
NOTES ON THE EM ALGORITHM1. The Dempster-Laird-Rubin PresentationThe general situation of the EM algorithm is that we observe data y which isincomplete, and assocated with complete data x. That is, there is a projection� : X �! Ywhich is many-to-one. We observe y 2 Y and the actual x which generated y ishidden. The �ber over y is the setX (y) = ��1(y) = fx j�(x) = yg :We follow (roughly) the notation of [3], and assume that x has a probability densityf�(x) which depends on some vector of parameters � 2 
, where 
 is an open subsetof RN. Typically, 
 represents various constraints on the parameters, as will becomeclear the following sections. The density of y is obtained by integrating over �bers:g�(y) = ZX (y) f�(x) dx :The basic idea of the EM algorithm is the following. According to the statisticalprinciple of maximum likelihood, one would like to choose the parameters so as tomaximize the log-likelihood log f�(x). But this doesn't quite make sense, since x isunobserved (hidden). Instead, one can try to maximize the conditional expectationof log f�(x) given the observation y and an estimate of the parameters �.Here's how this idea is borne out. De�nek�(x j y) = f�(x)g�(y) :That is, k is the conditional density of x given y, assuming the parameter vector �.Then L(�) � log g�(y) = log f�(x)� log k�(x j y) :Let E� denote expectation with respect to the parameters �. Since L(�0) is a functionof y, L(�0) = E�[log f�0(x) j y]� E�[k�0(x j y) j y] :1



2To verify this directly, note thatE�[log f�0(x) j y] = RX (y) log f�0(x) f�(x) dxRX (y) f�(x) dx= 1g�(y) ZX (y) log f�0(x) f�(x)and E�[log k�0(x j y) j y] = 1g�(y) ZX (y) log f�0(x)g�0(y) f�(x) dx :It follows thatE�[log f�0(x) j y]� E�[k�0(x j y) j y] == 1g�(y) ZX (y) log f�0(x) f�(x)� 1g�(y) ZX (y) log f�0(x)g�0(y) f�(x) dx= log g�0(y)= L(�0) :As a �nal piece of notation, we'll write L(�0) = Q(�0 j�)�H(�0 j�), whereQ(�0 j�) = E�[log f�0(x) j y] :Lemma 1. For any pair of parameters �, �0 2 
, we have thatH(�0 j�) � H(� j�) :Proof. Applying the de�nitions,H(�0 j�)�H(� j�) == 1g�(y)  ZX (y) log f�0(x)g�0(y) f�(x) dx� ZX (y) log f�(x)g�(y) f�(x) dx!= 1g�(y)  ZX (y) log f�0(x)f�(x) f�(x) dx+ ZX (y) log g�(y)g�0(y) f�(x) dx!� log g�0(y)g�(y) !+ log g�(y)g�0(y)!= 0with the inequality coming from an application of Jensen's inequality for conditionalexpectations.



NOTES ON THE EM ALGORITHM 3Since L(�0)� L(�) = [Q(�0 j�)�Q(� j�)] + [H(� j�)�H(�0 j�)]it follows from the lemma that so long as Q(�0 j�) � Q(� j�) � 0, the likelihood ofthe observed data increases. This motivates the basic EM algorithm:Initialize: �0 2 
Iterate: E-step: Compute Q(� j�m)M-step: Set �m+1 = argmax�2
Q(� j�m)This is a greedy version of the algorithm, maximizing the gain in likelihood fromQ at each step. But it may be computationally expensive to compute the maximumin the M-step. It thus makes sense to consider a modi�ed EM-algorithm:Initialize: �0 2 
Iterate: E-step: Compute Q(� j�m)M-step: Set �m+1 = M(�m), where M : 
! 
 is any mapsatisfying Q(M(�) j�) � Q(� j�).We �nd it convenient to modify the choice of Q in [3] in the following way. De�nebQ by bQ(�0 j�) = E� " log f�0(x)f�(x) ����� y# :Then another application of Jensen's inequality shows thatbQ(�0 j�) = E� " log f�0(x)f�(x) ����� y#� logE� " f�0(x)f�(x) ����� y#= log g�0(y)g�(y)= L(�0)� L(�) :Thus, since bQ(� j�) = 0, the function bQ can just as well be used in the EM algorithm.Theorem 1. Let �0; �1; �2; : : : be a sequence for an EM-algorithm such that1) jL(�n)j < C <1 for all n.2) Q(�n+1 j�n)�Q(�n j�n) � �k�n+1 � �nk2 for some � > 0.Then �n �! �� in L2, for some �� 2 �
.



