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A Survey of Smoothing Techniques for ME Models

Stanley F. Chen and Ronald Rosenféldsociate MembetEEE

Abstract—In certain contexts, maximum entropy (ME) mod- of exact constraint satisfaction in the ME framework by using
eling can be viewed as maximum likelihood (ML) training for g quadratic penalty for inexact constraint satisfaction. Equiva-
exponential models, and like other ML methods is prone to lently, this method can also be viewed as applying a Gaussian

overfitting of training data. Several smoothing methods for ME - del t d selecti ) teriori
models have been proposed to address this problem, but previous prior on model parameters and selecting maxingposterior

results do not make it clear how these smoothing methods compare instead of ML parameter values. While simple and efficient, this
with smoothing methods for other types of related models. In this method exhibits all of the behaviors that have been observed by

work, we survey previous work in ME smoothing and compare Chen and Goodman to be beneficial fegram smoothing [8].
the performance of several of these algorithms with conventional In the remainder of this section, we present an introduction to

techniques for smoothingri-gram language models. Because of the . . . .
mature body of research inn-gram model smoothing and the close ME modeling and discuss why smoothing ME models is neces-

connection between ME and conventionalz-gram models, this Sary. In _Section Il, we introduce-gram language models and_
domain is well-suited to gauge the performance of ME smoothing summarize previous work on smoothing these models. We list

methods. Over a large number of data sets, we find thaflizzy ME  the desirable properties of smoothing algorithms observed by
smoothing performs as well as or bette'r than all othgr algorlthms Chen and Goodman. In Section Ill, we introduce MEram
under consideration. We contrast this method with previous . . . o .
n-gram smoothing methods to explain its superior performance. models and d|sc_uss their relationship W'th Conver?tltmgram .
models. In Section IV, we survey previous work in smoothing
ME models including the fuzzy ME technique. In Section V, we
contrast fuzzy ME with smoothing algorithms for conventional
n-gram models and show that it satisfies all of the criteria of
. INTRODUCTION Chen and Goodman. In Section VI, we present results of exper-
AXIMUM entropy (ME) modeling has been successiMents comparing a number of ME and conventional smoothing
fully applied to a wide range of domains, including€chniques om-gram language modeling, evaluating models
language modeling as well as many other natural |angu;§_@0ugh_both p_erpIeX|ty and_speech recogmﬂo_n word error rate.
tasks [2]-[5]. For many problems, this type of modeling can g&nally, in Section VII, we discuss our conclusions.
viewed as maximum likelihood (ML) training for exponential .
models, and like other ML methods is prone to overfittin@' ME Modeling
of training data. While several smoothing methods for ME Consider the task of estimating a probability distribu-
models have been proposed to address this problem [1], [5]-[#n ¢(x) over a finite setQ given some training data set

Index Terms—Exponential models, language modeling, max-
imum entropy, minimum divergence,n-gram models, smoothing.

previous results do not make it clear how these smoothidg = {z1, ..., zn}. Intuitively, our task is to find a distribu-
methods compare with smoothing methods for other types tigin ¢(«) similar to the empirical distributiof(x) given by the
related models. training data

However, there has a been great deal of research in smoothing
n-gram language models, and it can be shown that:Miam

models are closely related to conventionajram models. Con- 3 cx (z)
sequently, this domain is well-suited to gauging the performance p(x) = N
of ME smoothing methods relative to other smoothing tech-

niques.

wherecx (x) is the number of times occurs inX and N is
e size of the training set. In the extreme case, we canjtake
{0be identical tgi(«), but this will typically lead to overfitting

In this work, we survey previous work in ME smoothing&h
and compare the performance of several of these algorith

with conventional techniques for smoothinggram language to the training data. Instead, it would be better to require that

models. Evaluating the perplexity of each method over a Iar% L
d th : — g(x) match only those properties gfz) that we deem to be
number of data sets, we find thiatzzy MEsmoothing [1] per significant and that can be reliably estimated from the training

forms as well as or better than all other algorithms under consid=

eration. This method can be viewed as relaxing the requiremer?f: y .
or example, consider = (w;, w2) wherew; andw, are

English words, and let the training da¥abe the list of consec-
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that we do not deem significant and thus do not want to matchWhile models with high entropy tend to be rather uniform or
exactly withg(x). However, let us assume that we observe thamooth and we may only constrain propertieg;@f) we con-
the wordTHE occurs with frequency 0.05 in the training datasider significant, a ME model can still overfit training data, even

ie., when the number of constraints is small. For example, consider
constraints on the frequency of the wandreo and the bigram
> B(THE wy) =) p(wy THE) = 0.05. SAN MATEO, and assume that the worthTEO occurs only after
ws wy the wordsaAN in the training data. Then, we will have
Because of the abundance of the wokd, this is presumably Z q(w, MATEO) =~ Z (w1 MATEO)

an accurate estimate of this frequency and it seems reasonable to
require that our selected distributigf) satisfies the analogous
constraints

w1 w1

= p(SAN MATEO)

d
Z g(THE wy) = Z g(wy THE) = 0.05. Q) an

w2 wi g(SAN MATEO) = yp(SAN MATEO)

More generally, we can select a number of nonnegativghich impliesq(w, MaTEO) = 0 for all w; # sax. Intuitively,
random variables ofeaturesf = {fi(z), ---, fr(z)} and we wantq(z) > 0 for all z €  since all bigrams have some
require that the expected value of each feature over the mogighnce of occurring. Zero probabilities lead to infinite loss in
q(x) is equal to that of the empirical distributigif): log-loss objective functions and can lead to poor performance in

many applications, e.g., whef) represents a language model
Z q(z) fi(x) = Z p(z)fi(z), i=1,---,F. (2) tobeusedinspeech recognition. Thus, itis desirabsertooth
T T ME models, or adjust parameter values away from their ML

. . .., estimates.
The constraints represented in (1) can be expressed with two

such features, [I. SMOOTHING N-GRAM LANGUAGE MODELS
£ (wy, wa) = { 1 ifw; = THE While there has been relatively little work in smoothing ME
! 0, otherwise models, there has been a great deal of work in smoothigigam
] language models. Aanguage modeis a probability distribu-
forj=1,2. ) ) ) _tion ¢(s) over word sequencesthat models how often each
The constraints given by (2) do not generally specify a uniqu@q.ence occurs as a sentence. Language models have many
model¢(z), but a set of model);. The ME principle states ,jications, including speech recognition, machine translation,
that we should select the moadglz) € Q; vx_th the largest 44 spelling correction [11]-[13].
entropy H(q) = —2_, q(x)logg(x) [9]. Intuitively, models o 3 word sequence= w; - - - w;, we can express its prob-
with high entropy are more uniform and correspond to assumiagi"ty Pr(s) as
less about the world. The ME model can be interpreted as the
model that assumes only the knowledge that is represented by Pr(s) = Px(
the features derived from the training data, and nothing else.
The ME paradigm has many elegant properties [2], [3]. The

wy) X Pr{wsg|wy) x - -

X Pr(wi|wy -+~ wi_1) X Pr(BEND|wy -+ - wy)

