairs, orbigrams, that occur in some large corpus
of English text. Thus, the task is estimating the frequency of
English bigrams. Consider a bigram that does not occur in the
training data, say, “PIG DOG.” We have , but in-
tuitively we want since this bigram hassome
chance of occurring. This is an example of a property of
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that we do not deem significant and thus do not want to match
exactly with . However, let us assume that we observe that
the wordTHE occurs with frequency 0.05 in the training data,
i.e.,

Because of the abundance of the wordTHE, this is presumably
an accurate estimate of this frequency and it seems reasonable to
require that our selected distribution satisfies the analogous
constraints

(1)

More generally, we can select a number of nonnegative
random variables orfeatures and
require that the expected value of each feature over the model

is equal to that of the empirical distribution :

(2)

The constraints represented in (1) can be expressed with two
such features,

if
otherwise

for .
The constraints given by (2) do not generally specify a unique

model , but a set of models . The ME principle states
that we should select the model with the largest
entropy [9]. Intuitively, models
with high entropy are more uniform and correspond to assuming
less about the world. The ME model can be interpreted as the
model that assumes only the knowledge that is represented by
the features derived from the training data, and nothing else.

The ME paradigm has many elegant properties [2], [3]. The
ME model is unique and can be shown to be an exponential
model of the form

(3)

where is a normalization factor
and are the parameters of the model. Fur-
thermore, the ME model is also the ML model in the class of
exponential models given by (3).1 Finally, the log-likelihood of
the training data is concave in the model parameters, and thus
it is relatively easy to find the unique ME/ML model using al-
gorithms such as generalized iterative scaling [10] or improved
iterative scaling [3].

1These properties hold when constraining feature expectations to be equal to
those found in a training set. When constraining expectations to alternate values,
the ME model will not be the ML model, and the ME model will not exist if the
constraints are inconsistent.

While models with high entropy tend to be rather uniform or
smooth and we may only constrain properties of we con-
sider significant, a ME model can still overfit training data, even
when the number of constraints is small. For example, consider
constraints on the frequency of the wordMATEO and the bigram
SAN MATEO, and assume that the wordMATEO occurs only after
the wordSAN in the training data. Then, we will have

and

which implies for all . Intuitively,
we want for all since all bigrams have some
chance of occurring. Zero probabilities lead to infinite loss in
log-loss objective functions and can lead to poor performance in
many applications, e.g., when represents a language model
to be used in speech recognition. Thus, it is desirable tosmooth
ME models, or adjust parameter values away from their ML
estimates.

II. SMOOTHING -GRAM LANGUAGE MODELS

While there has been relatively little work in smoothing ME
models, there has been a great deal of work in smoothing-gram
language models. Alanguage modelis a probability distribu-
tion over word sequences that models how often each
sequence occurs as a sentence. Language models have many
applications, including speech recognition, machine translation,
and spelling correction [11]–[13].

For a word sequence , we can express its prob-
ability as

where the token signals the end of the sentence.
The most widely-used language models, by far, are-gram lan-
guage models. In an-gram model, we make the approximation
that the identity of a word depends only on past words through
the identity of the last words, giving us

where is a notation that denotes the sequence and
are all taken to be some distinguished begin-

ning-of-sentence token.
The ML estimate of the probabilities

over some training data can be calculated
by simply counting how often the token follows thehistory
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or context and dividing by the total number of times
the history occurs, i.e.,

However, ML estimation of these probabilities typically leads to
overfitting, and instead it is desirable to use smoothed estimates
of these values. For example, one simple smoothing technique
is to linearly interpolate the ML estimate of the-gram proba-
bility with an estimate of the -gram

probability [14], [15]

(4)

The lower-order estimate can be defined analogously, and the
recursion can end with a unigram or uniform distribution. Since
the lower-order distributions are less sparsely estimated from
the training data, their interpolation generally reduces overfit-
ting. A large number of other smoothing methods for-gram
models have been proposed, e.g., [8], [14], [16]–[19].

We present a brief overview of past work in-gram model
smoothing. One basic observation is that the ML estimate of the
probability of an -gram that does not occur in the training data
is zero and is thus too low, and consequently the ML probabili-
ties of -grams with nonzero counts are generally too high. This
dichotomy motivates the following framework for expressing
smoothing methods, which can be used to express most existing
smoothing techniques [18]:

if

if .

(5)

That is, if an -gram occurs in the training data, the
estimate is used; this estimate is generally
a discounted version of the ML estimate. Otherwise, we
back off to a scaled version of the -gram distribution

, where the lower-order distribution is
typically defined analogously to the higher-order distribution.
The scaling factor is chosen to assure that each
conditional distribution sums to one. The algorithm described

by (4) can be placed in this framework with the following
relations:

There are three primary distinctions between smoothing al-
gorithms: whether an algorithm isinterpolatedor backed-off,
what type of discounting is applied to the ML estimate to cal-
culate , and how lower-order distributions are
computed.