4Proof. The proof is a simple dominated convergence argument. Since L(�n) is boundedand increasing, it converges to some number L� <1. The problem is to show that�n converges to a vector ��. It will follow that L(��) = L�.Since the sequence L(�n) is Cauchy, for any " > 0 there is an N such thatL(�n+r)� L(�n) = rXj=1L(�n+j )� L(�n+j�1) < "for all r = 1; 2; : : : and n � N . This implies that0 � rXj=1Q(�n+j j�n+j�1)�Q(�n+j�1 j�n+j�1) < "and by assumption 2), that0 � �0@ rXj=1 k�n+j � �n+j�1k21A < " :Thus, �n converges.Condition 2) in the theorem is a rather stringent assumption. It is not satis�ed formany practicalM 's and Q's. It is thus possible for the sequence �n to wander around
 without ever converging, while the likelihood steadily increases, and eventuallyconverges. 2. The EM Algorithm and Language ModelingThe typical situation for the EM algorithm in language modeling is that we havea set of histories h and futures f and want to maximize the likelihood of predictingf from h, given a collection of training events E = f(h; f)g:L(�) =XE c(h; f) logP�(f jh)where c(h; f) is the multiplicity (\count") of the event (h; f) in E. For example, fmight be a word predicted from a history of the previous two words, or it might bean English sentence to be predicted from a French sentence. We add \structure" or\linguistics" to this setup by modeling some hidden quantity that we think is goingto help predict f better.2.1. Marginal Models. The incomplete data for most language models takes theform of a Cartesian product, and the �bers are the associated level sets. Thus, themodels typically take a form where the \future" f and the hidden data x are speci�ed



NOTES ON THE EM ALGORITHM 5by a joint distribution, and the observed data is given by the associated marginaldistribution: L(�) =XE c(h; f) logXx P�(f; x jh) :For example, the hidden data x could be a sequence of parts-of-speech, an alignmentbetween French and English sentences, or a parse tree for a sentence. Typically thesum Px is exponential in the size of h and f . Part of the algorithmic art of languagemodeling is to make this sum manageable.The di�erence in the conditional expectations of the complete data log-likelihoodsgiven the observed data is written here asbQ(�0 j�) =XE c(h; f)Xx P�(x jh; f) log P�0(f; x jh)P�(f; x jh) :For many language models, including probabilistic context-free grammar, this func-tion is convex in �0, and the maximum can be calculated in closed form. This classof models is described next.2.2. Algebraic Models. Most of the models that arise in language modeling areassociated with algebraic expressions; that is, the probabilities are expressed as (typ-ically homogeneous) polynomials in the parameters. Suppose, for example, thatP�(f; x jh) = Y!2
�(!)c(!;x;f;h) :The �(!)'s are the parameters, and they are subject to certain linear constraints,such as �(!) � 0 and X!2
 �(!) = 1 :For such models, the M-step in the EM-algorithm can be carried out exactly, and theparameter updates take on a particularly simple form, which we now derive.The EM algorithm tells us to compute the function bQ(� j�n) and to solve theequation @ bQ(� j�n)@� � � = 0where � is a Lagrange multiplier, corresponding to the constraintP! �(!) = 1. Using



6the algebraic form of the model we can calculatebQ(�0 j�) =XE c(h; f)Xx P�(x jh; f) log P�0(f; x jh)P�(f; x jh)=XE c(h; f)Xx P�(x jh; f)X! c(!;x; h; f) log �0(!)�XE c(h; f)Xx P�(x jh; f) log P�(f; x jh) :In particular, bQ(�0 j�) is a concave function of the parameters �0(!). Note thatc(w;x; f; h) = �(!)P�(x; f jh) @P�(x; f jh)@�(!) :Taking partial derivatives of bQ and including the Lagrange multiplier, we are led tothe condition that must be obtained at the unique maximum in the M-step:XE c(h; f)Xx P�(x jh; f)c(!;x; h; f)�0(!) = � :This, in turn, leads to the EM update formula�n+1(!) = ��1XE c(h; f)Xx P�n(x jh; f)c(!;x; h; f) :Thus, the reestimated parameters are normalized expected counts. The expectationE�n [c(!; f; h)] �Xx P�n(x j f; h)c(!;x; f; h)is interpreted as the expected number of times, under the model �n, that ! is usedin generating f from h. We note that a similar analysis would hold for any modelwhich is a rational function of its parameters.Computing the expected counts usually involves some kind of \forward-backward"calculation or approximation to make the sum Px manageable. For general �nite-state machines this calculation can be neatly characterized [2]. The calculation wasdemonstrated in [1] for the case where the hidden data is a parse tree derived from acontext-free grammar. In the next section we will derive this calculation within theframework that we have set up.3. The Inside-Outside AlgorithmLet G be a context-free grammar consisting of a collection of rules fA ! �g,where each � is a string of terminals and nonterminals. For each string w 2 L(G),the language of G, there is a corresponding set of parse trees t, each of which hasw = w1w2 � � � wN as leaves. If we observe only w, then for an ambiguous grammar,the actual tree used to derive w is hidden.