ME model is unique and can be shown to be an exponential B s Prlw. ‘
model of the form = 1:[1 r(w;|wy - - wi—1)
F
1 where the tokenv;;; = END signals the end of the sentence.
; = —_— M fs 3 i+1 g
Die(o) Za P <7§:; f ($)> ® The most widely-used language models, by far;agram lan-

guage models. In am-gram model, we make the approximation

whereZ, =3 eXp(EF—l i fi(x)) is a normalization factor that the identity of a word depends only on past words through
andA = (), ---, Ap) are the parameters of the model. Furthe identity of the last — 1 words, giving us

thermore, the ME model is also the ML model in the class of 1 141

exponential models given by (3}inally, the log-likelihood of Pr(s) — Pr(w: s -+ w2 ) 2 Pr (s =1

the training data is concave in the model parameteend thus H(s) = }:[1 rwifwr - wiz) & }:[1 ' (wz|wi—(n—1>)

it is relatively easy to find the uniqgue ME/ML model using al- B B

gorithms such as generalized iterative scaling [10] or improveghere.’ is a notation that denotes the sequenge- - w; and

iterative scaling [3]. W_nya, -, wo are all taken to be some distinguished begin-
ning-of-sentence token.

IThese properties hold when constraining feature expectations to be equal t'he ML estimateqyr, (w; |w§:%n71)) of the probabilities
those found in a training set. When constraining expectations to alternate valyes i—1 trainina dati b lculated
the ME model will not be the ML model, and the ME model will not exist if thel T{%0i |wi—(n—l)) over some training datd Can be calculale

constraints are inconsistent. by simply counting how often the token; follows thehistory
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or contexthf:%n_l) and dividing by the total number of timesby (4) can be placed in this framework with the following

the history occurs, i.e., relations:
. i—1 _ i—1
- cx (w;—(n—l)) a(wi|wi_(n_1)> = Gint (wi|wi_(n_1))
aML (wi|w;:(n_1)) =—F N i—1 _
cx (w;_%n_l)) ,y(wi—(n—l)) =1-A
. i—1 i—1
Cx (wzi(nil)) Qsm (w7|wz_(n_2)) = Gint wi|wi—(n—2)) .
> ex (w;i,(n,l))
w; There are three primary distinctions between smoothing al-

o o ) gorithms: whether an algorithm iaterpolatedor backed-off
However, ML estimation of these probabilities typically leads tQ 4t type of discounting is applied to the ML estimate to cal-

overfitting, and instead it is desirable to use smoothed eStima&ﬁatea(wi|w?—l ), and how lower-order distributions are
of these values. For example, one simple smoothing teChnicﬂéﬁnputed. i=(n=1)

is to linearly interpolate the ML estimate of thegram proba- |, interpolated models, the probability estimate
bility gair.(wilw;~(, ;) with an estimate of thén — 1)-gram With  nonzero

11 : a(wilw=(,_,)) of an n-gram w}_,

probability Pr(w;|w; ¢, _,)) [14], [15] count depean on the probability assigned to the corresponding
(n — 1)-gram w!_ n—z) @S in (4). In backed-off models,
the probability estimate of am-gram with nonzero count

Gint (wz|wz:2L _1)) is determined while ignoring information from lower-order
A distributions. Interpolated models include Jelinek—Mercer
= A qmr. (wilwé’:(ln_l)) smoothing [14] and Witten—Bell smoothing [16]; backed-off

i1 models include Katz smoothing [17], absolute discounting
+ (1 =A) Gint (wvi|w71_(n—2)) ’ 0<A<L (4 [19], and Kneser—Ney smoothing [18].
To describe the different types of discounting, we write
The lower-order estimate can be defined analogously, and w@”ﬂwf:%nfl)) as
recursion can end with a unigram or uniform distribution. Since
the lower-order distributions are less sparsely estimated from
the training data, their interpolation generally reduces overfit- (w|w@_1 )
ting. A large number of other smoothing methods fiegram i (nl)

models have been proposed, e.g., [8], [14], [16]-[19]. cx (wzji(nil)) — d(wff(nfl)) ‘
We present a brief overview of past work+ngram model = . + 5 (w;,(n,l))
smoothing. One basic observation is that the ML estimate of the Ccx (wﬁi(ln,l))

probability of ann-gram that does not occur in the training data

is zero and is thus too low, and consequently the ML probabilithere d(w;_(n_l)) can be viewed as the discount in count
ties ofn-grams with nonzero counts are generally too high. Thigace from the ML estimate and Wherﬁ(w@_( _1)) is
dichotomy motivates the following framework for expressingnhe contribution from lower-order distributions. The value

smoothing methods, which can be used to express most exisyy(g,@_( _1)) is zero for backed-off models and typically

smoothing techniques [18]: V(Wi _1))@sm (wilw{Z{, ) for interpolated models. In

linear discounting the discountd(w;_, ,,) is taken to be

. (w‘|w7‘;_1 ) proportional to the original countX(@ujf(nfl)), as in (4)
BN ) where the discount i§1 — X) - ex(w} , ). In absolute
a(wi|wj:(1n_1)) if cx (w;‘f(nfl)) >0 discounting d(wff(nfl)) is taken to be a constafit< D < 1.
‘ In Good—Turing discounting, the discount is calculated using
= fy(w;:(ln_l)) (5) the Good-Turing estimate [20], a theoretically motivated
] ‘ discount that has been shown to be accurate in nonsparse data
Jsm (wilw;’:(ln_m) if ex (wﬁ,(n,l)) =0. situations [17], [21]. A brief description of the Good—Turing

estimate is given in Section IV-B. Jelinek—Mercer smoothing
That is, if ann-gramwjf(nfl) occurs in the training data, theand Witten—Bell smoothing use linear discounting, Kneser—Ney
estimate ov(w; |wi ) is used; this estimate is generallysmoothing uses absolute discounting, and Katz smoothing and
i ;

a discounted version of the ML estimate. Otherwise, wehurch-Gale smoothing [21] use Good-Turing discounting.