In interpolated models, the probability estimate
of an -gram with nonzero

count depends on the probability assigned to the corresponding
-gram , as in (4). In backed-off models,

the probability estimate of an -gram with nonzero count
is determined while ignoring information from lower-order
distributions. Interpolated models include Jelinek–Mercer
smoothing [14] and Witten–Bell smoothing [16]; backed-off
models include Katz smoothing [17], absolute discounting
[19], and Kneser–Ney smoothing [18].

To describe the different types of discounting, we write
as

where can be viewed as the discount in count
space from the ML estimate and where is
the contribution from lower-order distributions. The value

is zero for backed-off models and typically
for interpolated models. In

linear discounting, the discount is taken to be
proportional to the original count , as in (4)
where the discount is . In absolute
discounting, is taken to be a constant .
In Good–Turing discounting, the discount is calculated using
the Good–Turing estimate [20], a theoretically motivated
discount that has been shown to be accurate in nonsparse data
situations [17], [21]. A brief description of the Good–Turing
estimate is given in Section IV-B. Jelinek–Mercer smoothing
and Witten–Bell smoothing use linear discounting, Kneser–Ney
smoothing uses absolute discounting, and Katz smoothing and
Church–Gale smoothing [21] use Good–Turing discounting.

The final major distinction between smoothing algorithms
is how the lower-order probability estimates are calculated.
While most smoothing methods define the lower-order model

analogously to the higher-order model

, in Kneser–Ney smoothing a different
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approach is taken. The -gram model is chosen to satisfy
certain constraints derived from the training data, namely

(6)
for all -grams . This constraint can be rephrased
as: the expected number of times occurs in the training
data given the model and the history frequen-

cies should equal the actual number of times it
occurs. Kneser–Ney smoothing can be applied recursively to
lower-order distributions, in which case the constraints (6) are
not satisfied exactly. Instead, the right-hand side of the con-
straints are discounted with absolute discounting.

Chen and Goodman [8] provide an extensive comparison of
all of the widely-used smoothing techniques. They evaluate each
algorithm on a wide range of training sets through itsperplexity
on test data. The perplexity of a model on a test set

is the reciprocal of the geometric average probability that
the model assigns to each word in the test set. They also use
the derivative measurecross-entropy ,
which can be interpreted as the average number of bits needed
to code each word in the test set using the model. Chenet
al. [8], [22] also conducted experiments investigating how the
cross-entropy of a language model is related to its performance
when used in a speech recognition system. They found a strong
linear correlation between cross-entropy and recognition word
error rate when comparing models that only differ in smoothing.

In terms of perplexity, Chen and Goodman found that
Kneser–Ney smoothing and variations consistently outper-
form all other algorithms. More specifically, they present the
following four main conclusions.

• The primary reason for the superior performance of
Kneser–Ney smoothing and variations is the novel
manner in which lower-order probability estimates are
calculated.

• Absolute discounting is superior to linear discounting.
For -grams with a given count in the training data,
they calculate the average discount in count space

from the ML estimate that would cause the
expected number of these-grams in a test set to be equal
to their actual number [assuming ]. This
ideal average discount is displayed in Fig. 1 for counts

for two training sets for bigram and trigram
models. From this graph, we see why a fixed discount
works well. While Good–Turing discounting is actually
better than absolute discounting at predicting theaverage
discount, it has yet to be used in such a way as to predict
the correct discounts in individual distributions well.

• Interpolated models outperform backed-off models when
considering performance on just-grams with low counts
in the training data. This is because lower-order models
provide valuable information for estimating the probabil-
ities of -grams with low counts.

• Adding free parameters to an algorithm and optimizing
these parameters on held-out data can improve the perfor-
mance of an algorithm.

Fig. 1. Ideal average discount forn-grams with given count in training data for
1M word training set and 200M word training set, bigram and trigram models.

Based on these observations, Chen and Goodman propose an
algorithm namedmodified Kneser–Ney smoothingthat is found
to outperform all other methods considered. It is an interpolated
variation of Kneser–Ney smoothing with an augmented version
of absolute discounting. Instead of using a single discount
for all -grams, three separate discounts, , and are
used for -grams with one count, two counts, and three or more
counts, respectively. This is motivated by the observation that
the ideal discount for one-counts and two-counts is substantially
smaller than the ideal discount of larger counts, as shown in
Fig. 1.

III. M AXIMUM ENTROPY -GRAM MODELS

We can construct language models very similar to conven-
tional -gram models within the ME framework. The ME
models described in Section I-A are joint models; to create the
conditional distributions used in conventional-gram models
we use the framework introduced by Brownet al. [23]. Instead
of estimating a joint distribution over samples , we
estimate a conditional distribution over samples .
Instead of constraints as given by (2), we have constraints of
the form

(7)

This can be interpreted as replacing in the joint formula-
tion with . That is, we assume that history frequen-
cies are taken from the training data, and we only esti-
mate conditional probabilities. Conditional ME models share
many of the same properties as joint models, including being
ML models, and have computational and performance advan-
tages over joint models in language modeling [5], [24]. A con-
ditional ME model has the form

(8)

To construct a ME -gram model, we take to
be the history and to be the following word. For each
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-gram with that occurs in the
training data, we include a constraint that forces the conditional
expectation of according to to be the same as its frequency
in the training data. The corresponding features are

if ends in
otherwise.