NOTES ON THE EM ALGORITHM 7Suppose we have a joint distribution P�(w; t), giving the probability of deriving wusing the tree t. Then the marginal distributionP�(w) =Xt P�(w; t)gives a language model. In the notation of Section 2, P�(w; t) is the complete datadensity f�(x) and P�(w) is the incomplete data density g�(y). The �ber X (w) overthe sentence w is a �nite collection of parse trees. The joint distribution takes theform P�(w; t) =Y! �(!)c(!; t;w)= YA!��(A! �)c(A!�; t;w)where c(A ! �; t; w) is the number of times that the rule A ! � appears in theparse tree t for the sentence w. The parameters �(A! �) are normalized so thatX� �(A! �) = 1 :Thus, there will be a Lagrange multiplier for each nonterminal A.Such a model may be de�cient, and not assign probability one to �nite strings.A su�cient condition that this does not happen can be expressed by indexing thenonterminals as A1; : : : ; AN , and letting M be the N �N matrix given byMij =X� �(Ai ! �)nj(�)where nj(�) is the number of nonterminal symbols Aj appearing in �. If M haslargest eigenvalue � < 1, then the language model P�(w) assigns probability one to�nite sentences in the language of the grammar.The model is parameterized by making theMarkov assumption that the probabilitywith which a nonterminal is rewritten as a string � depends only on the nonterminal,and not on any surrounding context. This assumption leads to an e�cient trainingalgorithm.There are two distinct problems associated with this setup. The �rst, called thelanguage modeling problem, is to �nd the set of parameters which maximize theprobability Qw2C P�(w) of some training corpus C. The second, called the parsingproblem, is to maximize the \correctness" of the most probable parset̂(w) = argmaxt P�(t jw) :The EM algorithm is directly involved with only the language modeling problem.Experience has shown it to be di�cult to couple the two problems.



8 To apply the EM algorithm, we consider the auxiliary functionbQ(�0 j�) =Xw c(w)Xt P�(t jw) log P�0(t; w)P�(t; w) :Taking the derivative @=@�0(A! �) gives@ bQ(�0 j�)@�0(A! �) =Xw c(w)Xt P�(t jw)c(A! �; t; w)�0(A! �) :We thus need to compute the expected countsXt P�(t jw)c(A! �; t; w) :The sum Pt is potentially exponential. But this is the same as evaluating�(A! �)P�(w) @P�(w)@�(A! �) =Xt P�(t jw)c(A! �; t; w) ;and it turns out that there is an e�cient way of computing the partial derivative onthe lefthand side.We'll now assume, but only for convenience, that the grammar is in Chomskynormal form. Thus, each rule is either of the form A! BC or A! w. The positionof a rule A! BC within a tree t can be speci�ed by a triple (i; j; k); i � j � k.The partial derivative of the probability P�(S ) w) = P�(w) with respect to theparameter �(A! BC) only involves those parse trees which use the rule A! BC.Consider the event \S ) w using A ! BC in position (i; j; k)". Because of theMarkov property, the probability of this event can be written as a product of fourterms as follows:P�(S ) w; using A! BC in position (i; j; k)) =P�(S ) w1 � � �wi�1Awk+1 � � �wN)�� �(A! BC)P (B ) wi � � �wj)P (c) wj+1 � � �wk) :From this it is not di�cult to see that@P�(S ) w)@�(A! BC) =Xi;j;kP�(S ) w1 � � �wi�1Awk+1 � � �wN )P (B ) wi � � �wj)P (C ) wj+1 � � �wk) :



NOTES ON THE EM ALGORITHM 9Thus, the expected number of times that the rule A! BC is used in generating thesentence w using the model � is given byE�[c(A! BC;w)] =Xt P�(t jw)c(A! BC; t; w)= �(A! BC)P�(w) Xi;j;k �ik(A)�ij(B)�j+1k(C)where �ij(A) = P�(A) wi � � �wj)and �ij(A) = P�(S ) w1 � � �wi�1Awj+1 � � �wN) :Similarly, E�[A! a;w] = �(A! a)P�(w) Xi �a(wi)�ii(A) :There is an e�cient method for computing the �'s and �'s using the CKY chart-parsing algorithm. The method for doing this is implicit in the following formulas:�ij(A) = XB;C Xi�k�j �(A! BC)�ik(B)�k+1j(C)�ii(A) = �(A! wi)�ij(A) = XB;CXk<i �(B ! CA)�ki�1(C)�kj(B) ++XB;CXk>j �(B ! AC)�j+1k(C)�ik(B)�1N(A) = �S(A) :The reestimated parameters are then the normalized counts:�0(A! �) = ��1A count(A! �)where count(A! �) = Xw2E E�[c(A! �);w] :The sum is over all sentences in the training data E. The Lagrange multiplier �A isgiven by �A =X� count(A! �) :



10The results of Sections 2 and 3 prove that the resulting model does not assign asmaller likelihood to E. References1. J.K. Baker, Trainable grammars for speech recognition, Proceedings of the Spring Conference ofthe Acoustical Society of America (Boston, MA), pp. 547{550, 1979.2. L.E. Baum, An inequality and associated maximization technique in statistical estimation ofprobabilistic functions of a Markov process, Inequalities 3 (1972), 1{8.3. A.P. Dempster, N.M. Laird, and D.B. Rubin, Maximum likelihood from incomplete data via theEM algorithm, Journal of the Royal Statistical Society 39 (1977) B, 1{38.