back off to a scaled version of te — 1)-gram distribution  The final major distinction between smoothing algorithms

g (wi|wi—(1 ,)), where the lower-order distribution isis how the lower-order probability estimates are calculated.
511 1—(n— H

typically defined analogously to the higher-order distributiorfVhile moiitlsmoothing methods define the lower-order model
The scaling factory(w;:(ln_l)) is chosen to assure that eacﬂsm(wﬂw;_gn—z)) analogously to the higher-order model

conditional distribution sums to one. The algorithm describegha(wi|w;_,_y), in Kneser-Ney smoothing a different
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approach is taken. THe. — 1)-gram model is chosen to satisfy 2 7
certain constraints derived from the training data, namely 1.8 ¢ . -
6l trigram, IMW training, .
) ) ) B L -

Z cx (w;:(ln_l)) sm (wi|w;:én_1)) =X (w;—(n—Q)) § i: ] /./fi;;mTMW training ]
o 6 & |/ e 00MY vaigies e
forall (n—1)-gramsw?_ (n—2)- This constraint can be rephrased é 08 ‘5;‘:«" """ ® T
as: the expected number of ti‘mezs_(n_Q) occurs inthe training :;:;, 06 MZMMW training
data given the model,,, (w; |w§j(1n71)) andthe history frequen- ™~ oal
cieScX(wjj(ln_l)) should equal the actual number of times it 0'2 _
occurs. Kneser—Ney smoothing can be applied recursively t ’
lower-order distributions, in which case the constraints (6) ar o 3 p 7 5 i 13
not satisfied exactly. Instead, the right-hand side of the cor Original count

straints are discounted with absolute discounting.
Chen and Goodman [8] provide an extensive comparison - 1. d'defi' average d(ijsgggntm"ggams,w“h giveE,COU”“” t(;aif,“ng datafé)fl
all of the widely-used smoothing techniques. They evaluate each o' raining setand 200M word training set, bigram and trigram models.

algorithm on a wide range of training sets througtpisplexity

on test data. The perplexifyP,(X") of a modelg on a test set gaged on these observations, Chen and Goodman propose an
X' is the recip_rocal of the geomgtric average probability th%‘gorithm namednodified Kneser—Ney smoothitieat is found

the model assigns to each word in the test set. They also y§tperform all other methods considered. It is an interpolated
the derivative measurgoss-entropyH, (X") = log, PPo(X),  yariation of Kneser—Ney smoothing with an augmented version
which can be interpreted as the average number of bits neegdedsolute discounting. Instead of using a single discdant

to code each word in the test set usmg_the mcaﬂe_ﬁhenet for all n-grams, three separate discoufits, D, andDs.,. are

al. [8], [22] also conducted experiments investigating how theseq for,-grams with one count, two counts, and three or more
cross-entropy of a language model is related to its performanggnts, respectively. This is motivated by the observation that
when used in a speech recognition system. They found a strqRg ijeal discount for one-counts and two-counts is substantially

linear correlation between cross-entropy and recognition woghajler than the ideal discount of larger counts, as shown in
error rate when comparing models that only differ in smoothing;, 1

In terms of perplexity, Chen and Goodman found that
Kneser—Ney smoothing and variations consistently outper-
form all other algorithms. More specifically, they present the

following four main conclusions. We can construct language models very similar to conven-

» The primary reason for the superior performance ¢ional n-gram models within the ME framework. The ME
Kneser—Ney smoothing and variations is the novehodels described in Section I-A are joint models; to create the
manner in which lower-order probability estimates areonditional distributions used in conventionalgram models
calculated. we use the framework introduced by Brownal. [23]. Instead

» Absolute discounting is superior to linear discountingdf estimating a joint distributiony(x) over samplest, we
For n-grams with a given count in the training data, estimate a conditional distributiof{y|z) over samplegz, v).
they calculate the average discount in count spatistead of constraints as given by (2), we have constraints of
d(w?_(n_l)) from the ML estimate that would cause theghe form

T

expected number of thegsegrams in a test set to be equal N N
to their actual number [assumirifw; , ;) = 0]. This >_p@a(yla)fi@, v) = b whizy). D)
ideal average discount is displayed in Fig. 1 for counts i i
r < 13 for two training sets for bigram and trigramThis can be interpreted as replacif{g, v) in the joint formula-
models. From this graph, we see why a fixed discoutibn with p(x)q(y|x). That is, we assume that history frequen-
works well. While Good-Turing discounting is actuallycies p(z) are taken from the training data, and we only esti-
better than absolute discounting at predictingdlierage mate conditional probabilities. Conditional ME models share
discount, it has yet to be used in such a way as to predintiny of the same properties as joint models, including being
the correct discounts in individual distributions well. ML models, and have computational and performance advan-
* Interpolated models outperform backed-off models wheanages over joint models in language modeling [5], [24]. A con-
considering performance on justgrams with low counts ditional ME model has the form
in the training data. This is because lower-order models

Il. M AXIMUM ENTROPY N-GRAM MODELS

provide valuable information for estimating the probabil-
ities of n-grams with low counts.

» Adding free parameters to an algorithm and optimizing
these parameters on held-out data can improve the perforTo construct a MEr-gram model, we take = w!~; . to
mance of an algorithm. be the history angy = w; to be the following word. For each

=1

ovr(ylz) = ZAl(x)
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m-gramé = w;f_(m_l) with m = 1, ---, n that occurs in the discounting, fuzzy ME , and fat constraints. In describing these
training data, we include a constraint that forces the conditiorrakthods, we sometimes use the joint ME formulation for sim-
expectation of according tog to be the same as its frequencyplicity. All of these techniques apply equally well to conditional
in the training data. The corresponding featufgg:, y) are ME models; the analogous conditional ME equations can be
) derived by replacing: with (x, %) and with 7 .
o) { L (2 w) = i, endsing y replacing: with (z, y) andq(z) with p(z)q(y|z)

0, otherwise. A. Constraint Exclusion
Substituting these features into (7) and simplifying, we arrive at One simple smoothing technique is to simply exclude some
constraints of the form of the constraints in a model. When we remove constraints from
[ i i1 . a model within the ME framework, we will generally produce a
_ > p (wif(nfl)) 4 (wi|wi7(n71)) =5(0)- (9 model with higher entropy than the original, i.e., a model that is
Yooy’ smoother or more uniform. For example, in a Migram model

suffix(wi

im(ne1y)=?

we might leave out constraints fargrams that occur fewer than
In fact, the only solution to these constraintsqig/|z) = a certain number of times in the training data. This heuristic will

v (y]2). The ME model is identical to the Mk-gram model, tend to exclude constraints for thosegrams for which we do

and consequently it will be beneficial to smooth the estimat88t have reliable estimates of their true frequency.
of the model parameters = {\s}. The technique of leaving out constraints has been widely used