Substituting these features into (7) and simplifying, we arrive at
constraints of the form

(9)

In fact, the only solution to these constraints is
. The ME model is identical to the ML-gram model,

and consequently it will be beneficial to smooth the estimates
of the model parameters .

Remarkably, the set of models given by (8) with-gram
features is basically identical to the set of models described
by (5), which we used to express most existing smoothing
algorithms for conventional-gram models.2 That is, smoothed
ME -gram models can be viewed as conventional backed-off

-gram models (though later we discuss how they also behave
like interpolated models). To see this, consider any ME-gram
model with parameters . To express this
model as a backed-off model, let us define a set of-gram
models for as in (8), where
each -gram model only contains features corresponding to
word sequences up to length, and where all models inherit
the parameters of the original model. To express the original
model in terms of (5), we take

Recursively expanding (5) using these relations will yield (8)
for the original model.

Because smoothing estimates in ME -gram models and
smoothing conventional-gram models both consider the same
class of models, we can discuss both classes using the same con-
cepts and it seems likely that we can transfer knowledge gleaned
from smoothing conventional-gram models to smoothing ME
models. Furthermore, this equivalence has the pragmatic ad-
vantage that software tools developed for conventional-gram
models can also be utilized for ME-gram models. For ex-
ample, ME -gram models can be expressed efficiently in the
standard ARPA format for conventional-gram models [25].

IV. SMOOTHING MAXIMUM ENTROPY MODELS

In this section, we survey previous work in ME model
smoothing, including constraint exclusion, Good–Turing

2The equivalence is not exact as exponential models cannot express probabil-
ities equal to zero or one. In addition, for the equivalence to hold the unigram
model used in (5) must assign the same probability to all words not occurring in
the training data. This is generally the case with existing smoothing algorithms.

discounting, fuzzy ME , and fat constraints. In describing these
methods, we sometimes use the joint ME formulation for sim-
plicity. All of these techniques apply equally well to conditional
ME models; the analogous conditional ME equations can be
derived by replacing with and with .

A. Constraint Exclusion

One simple smoothing technique is to simply exclude some
of the constraints in a model. When we remove constraints from
a model within the ME framework, we will generally produce a
model with higher entropy than the original, i.e., a model that is
smoother or more uniform. For example, in a ME-gram model
we might leave out constraints for-grams that occur fewer than
a certain number of times in the training data. This heuristic will
tend to exclude constraints for those-grams for which we do
not have reliable estimates of their true frequency.

The technique of leaving out constraints has been widely used
in ME modeling. For ME -gram models, omitting constraints
for -grams with low counts is analogous to usingcount cutoffs
for conventional -gram models [5], [6]. Feature induction [2],
[3], where only a subset of a set of candidate features are in-
cluded in a model based on some selection criteria, can also be
considered to be a form of constraint exclusion. Constraint ex-
clusion can be used in conjunction with all of the ME smoothing
techniques to be described subsequently.

B. Good–Turing Discounting

Good–Turing discounting has been proposed by Lau [6] and
Rosenfeld [5] and can be viewed as the ME analog to Katz
smoothing for conventional-gram models. They observe that
the marginals of the model should not be constrained to
be exactly those of the empirical distribution ,3 but instead
target values should be discounted as in conventional-gram
smoothing. Instead of constraints as given by (9), they propose
the following constraints

where is the Good–Turing estimate of the frequency of
.
The Good–Turing estimate [20] is a theoretically motivated

method for estimating the average discount for an event based
on its count in the training data. For an event that occurs
times in samples, in contrast with the ML estimate ,
the Good–Turing estimate of the event’s true frequency is
where

and where is the number of members of the population with
exactly counts. Katz [17] suggests applying this estimate to

3More precisely, when we say the marginals of the modelq(yjx), we mean
the marginals of the associated joint modelq(x; y)= ~p(x)q(yjx), and similarly
for ~p(yjx).
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each joint -gram distribution, , separately. Fur-
thermore, as can be very low or zero for large, Katz pro-
poses a method where-grams with large counts are not dis-
counted and discounts for low counts are adjusted to compen-
sate. Lau and Rosenfeld use the Katz variation of Good–Turing
discounting.

However, when constraining marginals of a model to
Good–Turing discounted marginals of the training data, the
constraints may no longer be consistent and an ME model may
not exist. For example, in a trigram model consider features
that constrain the frequencies of the-gramsTIC TAC TOE and
TAC TOE and assume that the wordTAC only follows the word
TIC in the training data. Then, we will have the constraints

and

In general, we will have
since discounts for -grams of different length are calculated
independently; consequently, these constraints will be incon-
sistent. In practice, there are no dire consequences to having
inconsistent constraints. While training algorithms such as it-
erative scaling may not converge, a reasonable procedure is to
stop training once performance on some held-out set stops im-
proving. However, inconsistency is symptomatic of constraints
that will lead to poor parameter estimates.