Remarkably, the set of models given by (8) withgram in ME modeliqg. For MEn—gr.am models, omitti.ng constraints
features is basically identical to the set of models describfy 7-9rams with low counts is analogous to ussunt cutoffs
by (5), which we used to express most existing smoothif@r conventionah-gram models [5], [6]. Fegture induction [2],_
algorithms for conventional-gram model$.That is, smoothed [3]: Where only a subset of a set of candidate features are in-
ME n-gram models can be viewed as conventional backed-ff'ded in @ model based on some selection criteria, can also be
n-gram models (though later we discuss how they also behéi@?'dered tobe a fprm of con_stramt exclusion. Constralnt' ex-
like interpolated models). To see this, consider any Mgram clu3|o'n canbeusedin qonjunctlon with all of the ME smoothing
model g (wilw!~{,_,)) with parameters\. To express this techniques to be described subsequently.
model as a backed-off model, let us define a setrefram
mOde|Sq]\,m(w7;|w;’:(1m_1)) form =1, ---, nasin(8), where e _
eachm-gram model only contains features corresponding to Good—Turing discounting has been proposed by Lau [6] and
word sequences up to length, and where all models inherit Rosenfeld [5] and can be viewed as the ME analog to Katz
the parametera of the original model. To express the originasmoothing for conventional-gram models. They observe that

B. Good-Turing Discounting

model in terms of (5), we take the marginals of the modely|+) should not be constrained to
‘ ‘ be exactly those of the empirical distributipfy|z),2 but instead
a(wile{:(lm_l)) =gME (wilw:{:(lm_l)) target values should be discounted as in conventiargdam
i1 smoothing. Instead of constraints as given by (9), they propose
Za (wi—(m—2)> the following constraints

b ton) = 2 )

Recursively expanding (5) using these relations will yield (8) > ﬁ(wzjn_l)) q(wi|w§:(ln_1)) = par(0)
for the original model. Vi (1)’
Because smoothind, estimates in MEr-gram models and ~ =#0x(e_(,,_,y)=¢
smoothing conventionad-gram models both consider the same
class of models, we can discuss both classes using the same con- ) _ _
cepts and it seems likely that we can transfer knowledge gleaﬂ%r&erepGT(e) is the Good-Turing estimate of the frequency of

from smoothing conventional-gram models to smoothing ME - ) . . . .
models. Furthermore, this equivalence has the pragmatic ad] "€ Good-Turing estimate [20] is a theoretically motivated

vantage that software tools developed for conventiangtam method for estimating the average discount for an event based
models can also be utilized for ME-gram models. For ex- on its count in the training data. For an event that oceurs
ample, MEn-gram models can be expressed efficiently in thfimes in [Vsamples, in contrast with the ML estimatgh,

standard ARPA format for conventionatgram models [25]. thﬁe(rBé)od—Turing estimate of the event's true frequeney &V
w

IV. SMOOTHING MAXIMUM ENTROPY MODELS o= il (r+1)
Ny

In this section, we survey previous work in ME model _ _ .
smoothing, including constraint exclusion, Good—Turingnd wheren,. is the number of members of the population with
exactlyr counts. Katz [17] suggests applying this estimate to

2The equivalence is not exact as exponential models cannot express probabil- _ )
ities equal to zero or one. In addition, for the equivalence to hold the unigram°More precisely, when we say the marginals of the magg|«), we mean
model used in (5) must assign the same probability to all words not occurringtire marginals of the associated joint mogiet, y)d:dﬁ(:v)q(mx), and similarly
the training data. This is generally the case with existing smoothing algorithnfist p(y|x).
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each jointm-gram distributionyn = 1, - - -, n, separately. Fur- wherel/(-) is a penalty function minimized when constraints are
thermore, as,. can be very low or zero for large Katz pro- satisfied exactly. Among others, Della Pietra and Della Pietra
poses a method wheregrams with large counts are not dispropose a penalty function of the form

counted and discounts for low counts are adjusted to compen-

sate. Lau and Rosenfeld use the Katz variation of Good—Turing Foy 2
discounting. Ulg) =) 57 D a@)filw) = > 5(x)fi()
However, when constraining marginals of a model to i—1 2P [ =

Good-Turing discounted marginals of the training data, the ) ) )
constraints may no longer be consistent and an ME model mE§is penalty function can be interpreted as the logarithm of a
not exist. For examp|e, in a trigram model consider featurg\@ussian distribution with diagonal covariance centered around
that constrain the frequencies of thegramsTic TAC TOE and  the target constraint values. The variap¢@ssociated with fea-
TAC TOE and assume that the womdc only follows the word ture fi(z) can be estimated from the empirical distribution of

TIC in the training data. Then, we will have the constraints  fi(z) in the training data, and a variant of generalized iterative
scaling has been developed to find the optimal model under this

p(T1Cc TAC)¢(TOE|TIC TAC) = per(TIC TAC TOE) objective function [6]. L
Just as ME models have an alternatedaal specification,
i.e., a ME model is also the ML model among the set of models

and given by (3), fuzzy ME models also have a dual formulation.

Using the ML perspective of ME models, we can equivalently

Z P(wi—2TAC)g(TOR|w; 2TAC) view fuzzy ME as imposing a Gaussian prior centered argund
Wiz on the parameter&, where we perform maximum posteriori

= p(r10 TAC)q(TOR|TIC TAC) = Por(TAC TOE). instead of ML estimation.From this perspective, we see that

the prior nudges th& parameters toward zero, thereby making
In general, we willhavggr (71 TAC TOE) # per(TAC TOR)  the model more uniform.
since discounts fon-grams of different length are calculated More precisely, we can equate finding the regular ME model
independently; consequently, these constraints will be incomith finding parametersA that maximize the log-likelihood
sistent. In practice, there are no dire consequences to having(A) of the training dataX
inconsistent constraints. While training algorithms such as it-
erative §gallng may not converge, a reasonable procedure is to Lx(A) = Z 5(x) log qa(x).
stop training once performance on some held-out set stops im-
proving. However, inconsistency is symptomatic of constraints
that will lead to poor parameter estimates. With the Gaussian prior, which we take to have diagonal covari-

Lau [6] compares the performance of Good-Turing disince, our objective functioh’, (A) becomes

counting for smoothing MEn-gram models with deleted » 2
interpolation [14], a variation of Jelinek—Mercer smoothing, , 1 4
for conventionaln-gram models. For a 5M word training Lx(A)=Lx(A) +Z log V2ro? oxp <_@>
set of Wall Street Journal(WSJ) text, deleted interpolation = ‘
yielded a perplexity of 225 on an 870000 word test set. The = Ly(A) -
ME model yielded a slightly superior perplexity of 221, where
constraints for alln-grams that occurred only once in the
training data were excluded from the ME model. HoweveWwhere thes? = (1/p7) are the variances of the Gaussian.
later results by Chen and Goodman [8] strongly indicate that Since the logarithm of the Gaussian prior is concave, the ob-
other smoothing methods for conventionaigram models, jective function is still concave it and it is still straightforward

such as modified Kneser—-Ney smoothing, would outperforff find the optimal model. For instance, we can make a simple
deleted interpolation by a much larger margin. modification to improved iterative scaling to find the maximum

a posteriori(MAP) model [27]. The original update of eadh
in this algorithm is to take

C. Fuzzy ME AFD B 4 60

T

22

z
20;

+ const(A) (11)

-

1

?

In the fuzzy ME framework developed by Della Pietra and/hereéi(t) satisfies
Della Pietra[1], instead of requiring that constraints are satisfied
exactly, a penalty is associated with inexact constraint satisfacy _ 5(z)fi(z) = > qaw (2)fi(z) exp (@Q)f #(x)) (12)
tion. Finding the ME model is equivalent to finding the model = *
g(z) satisfying the given constraints that minimizes the Kull-
back—Leibler distanc® (g || punir) from the uniform model

punit(). In fuzzy ME , the objective function is taken to be
4In an earlier incarnation of this work [26], the authors were unaware of the
equivalence of fuzzy ME and the Gaussian prior, and mistakenly attributed the
D(q || punit) + U(q) (10) Gaussian prior to John Lafferty.
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and wheref#(z) = 3, fi(z). With the Gaussian prior, (12) is n-gram models potentially have similar modified lower-order

replaced with distributions as in Kneser—Ney smoothing.
However, fuzzy ME models do not satisfy the ME constraints
Z () fi(x) exactly. Instead, the constraints that are satisfied have the form
O ) o M+ 8 S ) - 2 =Y @i, (1)
= Z ga () fi(z) exp (6i f (a:)) + - (13) o i o2 . i

As the right-hand side of this equation is strictly monotonic ifhatis, the empirical expectgtio@x p(z) fi(z) are now “dis-
50 it is relatively easy to find its solution using a search afounted” by the amount; /o;. (In ME n-gram models, most

gorithm. We derive this modified update rule in the Appendix).‘i are positive.) Qualitatively, this is even more desirable than

This modification adds very little computational cost to the imM€eting the targets exactly, as empirical frequencies tend to be
proved iterative scaling algorithm. higher than true frequencies for events with nonzero counts.

Lau [6] constructed a fuzzy ME-gram model excluding all Analogous behavior is produced with Kneser—Ney smoothing

n-grams with only one count using the data sets describedfiyen applied recursively to lower-order distributions_. In thL_c,
Section IV-B, yielding a perplexity of 230. This is slightly worse“aS€; target counts are discounted through absolute discounting.

than the perplexities achieved by the deleted interpolation afidierivation of (14) is given in the Appendix.
Good-Turing discounted ME models. Second, Chen and Goodman point out that absolute

discounting is superior to the other types of discounting
considered, and that using a different discount for one-counts
and two-counts and a flat discount thereafter as in modified
Other methods for relaxing constraints include work bineser—Ney smoothing performs even better. With fuzzy ME,
Newman [28] and Khudanpur [29]. In these algorithms, instedlde discount for am-gramé is linear inAy as can be seen from
of selecting the ME model over model&r) that satisfy a set of (14). As the probability assigned tbby ¢, grows exponen-
constraints exactly, they only require that the given marginaislly in As, A\s grows logarithmically as a function of the target
of ¢(z) fall in some range around the target values. Newmammobability or count. In other words, roughly speaking fuzzy
suggests a constraint of the form ME smoothing translates tlmgarithmic discounting. This is
a qualitatively appealing model of the ideal average discount
F 2 displayed in Fig. 1 and is more elegant than using multiple flat
DoWi Y @) file) = ﬁ(w)fi(x)] <q” discounts.
We can contrast the Gaussian prioroparameters of fuzzy
ME with previous work im-gram smoothing where priors have
been applied directly in probability space. MacKay and Peto
[30] use a Dirichlet prior and Nadas [31] uses a beta prior, both
resulting in linear discounting which has been shown to perform
ai < Z () fi(x) < fi, i=1- I suboptimally. Applying a prior to parameters proportional to
r log-probabilities instead of to probabilities produces a “softer”
L%Q?/rl' which in this case leads to behavior closer to the empirical
ideal.

D. Fat Constraints

=1 x x

with feature weight$V; for the task of estimating power spectra
Khudanpur suggests constraints of the form

Both of these approaches can be viewed as instances of the f

ME framework. Instead of a smooth function, the penéity)

is taken to be zero if satisfies the relaxed constraints and in- X

finite otherwise. These types of methods have yet to be appl%‘t’itperform backed-off ”?Ode's orgrams W|th_low count.s, as

to language modeling. ower-order m_qqlels prowc_ie valuable information for eshmatmg
these probabilities. Happily, a fuzzy ME model behaves like an

interpolated model as-gram probability estimates depend on

lower-order information. This follows trivially from the obser-

vation that the probability, assigns to am-gramé depends

on the parameter valuey: for all n-gramsé’ that are suf-

In Section I, we listed four factors that were found by Chefixes of 4. However, fuzzy ME models use the information from
and Goodman to significantly affeet-gram smoothing per- lower-order models in a meaningful way. Viewing fuzzy ME as
formance. It is informative to assess fuzzy ME smoothing aimposing a Gaussian prior centered aroGnae see that fuzzy
cording to these four criteria. ME smoothing tends to adjuit toward zero for any.-gramé;

First, they point out that the modified lower-order diswhen\, is zero, the corresponding feature has no effect on the
tributions of Kneser—Ney smoothing is the primary reasamodel, and the lower-ordergram probability estimate is used.
for its superiority among conventionat-gram smoothing In other words, the prior adjustsgram probabilities toward the
algorithms. Recall that these distributions are chosen to satifywer-order probability estimate, as is desirable.
marginal constraints as given in (6). However, this set of Finally, Chen and Goodman note that additional tunable pa-
constraints isidentical to the corresponding ME constraintsrameters can improve current smoothing methods. For fuzzy
for (n — 1)-grams, as given by (9). Thus, smoothed MBME smoothing, the natural free parameters are the variances

Third, Chen and Goodman report that interpolated models

V. Fuzzy MAXIMUM ENTROPY AND CONVENTIONAL N-GRAM
SMOOTHING
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In the basic version of fuzzy ME that we implemented, we ha
n free parameters,,,, m = 1, - - -, n, where alln-grams of the
same length were constrained to have the same varigjce

As fuzzy ME smoothing satisfies all of the desiderata liste
by Chen and Goodman, it may perform competitivelyigram
smoothing. The experiments in Section VI show that this is ir
deed the case.

ts/token)

1!