Lau [6] compares the performance of Good–Turing dis-
counting for smoothing ME -gram models with deleted
interpolation [14], a variation of Jelinek–Mercer smoothing,
for conventional -gram models. For a 5M word training
set of Wall Street Journal(WSJ) text, deleted interpolation
yielded a perplexity of 225 on an 870 000 word test set. The
ME model yielded a slightly superior perplexity of 221, where
constraints for all -grams that occurred only once in the
training data were excluded from the ME model. However,
later results by Chen and Goodman [8] strongly indicate that
other smoothing methods for conventional-gram models,
such as modified Kneser–Ney smoothing, would outperform
deleted interpolation by a much larger margin.

C. Fuzzy ME

In the fuzzy ME framework developed by Della Pietra and
Della Pietra [1], instead of requiring that constraints are satisfied
exactly, a penalty is associated with inexact constraint satisfac-
tion. Finding the ME model is equivalent to finding the model

satisfying the given constraints that minimizes the Kull-
back–Leibler distance from the uniform model

. In fuzzy ME , the objective function is taken to be

(10)

where is a penalty function minimized when constraints are
satisfied exactly. Among others, Della Pietra and Della Pietra
propose a penalty function of the form

This penalty function can be interpreted as the logarithm of a
Gaussian distribution with diagonal covariance centered around
the target constraint values. The varianceassociated with fea-
ture can be estimated from the empirical distribution of

in the training data, and a variant of generalized iterative
scaling has been developed to find the optimal model under this
objective function [6].

Just as ME models have an alternate ordual specification,
i.e., a ME model is also the ML model among the set of models
given by (3), fuzzy ME models also have a dual formulation.
Using the ML perspective of ME models, we can equivalently
view fuzzy ME as imposing a Gaussian prior centered around
on the parameters, where we perform maximuma posteriori
instead of ML estimation.4 From this perspective, we see that
the prior nudges the parameters toward zero, thereby making
the model more uniform.

More precisely, we can equate finding the regular ME model
with finding parameters that maximize the log-likelihood

of the training data

With the Gaussian prior, which we take to have diagonal covari-
ance, our objective function becomes

(11)

where the are the variances of the Gaussian.
Since the logarithm of the Gaussian prior is concave, the ob-

jective function is still concave in and it is still straightforward
to find the optimal model. For instance, we can make a simple
modification to improved iterative scaling to find the maximum
a posteriori(MAP) model [27]. The original update of each
in this algorithm is to take

where satisfies

(12)

4In an earlier incarnation of this work [26], the authors were unaware of the
equivalence of fuzzy ME and the Gaussian prior, and mistakenly attributed the
Gaussian prior to John Lafferty.
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and where . With the Gaussian prior, (12) is
replaced with

(13)

As the right-hand side of this equation is strictly monotonic in
, it is relatively easy to find its solution using a search al-

gorithm. We derive this modified update rule in the Appendix.
This modification adds very little computational cost to the im-
proved iterative scaling algorithm.

Lau [6] constructed a fuzzy ME-gram model excluding all
-grams with only one count using the data sets described in

Section IV-B, yielding a perplexity of 230. This is slightly worse
than the perplexities achieved by the deleted interpolation and
Good–Turing discounted ME models.

D. Fat Constraints

Other methods for relaxing constraints include work by
Newman [28] and Khudanpur [29]. In these algorithms, instead
of selecting the ME model over models that satisfy a set of
constraints exactly, they only require that the given marginals
of fall in some range around the target values. Newman
suggests a constraint of the form

with feature weights for the task of estimating power spectra.
Khudanpur suggests constraints of the form

Both of these approaches can be viewed as instances of the fuzzy
ME framework. Instead of a smooth function, the penalty
is taken to be zero if satisfies the relaxed constraints and in-
finite otherwise. These types of methods have yet to be applied
to language modeling.

V. FUZZY MAXIMUM ENTROPY AND CONVENTIONAL -GRAM

SMOOTHING

In Section II, we listed four factors that were found by Chen
and Goodman to significantly affect-gram smoothing per-
formance. It is informative to assess fuzzy ME smoothing ac-
cording to these four criteria.

First, they point out that the modified lower-order dis-
tributions of Kneser–Ney smoothing is the primary reason
for its superiority among conventional-gram smoothing
algorithms. Recall that these distributions are chosen to satisfy
marginal constraints as given in (6). However, this set of
constraints isidentical to the corresponding ME constraints
for -grams, as given by (9). Thus, smoothed ME

-gram models potentially have similar modified lower-order
distributions as in Kneser–Ney smoothing.