VI. EXPERIMENTS

To compare the performance of ME and conventierngtam
smoothing techniques, we ran experiments over many trainii ]
set sizes using several different text corpora for both bigram a . SWB 3-grani}

trigram models. 100 1000 10000 100000
Training set size (sentences)

Cross-entropy of test data (b

A. Methodology Fig.2. Cross-entropy of baseline smoothing algorithm on test set over multiple
Of the conventionaln-gram smoothing techniques, welraining setsizes on Brown, SWB, and WSJ corpora.
implemented Katz smoothing [17], which is perhaps the most
popular algorithm in practice, and modified Kneser_Ne?nd the Switchboard (SWB) corpus, which contains transcrip-
smoothing [8], which has been shown to outperform all oth&Pns of telephone conversations [36]. In each experiment, we
widely-used techniques. In addition, we implemented the varigélected a training set of a given length from one source, and two
tion of Jelinek—Mercer smoothing given by (4) where instead b€ld-out sets from the same source. The first held-out set was
a singleX parameter a different,, is used for each level of the used to optimize the parameters of each smoothing algorithm,
n-gram model. This method does not perform particularly wel.g., thes,,, parameters oME-fuzzy or the discountd), of
but is used as a baseline algorithm for expository purposes. Wedified Kneser—Ney smoothing. Parameters were selected to
refer to these three imp|ementations with the mnemadcats minimize the perplexity of the held-out set; Powell's search al-
kneser-ney_mod , andbaseline respecti\/e|y_ gorithm [37] was used to perform this search. This held-out set
We also implemented several ME smoothing techniquédas also used to decide when to terminate iterative scaling for
For each technique' alle parameters are initialized to zerothe ME models. The second held-out set was used to evaluate
and improved iterative scaling is applied to train the modéhe final perplexity of each smoothing algorithm.
lterative scaling is terminated when the perplexity of a held-out FOr each data source, we ran experiments using training sets
set no longer decreases appreciably. Cluster expansion [#2mn 100 sentences (about 2000 words) to around 100 000 sen-
is employed to reduce computation. In the implementatid@nces (about 2M words). Held-out sets were 2500 sentences.
ME-no-smooth , no smoothing is performed. (Since training/Vhile training sets for language models may reach hundreds
is terminated when performance on a held-out set no longérmillions of words in practice, we were unable to consider
improves, no probabilities will converge to zero as in the cad¥fger training sets than we did due to computational limita-
where training is continued to convergence.) The algorithf®ns. Training MEn-gram models requires a great deal more
ME-disc-katz is an implementation of Good-TuringComputation than training conventionagram models. In addi-
discounting as described in Section IV-B. The algorithffion, when considering multiple parameter settings in the Powell
ME-fuzzy is an implementation of fuzzy ME smoothing asgearch (as for the,,, parameters iME-fuzzy ), the iterative
described in Section IV-C. As mentioned earlier, this methd#aling algorithm must be applied separately for each param-
hasn free parameters,,, one for each level of the-gram €ter setting. To train a single model using metioB-fuzzy
model. for a 2M word training set required around six hours of compu-
In conjunction with each of the ME smoothing techniquegation on a 400 MHz Pentium Il computer. Substantially larger
we also considered using constraint exclusion or count cutoffgining sets are feasible if parameter optimization is not used.
as discussed in Section IV-A. We tried several configurationk) contrast, constructing the conventiomagram models on a
and found that excluding constraints only for trigrams thaM word training setrequired only a few minutes. However, ME
occur less than twice in the training data in trigram models (afidgram models can be applied just as efficiently as conventional
for analogous bigrams in bigram models) generally gave thegram models once built.
best performance. We call the corresponding implementationdOur data sets are identical to those used by Chen and
ME-no-smooth-cutoff , ME-disc-katz-cutoff ,and Goodman [8] and consequently our results are directly compa-
ME-fuzzy-cutoff . As discussed elsewhere [8], using courfible to the analogous results presented by Chen and Goodman.
cutoffs for conventionak-gram smoothing methods generallyMore details of our methodology can be found in that work.
leads to worse performance for the methods that perform well.
We used data from four sources: the Brown corpus, whih Results
contains text from a number of miscellaneous sources [33]; WSJdn Fig. 2, we display the cross-entropy of the baseline Je-
newspaper text [34]; the Broadcast News (BN) corpus, whidinek—Mercer smoothing algorithm over a range of training set
contains transcriptions of television and radio news shows [35]zes on several corpora. In the graphs to follow, we display the
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Relative performance of algorithms on WSJ corpus, 2-gram Relative performance of algorithms on WSJ corpus, 3-gram
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Fig. 4. Performance relative to baseline of various smoothing algorithms over multiple training set sizes on the BN and Brown corpora, bigraamand trig
models.

performance of each algorithm as the difference of its cross-In Fig. 3, we compare the performance of the various
entropy on the test set from the cross-entropy of the baseli& smoothing algorithms over multiple training set sizes
method (using the same training set) to facilitate visualizationsing Wall Street Journal data. The left graph is for bigram
Each point in the graphs presented here represents a singleneadels and the right graph is for trigram models. We see that
periment; for an analysis of the standard error of these obsktE-no-smooth is outperformed by the other algorithms by a
vations refer to Chen and Goodman [8]. To give a rough idégrge margin, demonstrating the necessity of smoothing for ME
of the statistical error involved, in Figs. 4 and 5 the differenamodels. Using count cutoffs as ME-no-smooth-cutoff
betweerkneser-ney-mod andME-fuzzy may not be sig- leads to substantially better performance, though still poor. Of
nificant, while the difference between these two algorithms aride remaining algorithms, fuzzy ME smoothing performed best,
all of the others almost certainly is for almost every data poinvith ME-disc-katz beating ME-disc-katz-cutoff
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Relative performance of algorithms on Switchboard corpus, 2-gram
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Fig. 5. Performance relative to baseline of various smoothing algorithms over multiple training set sizes on the SWB and WSJ corpora, bigramand trigr
models.