However, fuzzy ME models do not satisfy the ME constraints
exactly. Instead, the constraints that are satisfied have the form

(14)

That is, the empirical expectations are now “dis-
counted” by the amount . (In ME -gram models, most

are positive.) Qualitatively, this is even more desirable than
meeting the targets exactly, as empirical frequencies tend to be
higher than true frequencies for events with nonzero counts.
Analogous behavior is produced with Kneser–Ney smoothing
when applied recursively to lower-order distributions. In this
case, target counts are discounted through absolute discounting.
A derivation of (14) is given in the Appendix.

Second, Chen and Goodman point out that absolute
discounting is superior to the other types of discounting
considered, and that using a different discount for one-counts
and two-counts and a flat discount thereafter as in modified
Kneser–Ney smoothing performs even better. With fuzzy ME,
the discount for an -gram is linear in as can be seen from
(14). As the probability assigned toby grows exponen-
tially in , grows logarithmically as a function of the target
probability or count. In other words, roughly speaking fuzzy
ME smoothing translates tologarithmic discounting. This is
a qualitatively appealing model of the ideal average discount
displayed in Fig. 1 and is more elegant than using multiple flat
discounts.

We can contrast the Gaussian prior onparameters of fuzzy
ME with previous work in -gram smoothing where priors have
been applied directly in probability space. MacKay and Peto
[30] use a Dirichlet prior and Nádas [31] uses a beta prior, both
resulting in linear discounting which has been shown to perform
suboptimally. Applying a prior to parameters proportional to
log-probabilities instead of to probabilities produces a “softer”
prior, which in this case leads to behavior closer to the empirical
ideal.

Third, Chen and Goodman report that interpolated models
outperform backed-off models on-grams with low counts, as
lower-order models provide valuable information for estimating
these probabilities. Happily, a fuzzy ME model behaves like an
interpolated model as-gram probability estimates depend on
lower-order information. This follows trivially from the obser-
vation that the probability assigns to an -gram depends
on the parameter values for all -grams that are suf-
fixes of . However, fuzzy ME models use the information from
lower-order models in a meaningful way. Viewing fuzzy ME as
imposing a Gaussian prior centered around, we see that fuzzy
ME smoothing tends to adjust toward zero for any -gram ;
when is zero, the corresponding feature has no effect on the
model, and the lower-order-gram probability estimate is used.
In other words, the prior adjusts-gram probabilities toward the
lower-order probability estimate, as is desirable.

Finally, Chen and Goodman note that additional tunable pa-
rameters can improve current smoothing methods. For fuzzy
ME smoothing, the natural free parameters are the variances.
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In the basic version of fuzzy ME that we implemented, we had
free parameters , , where all -grams of the

same length were constrained to have the same variance.
As fuzzy ME smoothing satisfies all of the desiderata listed

by Chen and Goodman, it may perform competitively in-gram
smoothing. The experiments in Section VI show that this is in-
deed the case.

VI. EXPERIMENTS

To compare the performance of ME and conventional-gram
smoothing techniques, we ran experiments over many training
set sizes using several different text corpora for both bigram and
trigram models.

A. Methodology

Of the conventional -gram smoothing techniques, we
implemented Katz smoothing [17], which is perhaps the most
popular algorithm in practice, and modified Kneser–Ney
smoothing [8], which has been shown to outperform all other
widely-used techniques. In addition, we implemented the varia-
tion of Jelinek–Mercer smoothing given by (4) where instead of
a single parameter a different is used for each level of the

-gram model. This method does not perform particularly well,
but is used as a baseline algorithm for expository purposes. We
refer to these three implementations with the mnemonicskatz
kneser-ney-mod , andbaseline , respectively.

We also implemented several ME smoothing techniques.
For each technique, all parameters are initialized to zero
and improved iterative scaling is applied to train the model.
Iterative scaling is terminated when the perplexity of a held-out
set no longer decreases appreciably. Cluster expansion [32]
is employed to reduce computation. In the implementation
ME-no-smooth , no smoothing is performed. (Since training
is terminated when performance on a held-out set no longer
improves, no probabilities will converge to zero as in the case
where training is continued to convergence.) The algorithm
ME-disc-katz is an implementation of Good–Turing
discounting as described in Section IV-B. The algorithm
ME-fuzzy is an implementation of fuzzy ME smoothing as
described in Section IV-C. As mentioned earlier, this method
has free parameters , one for each level of the -gram
model.

In conjunction with each of the ME smoothing techniques,
we also considered using constraint exclusion or count cutoffs
as discussed in Section IV-A. We tried several configurations,
and found that excluding constraints only for trigrams that
occur less than twice in the training data in trigram models (and
for analogous bigrams in bigram models) generally gave the
best performance. We call the corresponding implementations
ME-no-smooth-cutoff , ME-disc-katz-cutoff , and
ME-fuzzy-cutoff . As discussed elsewhere [8], using count
cutoffs for conventional -gram smoothing methods generally
leads to worse performance for the methods that perform well.

We used data from four sources: the Brown corpus, which
contains text from a number of miscellaneous sources [33]; WSJ
newspaper text [34]; the Broadcast News (BN) corpus, which
contains transcriptions of television and radio news shows [35];

Fig. 2. Cross-entropy of baseline smoothing algorithm on test set over multiple
training set sizes on Brown, SWB, and WSJ corpora.

and the Switchboard (SWB) corpus, which contains transcrip-
tions of telephone conversations [36]. In each experiment, we
selected a training set of a given length from one source, and two
held-out sets from the same source. The first held-out set was
used to optimize the parameters of each smoothing algorithm,
e.g., the parameters ofME-fuzzy or the discounts of
modified Kneser–Ney smoothing. Parameters were selected to
minimize the perplexity of the held-out set; Powell’s search al-
gorithm [37] was used to perform this search. This held-out set
was also used to decide when to terminate iterative scaling for
the ME models. The second held-out set was used to evaluate
the final perplexity of each smoothing algorithm.

For each data source, we ran experiments using training sets
from 100 sentences (about 2000 words) to around 100 000 sen-
tences (about 2M words). Held-out sets were 2500 sentences.
While training sets for language models may reach hundreds
of millions of words in practice, we were unable to consider
larger training sets than we did due to computational limita-
tions. Training ME -gram models requires a great deal more
computation than training conventional-gram models. In addi-
tion, when considering multiple parameter settings in the Powell
search (as for the parameters inME-fuzzy ), the iterative
scaling algorithm must be applied separately for each param-
eter setting. To train a single model using methodME-fuzzy
for a 2M word training set required around six hours of compu-
tation on a 400 MHz Pentium II computer. Substantially larger
training sets are feasible if parameter optimization is not used.
In contrast, constructing the conventional-gram models on a
2M word training set required only a few minutes. However, ME

-gram models can be applied just as efficiently as conventional
-gram models once built.
Our data sets are identical to those used by Chen and

Goodman [8] and consequently our results are directly compa-
rable to the analogous results presented by Chen and Goodman.
More details of our methodology can be found in that work.

B. Results

In Fig. 2, we display the cross-entropy of the baseline Je-
linek–Mercer smoothing algorithm over a range of training set
sizes on several corpora. In the graphs to follow, we display the
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Fig. 3. Performance relative to baseline of various ME smoothing algorithms over multiple training set sizes on the WSJ corpus, bigram and trigram models.

Fig. 4. Performance relative to baseline of various smoothing algorithms over multiple training set sizes on the BN and Brown corpora, bigram and trigram
models.

performance of each algorithm as the difference of its cross-
entropy on the test set from the cross-entropy of the baseline
method (using the same training set) to facilitate visualization.
Each point in the graphs presented here represents a single ex-
periment; for an analysis of the standard error of these obser-
vations refer to Chen and Goodman [8]. To give a rough idea
of the statistical error involved, in Figs. 4 and 5 the difference
betweenkneser-ney-mod andME-fuzzy may not be sig-
nificant, while the difference between these two algorithms and
all of the others almost certainly is for almost every data point.

In Fig. 3, we compare the performance of the various
ME smoothing algorithms over multiple training set sizes
using Wall Street Journal data. The left graph is for bigram
models and the right graph is for trigram models. We see that
ME-no-smooth is outperformed by the other algorithms by a
large margin, demonstrating the necessity of smoothing for ME
models. Using count cutoffs as inME-no-smooth-cutoff
leads to substantially better performance, though still poor. Of
the remaining algorithms, fuzzy ME smoothing performed best,
with ME-disc-katz beating ME-disc-katz-cutoff
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Fig. 5. Performance relative to baseline of various smoothing algorithms over multiple training set sizes on the SWB and WSJ corpora, bigram and trigram
models.

for bigram models and the reverse happening over most data
sets for trigram models. Though not shown here, we see
similar behavior in experiments on the other three corpora. The
algorithmME-fuzzy-cutoff is consistently outperformed
by ME-fuzzy and has been omitted from all graphs.5

In Figs. 4 and 5, we compare the performance of ME
smoothing algorithms with conventional-gram smoothing al-
gorithms over several corpora.6 Of the conventional smoothing
methods, we see that Katz smoothing generally outperforms the
baseline and that modified Kneser–Ney smoothing is substan-
tially better. Of the ME methods, we see thatME-disc-katz
performs comparably to Katz smoothing for bigram models,
while ME-disc-katz-cutoff performs somewhat worse.
For trigram models,ME-disc-katz-cutoff is superior
to Katz smoothing, withME-disc-katz generally worse.
The methodME-fuzzy performs about as well as modified
Kneser–Ney smoothing, and is slightly better over most data
sets. Thus, fuzzy ME smoothing performs as well as or better
than all other widely-used algorithms for smoothing-gram
models.

5We also ran experiments usingcomplementedn-grams [5], where each
n-gram feature is nonzero only when no longern-gram feature is nonzero.
This resulted in significantly inferior performance.