for bigram models and the reverse happening over most datdo investigate how the logarithmic discounting of fuzzy ME
sets for trigram models. Though not shown here, we semoothing compares to the multiple absolute discounts of mod-
similar behavior in experiments on the other three corpora. THied Kneser—Ney smoothing, we computed how closely the ex-
algorithm ME-fuzzy-cutoff is consistently outperformed pected number of certairgrams in a test set according to each
by ME-fuzzy and has been omitted from all grapghs. model matched the actual number of thesgrams in the test

In Figs. 4 and 5, we compare the performance of MEet. In particular, for ath-grams occurring exacthy times in a
smoothing algorithms with conventionatigram smoothing al- 750 000 word training seX for somer, we computed the ratio
gorithms over several corpofe@f the conventional smoothing of the expected number of times thesegyrams occurred in a
methods, we see that Katz smoothing generally outperforms &@000 000 word test set’ to the actual number of times they
baseline and that modified Kneser—Ney smoothing is substamccurred:
tially better. Of the ME methods, we see thE-disc-katz

performs comparably to Katz smoothing for bigram models, Z cxr (wjj%nil)) q (wi|w§j(1n71))
while ME-disc-katz-cutoff performs somewhat worse. ;. ()=

For trigram models ME-disc-katz-cutoff is superior ————2 ey ‘

to Katz smoothing, withME-disc-katz generally worse. Z cx/ (w;’,(n,l))

The methodME-fuzzy performs about as well as modified

Kneser—Ney smoothing, and is slightly better over most data

sets. Thus, fuzzy ME smoothing performs as well as or bettehese ratios are displayed for< 40 in Fig. 6 for bigram and

than all other widely-used algorithms for smoothinggram trigram models. Fuzzy ME achieves ratios closer to the ideal

models. value of one than modified Kneser—Ney smoothing for most
s . . which is evidence that fuzzy ME smoothing is superior to mul-

e also ran experiments usir@mplemented:-grams [5], where each . . 2 .

n-gram feature is nonzero only when no longegram feature is nonzero. tipl€ flat discounts at predicting correct average discounts.

This resulted in significantly inferior performance. We also investigated how the number of independent vari-
6The large spikes in the Switchboard graphs are discussed by Chen agte parameters used with fuzzy ME smoothing affects perfor-

Goodman [8]. They are caused by a duplicated segment of text in the trainj .. . . .
oot [8]. They yadup g Wfance. In the original implementatidE-fuzzy |, a different

apy? . ap? —p
Wis(n—1) X (wif(nfl) =
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Fig. 7. Performance relative to baseline of different parameterizations of fuzzy ME smoothing over multiple training set sizes on the WSJ corpus)dig
trigram models.

o is used for each level of the-gram model. We also con-  Finally, we examined how smoothing affects the performance
sidered using a single over the whole modeME-fuzzy-1 ), of n-gram models in a speech recognition task. We constructed
and using three parameters, 1, o, 2, andoy, 34+ for each trigram language models for each of four smoothing algorithms
level of then-gram model, to be applied te-grams with 1, for four different training set sizes on BN data. Due to the com-
2, or 3 or more counts in the training data, respectively. Thigitational demands of ME training, we were unable to consider
latter parameterizationME-fuzzy-3n ) is analogous to the training sets larger than 1000000 sentences, though substan-
parameterization of modified Kneser—Ney smoothing. The perally more relevant training material is available. We calculated
formance of these three variations on the Wall Street Journabrd error rates by rescoring lattices produced by the Sphinx-Ili
corpus is displayed in Fig. 7. The variationte-fuzzy and speech recognition system for the TREC-7 spoken document re-
ME-fuzzy-3n vyield almost identical performance, and thérieval task [38]. The word error rates achieved on a 33 000-word
variation ME-fuzzy-1  performs slightly worsé.As having test set are displayed in Table |, as well as the cross-entropy of
separate variances for eaetgram level leads to improved per-each model on the correct transcript of the tese set.
formance, this is a useful distinction to make. We also inves- As expectedkneser-ney-mod  and ME-fuzzy consis-
tigated many other parameter-tying schemes, but none signiéintly yielded the lowest cross-entropies. However, the method
cantly outperformed this simple technique. katz achieved the lowest word error rate for the smallest
; _ _ training set, withkneser-ney-mod  and ME-fuzzy per-
- The optimal ,Var'ancesf” found by the parameter search were glenerall¥orming better for the three larger training sets. The methods
in the rangel.5N < o2 < 5N form > 1, whereN is the size of the

training set. The optimal values found fef varied widely; for large data sets, o . o .

it sometimes approached infinity, corresponding to no smoothing for unigram®A variation with more parameters may not outperform a variation with fewer
marginals. The linear dependencecdf on NV is an artifact of the way we Parameters due to a mismatch between the evaluation set and the held-out set
define the fuzzy ME objective function in (ll) If we rep|abe((A)’ the |Og_ used to Optlmlze parameters or due to search errors in parameter Opt|m|zat|0n.
likelihood per event, withV x L x(A), the total log-likelihood of the training ~ 9Because of the enormous amount of speech data in the TREC-7 task,
set, the corresponding optima}, would be largely independent of training setSphinx-Ill was configured to run with only a single decoding pass and with
size and take on moderate values (for> 1). While this alternate formulation narrow search beams. With several passes, wider beams, and a larger language
is perhaps more intuitive when using a prior, we chose the given formulation fmodel, Sphinx-11l achieved a word-error rate of 23.8% on a similar BN task
notational expedience. [39].
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TABLE |
SPEECHRECOGNITION WORD ERROR RATES AND TEST SET CROSSENTROPIES OFVARIOUS SMOOTHING ALGORITHMS OVER SEVERAL TRAINING SET
SIZES ON BROADCAST NEWS DATA

training set size (sentences)
100 3000 100000 1000000
WER | entr. | WER | entr. || WER | entr. || WER [ entr.