6The large spikes in the Switchboard graphs are discussed by Chen and
Goodman [8]. They are caused by a duplicated segment of text in the training
set.

To investigate how the logarithmic discounting of fuzzy ME
smoothing compares to the multiple absolute discounts of mod-
ified Kneser–Ney smoothing, we computed how closely the ex-
pected number of certain-grams in a test set according to each
model matched the actual number of those-grams in the test
set. In particular, for all -grams occurring exactly times in a
750 000 word training set for some , we computed the ratio
of the expected number of times these-grams occurred in a
10 000 000 word test set to the actual number of times they
occurred:

These ratios are displayed for in Fig. 6 for bigram and
trigram models. Fuzzy ME achieves ratios closer to the ideal
value of one than modified Kneser–Ney smoothing for most,
which is evidence that fuzzy ME smoothing is superior to mul-
tiple flat discounts at predicting correct average discounts.

We also investigated how the number of independent vari-
ance parameters used with fuzzy ME smoothing affects perfor-
mance. In the original implementationME-fuzzy , a different
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Fig. 6. Ratio of expected number to actual number in test set ofn-grams with a given count in training data, 750 000 word WSJ training set, bigram, and trigram
models.

Fig. 7. Performance relative to baseline of different parameterizations of fuzzy ME smoothing over multiple training set sizes on the WSJ corpus, bigram, and
trigram models.

is used for each level of the-gram model.7 We also con-
sidered using a singleover the whole model (ME-fuzzy-1 ),
and using three parameters , , and for each
level of the -gram model, to be applied to -grams with 1,
2, or 3 or more counts in the training data, respectively. This
latter parameterization (ME-fuzzy-3n ) is analogous to the
parameterization of modified Kneser–Ney smoothing. The per-
formance of these three variations on the Wall Street Journal
corpus is displayed in Fig. 7. The variationsME-fuzzy and
ME-fuzzy-3n yield almost identical performance, and the
variation ME-fuzzy-1 performs slightly worse.8 As having
separate variances for each-gram level leads to improved per-
formance, this is a useful distinction to make. We also inves-
tigated many other parameter-tying schemes, but none signifi-
cantly outperformed this simple technique.

7The optimal variances� found by the parameter search were generally
in the range1:5N < � < 5N for m > 1, whereN is the size of the
training set. The optimal values found for� varied widely; for large data sets,
it sometimes approached infinity, corresponding to no smoothing for unigram
marginals. The linear dependence of� on N is an artifact of the way we
define the fuzzy ME objective function in (11). If we replaceL (�), the log-
likelihood per event, withN � L (�), the total log-likelihood of the training
set, the corresponding optimal� would be largely independent of training set
size and take on moderate values (form > 1). While this alternate formulation
is perhaps more intuitive when using a prior, we chose the given formulation for
notational expedience.

Finally, we examined how smoothing affects the performance
of -gram models in a speech recognition task. We constructed
trigram language models for each of four smoothing algorithms
for four different training set sizes on BN data. Due to the com-
putational demands of ME training, we were unable to consider
training sets larger than 1 000 000 sentences, though substan-
tially more relevant training material is available. We calculated
word error rates by rescoring lattices produced by the Sphinx-III
speech recognition system for the TREC-7 spoken document re-
trieval task [38]. The word error rates achieved on a 33 000-word
test set are displayed in Table I, as well as the cross-entropy of
each model on the correct transcript of the test set.9

As expected,kneser-ney-mod andME-fuzzy consis-
tently yielded the lowest cross-entropies. However, the method
katz achieved the lowest word error rate for the smallest
training set, withkneser-ney-mod and ME-fuzzy per-
forming better for the three larger training sets. The methods

8A variation with more parameters may not outperform a variation with fewer
parameters due to a mismatch between the evaluation set and the held-out set
used to optimize parameters or due to search errors in parameter optimization.

9Because of the enormous amount of speech data in the TREC-7 task,
Sphinx-III was configured to run with only a single decoding pass and with
narrow search beams. With several passes, wider beams, and a larger language
model, Sphinx-III achieved a word-error rate of 23.8% on a similar BN task
[39].
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TABLE I
SPEECHRECOGNITION WORD ERRORRATES AND TEST SET CROSS-ENTROPIES OFVARIOUS SMOOTHING ALGORITHMS OVERSEVERAL TRAINING SET

SIZES ON BROADCAST NEWS DATA

ME-fuzzy and kneser-ney-mod yielded very similar
performance in terms of cross-entropy and word error rate
over all of the training sets, and outperformed the other two
algorithms tested by as much as 1% absolute in word error rate
on the larger training sets. Thus, fuzzy ME smoothing seems to
yield competitive performance on a speech recognition task.

VII. D ISCUSSION

It has been argued that ME models do not require smoothing
because they are already as uniform or smooth as possible given
the constraints. However, ME models can be viewed as ML
exponential models, and have similar properties as other ML
methods. For example, as can be seen in Fig. 3, when data
is plentiful, smoothing has a smaller effect, and when data is
sparse, smoothing is essential.