ME-disc-katz 52.9% | 11.84 || 46.8% | 10.29 || 41.0% | 9.06 || 37.3% | 8.19
katz 52.4% | 11.83 || 46.6% | 10.12 || 41.1% | 8.89 || 37.2% | 8.12
kneser-ney-mod || 52.8% | 11.69 || 46.5% | 9.96 || 40.2% | 8.68 || 36.4% | 7.94
ME-fuzzy 52.9% | 11.70 || 46.2% | 9.94 || 39.9% | 8.68 || 36.5% | 7.96

ME-fuzzy and kneser-ney-mod  vyielded very similar Thus, the use of marginal constraints may be a powerful tech-
performance in terms of cross-entropy and word error ratégue for designing novel smoothing algorithms, whether for
over all of the training sets, and outperformed the other twanguage modeling or for other domains. Enforcing marginal
algorithms tested by as much as 1% absolute in word error ratmstraints would mark a significant departure from traditional
on the larger training sets. Thus, fuzzy ME smoothing seemstezhniques used in smoothing.
yield competitive performance on a speech recognition task. In addition, fuzzy ME smoothing can be viewed as imposing
a qualitatively different prior than has been used previously
in n-gram smoothing. As touched on in Section V, linear
VIl. DisCussION discounting can be motivated through a Dirichlet or Beta prior

It has been argued that ME models do not require smoothifl Probabilities [30], [31], but it has been shown to perform
because they are already as uniform or smooth as possible giggﬁrly. While absolute discounting y|eldls better. performance,
the constraints. However, ME models can be viewed as MUIS unclear how to elegantly express this technique through a
exponential models, and have similar properties as other ,\R[ior di_stribution. In contrast, the Gau_ssian _prior of fuzzy_l_\/IE
methods. For example, as can be seen in Fig. 3, when d&t&Pplied toAs parameters that are linear in log-probability,
is plentiful, smoothing has a smaller effect, and when data32d leads to logarithmic discounting. This simple prior yields
sparse, smoothing is essential. dlscggntm_g that is qualitatively and quar)tltat!vely S|m|Iar to the

In many tasks including language modeling, it has been foufig'Pirical ideal, and suggests that logarithmic discounting may
that superior performance can be achieved by constructiig €MPloyed profitably in a conventionatgram smoothing
very large models (so parameters are sparsely estimated) Sigfnique. _ _
then smoothing them. Thus, for ME models to be competitive NOt Only can fuzzy ME smoothing be applied to ME mod-
with other techniques in these domains, we need effective MENd: but it can also be applied in the more genenatimum
smoothing algorithms. dlverge.nce'paradlgm [40], [41]. Maximizing entropy is equiva-

In this work, we showed that the fuzzy ME method can pgnt to finding the model with the smallest Kullback—Leibler di-

used to smooth ME-gram models to achieve performancé/ergence from the uniform distributiqn. I_nminimu_m divergenc_:e

equal to or superior to that of all other techniques for smoothirN%Ode“ng* one selects the model satisfying the given constraints

n-gram models, a field that has an extensive body of assofioSest to some default distributign(xr). The modelyo(x) can

ated research. This is the first clear demonstration that a Ni¢ Used to express prior knowledge about the domain. Minimum

smoothing method can be as effective as smoothing techniqgé@rgence models have the form

for other types of models, and makes it possible to construct ME . P

models in sparse data situations without loss of performance. _ T

Furthermore, it adds virtually no computational cost to the ME an () = Za (@) exp <; A,f,(a:)) '

training procedure. However, because of the large underlying

computational cost of ME algorithms, building ME models fofrhe analysis in Section 1V-C applies to these models without

very large data sets is still a challenging problem. modification, except that,,ir(x) is replaced byjo(x) in (10).
While fuzzy ME smoothing can be expressed very simply, ME modeling has advantages over competing approaches

we show that it possesses all of the desirable qualitiesgshm in terms of elegance, generality, and performance, and the

smoothing noted by Chen and Goodman from empirical anéilizzy ME method is a powerful tool for smoothing general

ysis. In addition, it achieves its excellent performance usifdE models. Whether fuzzy ME smoothing proves superior to

fewer parameters than the comparably performing modifiedher algorithms in domains other thangram modeling is

Kneser—Ney smoothing. still an open empirical question. krgram models, no features
Fuzzy ME smoothing and variations of Kneser—Nepartially overlap each other (i.e., any two features are either

smoothing consistently outperform other smoothing techever active on the same event, or one feature is active for a

nigues. The distinction between these algorithms and the othsuperset of the events that the other is active), and this is not the

is their use of modified lower-order distributions as describathse in general. However, promising results have been achieved

in Sections Il and V. These distributions are chosen to satisfgth fuzzy ME smoothing in text classification [42], as well

certain marginal constraints derived from the training datas in topic adaptation for language modeling [43]. In addition,
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how parameters should be tied in other domains has yet to b& he derivation of the modified improved iterative scaling up-
explored® Nonetheless, our results and analysis justify th#ate is identical to the original derivation except for the pres-
choice of fuzzy ME smoothing for use im-gram modeling, ence of extra terms for the prior. In each iteration, we try to find
and strongly suggest its use in other situations as well. A = {é;} that maximizes the increase in the objective function

DERIVATION OF MODIFIED CONSTRAINTS AND MODIFIED

ITERATIVE SCALING FOR FUzzY MAXIMUM ENTROPY
SMOOTHING

In this section, we derive the modified constraints given in
(14) and the modified update for improved iterative scaling
given in (13) for fuzzy ME smoothing. We use the conditional

Z z, yzéfzw y)— > B(x)log

€T, x

Y aalyle) eXp<Z<9fzx u)

Y

1

2
ME formulation. For further details about improved iterative T 202 (2Aib; + 67).

scaling such as proof of convergence, refer to [3].

To derive the modn‘led constralnts we take the partial deriva-

this function from below.
Using the inequalityog = < = — 1, we get

%

LAY
L(A) = p(=, y) log qa(ylz) — Z 72 + const(A) /
il = A) = Lx(A)

Ly (A+
IZﬁ(xay)Z)\iﬁ%y zz aty)Z&ifi(a:,y)—l—l

=2 plr.w)log ) exp <Z ifi(e, y’)) = B(#) Y aalyle) exp <Z 5ifi(x, y))

F 1
A - 5 4 62) =
— E ﬁ + const(A) 207 E (2Xi6; + 67) = B(A).
=1 i i

aL(;XA(iA) =3 B, y)filw,y) =D Bz v) Y

i

Substituting inf# (x, y) = 3, fi(x, y) and applying Jensen’s

wy oY Y inequality, we arrive at
exp <Z Ai fi(z, Z/))
. i fila, )= B<A>_Z z,y Zéfz z, y)
ZA(.T) a;
A
Z an(y'|%) fiz, y') = —2 cexp(6;f* (x, y)) — 2}7 (2M\i6; + 62) = A(D).

T

:Z(vyfz Z

Zqulez z,y) Y b ylx——
! K MIZZM nfilz, y) - Z Zunlx

—2.

Taking the partial derivative ofi(A) with respect ta;, we get

)\2—1—6Z
-

%

- Z 2)aa(yle) filz, y) -

Equation (13) follows by setting these derivatives to zero.
Equation (14) follows simply from the last line.
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