In many tasks including language modeling, it has been found
that superior performance can be achieved by constructing
very large models (so parameters are sparsely estimated) and
then smoothing them. Thus, for ME models to be competitive
with other techniques in these domains, we need effective ME
smoothing algorithms.

In this work, we showed that the fuzzy ME method can be
used to smooth ME -gram models to achieve performance
equal to or superior to that of all other techniques for smoothing

-gram models, a field that has an extensive body of associ-
ated research. This is the first clear demonstration that a ME
smoothing method can be as effective as smoothing techniques
for other types of models, and makes it possible to construct ME
models in sparse data situations without loss of performance.
Furthermore, it adds virtually no computational cost to the ME
training procedure. However, because of the large underlying
computational cost of ME algorithms, building ME models for
very large data sets is still a challenging problem.

While fuzzy ME smoothing can be expressed very simply,
we show that it possesses all of the desirable qualities of-gram
smoothing noted by Chen and Goodman from empirical anal-
ysis. In addition, it achieves its excellent performance using
fewer parameters than the comparably performing modified
Kneser–Ney smoothing.

Fuzzy ME smoothing and variations of Kneser–Ney
smoothing consistently outperform other smoothing tech-
niques. The distinction between these algorithms and the others
is their use of modified lower-order distributions as described
in Sections II and V. These distributions are chosen to satisfy
certain marginal constraints derived from the training data.

Thus, the use of marginal constraints may be a powerful tech-
nique for designing novel smoothing algorithms, whether for
language modeling or for other domains. Enforcing marginal
constraints would mark a significant departure from traditional
techniques used in smoothing.

In addition, fuzzy ME smoothing can be viewed as imposing
a qualitatively different prior than has been used previously
in -gram smoothing. As touched on in Section V, linear
discounting can be motivated through a Dirichlet or Beta prior
on probabilities [30], [31], but it has been shown to perform
poorly. While absolute discounting yields better performance,
it is unclear how to elegantly express this technique through a
prior distribution. In contrast, the Gaussian prior of fuzzy ME
is applied to parameters that are linear in log-probability,
and leads to logarithmic discounting. This simple prior yields
discounting that is qualitatively and quantitatively similar to the
empirical ideal, and suggests that logarithmic discounting may
be employed profitably in a conventional-gram smoothing
technique.

Not only can fuzzy ME smoothing be applied to ME mod-
eling, but it can also be applied in the more generalminimum
divergenceparadigm [40], [41]. Maximizing entropy is equiva-
lent to finding the model with the smallest Kullback–Leibler di-
vergence from the uniform distribution. In minimum divergence
modeling, one selects the model satisfying the given constraints
closest to some default distribution . The model can
be used to express prior knowledge about the domain. Minimum
divergence models have the form

The analysis in Section IV-C applies to these models without
modification, except that is replaced by in (10).

ME modeling has advantages over competing approaches
in terms of elegance, generality, and performance, and the
fuzzy ME method is a powerful tool for smoothing general
ME models. Whether fuzzy ME smoothing proves superior to
other algorithms in domains other than-gram modeling is
still an open empirical question. In-gram models, no features
partially overlap each other (i.e., any two features are either
never active on the same event, or one feature is active for a
superset of the events that the other is active), and this is not the
case in general. However, promising results have been achieved
with fuzzy ME smoothing in text classification [42], as well
as in topic adaptation for language modeling [43]. In addition,
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how parameters should be tied in other domains has yet to be
explored.10 Nonetheless, our results and analysis justify the
choice of fuzzy ME smoothing for use in-gram modeling,
and strongly suggest its use in other situations as well.

APPENDIX

DERIVATION OF MODIFIED CONSTRAINTS AND MODIFIED

ITERATIVE SCALING FOR FUZZY MAXIMUM ENTROPY

SMOOTHING

In this section, we derive the modified constraints given in
(14) and the modified update for improved iterative scaling
given in (13) for fuzzy ME smoothing. We use the conditional
ME formulation. For further details about improved iterative
scaling such as proof of convergence, refer to [3].

To derive the modified constraints, we take the partial deriva-
tives of the objective function given in (11) with respect to the
parameters and set them to zero

Equation (14) follows simply from the last line.

10Withn-gram models, we found that a single variance� for the whole model
worked quite well, though using separate� for each level of then-gram model
worked slightly better. However, this partitioning is not applicable in general.

The derivation of the modified improved iterative scaling up-
date is identical to the original derivation except for the pres-
ence of extra terms for the prior. In each iteration, we try to find

that maximizes the increase in the objective function

As it is not clear how to maximize this function directly, we find
an auxiliary function that wecanmaximize that bounds
this function from below.

Using the inequality , we get

Substituting in and applying Jensen’s
inequality, we arrive at

Taking the partial derivative of with respect to , we get

Equation (13) follows by setting these derivatives to zero.
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