NOTES ON THE EM ALGORITHM

1. THE DEMPSTER-LAIRD-RUBIN PRESENTATION

The general situation of the EM algorithm is that we observe data y which is
incomplete, and assocated with complete data x. That is, there is a projection

T X — Y

which is many-to-one. We observe y € Y and the actual x which generated y is

hidden. The fiber over y is the set

X(y)=7""y) = {z|n(x) =y}

We follow (roughly) the notation of [3], and assume that = has a probability density
fs(x) which depends on some vector of parameters ¢ €), where € is an open subset
of RN, Typically, Q) represents various constraints on the parameters, as will become
clear the following sections. The density of y is obtained by integrating over fibers:

9uly) = [, Solw)da.

The basic idea of the EM algorithm is the following. According to the statistical
principle of maximum likelihood, one would like to choose the parameters so as to
maximize the log-likelihood log f4(x). But this doesn’t quite make sense, since x is
unobserved (hidden). Instead, one can try to maximize the conditional expectation
of log fs(x) given the observation y and an estimate of the parameters ¢.

Here’s how this idea is borne out. Define

ko(z|y) =

That is, k£ is the conditional density of = given y, assuming the parameter vector ¢.

Then

L(¢) = log gs(y) = log fo(x) —log ke(x|y).
Let E,; denote expectation with respect to the parameters ¢. Since L(¢') is a function
of y,

L(¢") = Eyllog for(x) |yl = Eglky(x]y) Y]

2

To verify this directly, note that

fX(y) log fyr(x) fo(x) da

fX(y) fo(x) da

1

_ m /X(y) log fur(x) fa()

Eyllog fy(2)|y] =

and

N IC))
9o (y)

Eullog (e || = —— [o) de

ge(y) Jx

It follows that
Eyllog fo() |yl — Eglkg(x|y)|y] =

s g)) = —— [o)
= o e 98 P @ o) = s [g S () d
= log g4(y)

= L(¢').
As a final piece of notation, we'll write L(¢) = Q(& | &) — H(& | 6), where
Q(¢'[¢) = Eyllog for(x)|y].
Lemma 1. For any pair of parameters ¢, ¢' € Q, we have that

H(¢'|¢) < H(¢| o).
Proof. Applying the definitions,

H(¢' | ¢) — ¢|¢
1 for(x) o o 16@) oy
B (y (X y)f(b @) d /Xw)lggqb(y)f(b()d)
_ 1 l’) . oe W) o
_gqs(y)(w s() (=) d +/X<y>1gg¢'(y)f¢()d)

9¢'(y)) +10g((9¢ y))

9o(y) oY)

Q

with the inequality coming from an application of Jensen’s inequality for conditional
expectations. []

NOTES ON THE EM ALGORITHM 3

Since

L(¢') = L(¢) = [Q(¢' [¢) — Qo] 0)] + [H(d| d) — H(d |)]
it follows from the lemma that so long as Q(¢' | ¢) — Q(P|¢) > 0, the likelihood of

the observed data increases. This motivates the basic EM algorithm:

Initialize: ¢y € Q
[terate: E-step: Compute Q(¢ | én)

M-step: Set ¢y41 = argmaxgeq Q(¢ | ém)

This is a greedy version of the algorithm, maximizing the gain in likelihood from
() at each step. But it may be computationally expensive to compute the maximum
in the M-step. It thus makes sense to consider a modified EM-algorithm:

Initialize: ¢ € Q)
[terate: E-step: Compute Q(¢ | én)
M-step: Set ¢pp1 = M(dpm), where M : Q — Q is any map
satisfying Q(M(¢)[¢) = Q(¢]).

We find it convenient to modify the choice of @ in [3] in the following way. Define
Q by

Q&' ¢) = E, [bg ff (()) y] .
Then another application of Jensen’s inequality shows that
Q161 = £ [l 228,
<t [551
g 9o (y)
94(y)
L(sb) L(3).

Thus, since @(qb | #) = 0, the function Q can just as well be used in the EM algorithm.

Theorem 1. Let ¢, ¢1, ¢2,... be a sequence for an EM-algorithm such that
1) |L(¢,)| < C < o0 for all n.
2) Q(bns1 1 ¢n) = Q(dn | 6n) = Ml dns1 — dall? for some A > 0.

Then ¢, — ¢. in L2, for some ¢, € Q).

4

Proof. The proof is a simple dominated convergence argument. Since L(¢,) is bounded
and increasing, it converges to some number L, < oo. The problem is to show that
¢, converges to a vector ¢.. It will follow that L(¢.) = L..

Since the sequence L(¢,) is Cauchy, for any € > 0 there is an N such that
L(an-l-r’) - L(QbN) = Z L(an-l-j) - L(Qbm_j—l) <é€
7=1
forall » =1,2,... and n > N. This implies that

0< Z Q(an-l-j |¢n+j—1) - Q(an-l-j—l |¢n+j—1) <ée

i=1

and by assumption 2), that

0<A (Z [nti — ¢n+y‘—1H2) <é€.
7=1

Thus, ¢,, converges. [

Condition 2) in the theorem is a rather stringent assumption. It is not satisfied for
many practical M’s and @)’s. It is thus possible for the sequence ¢, to wander around
Q without ever converging, while the likelihood steadily increases, and eventually
converges.

2. THE EM ALGORITHM AND LANGUAGE MODELING

The typical situation for the EM algorithm in language modeling is that we have
a set of histories h and futures f and want to maximize the likelihood of predicting
f from h, given a collection of training events € = {(h, f)}:

L(¢) =) _c(h. [) log Ps(f |)
£
where ¢(h, f) is the multiplicity (“count”) of the event (h, f) in €. For example, f
might be a word predicted from a history of the previous two words, or it might be
an English sentence to be predicted from a French sentence. We add “structure” or

“linguistics” to this setup by modeling some hidden quantity that we think is going
to help predict f better.

2.1. Marginal Models. The incomplete data for most language models takes the
form of a Cartesian product, and the fibers are the associated level sets. Thus, the
models typically take a form where the “future” f and the hidden data = are specified

NOTES ON THE EM ALGORITHM 5

by a joint distribution, and the observed data is given by the associated marginal
distribution:

L(¢) = %:C(h,f) logd Po(fsx|h).

For example, the hidden data x could be a sequence of parts-of-speech, an alignment
between French and English sentences, or a parse tree for a sentence. Typically the
sum Y. is exponential in the size of & and f. Part of the algorithmic art of language
modeling is to make this sum manageable.

The difference in the conditional expectations of the complete data log-likelihoods
given the observed data is written here as

Py(f,x|h)

Q' 19) =D elh. /)32 Pl [h f)log 3 s

For many language models, including probabilistic context-free grammar, this func-
tion is convex in ¢', and the maximum can be calculated in closed form. This class
of models is described next.

2.2. Algebraic Models. Most of the models that arise in language modeling are
associated with algebraic expressions; that is, the probabilities are expressed as (typ-
ically homogeneous) polynomials in the parameters. Suppose, for example, that

Py(fsa|h) = T dlw) s

wefl

The ¢(w)’s are the parameters, and they are subject to certain linear constraints,
such as

pw)>0 and D Pw) =

wefl

For such models, the M-step in the EM-algorithm can be carried out exactly, and the
parameter updates take on a particularly simple form, which we now derive.

The EM algorithm tells us to compute the function @(¢|¢n) and to solve the
equation

9Q(| én)
d¢

where A is a Lagrange multiplier, corresponding to the constraint }°, ¢(w) = 1. Using

—A=0

6

the algebraic form of the model we can calculate
A Ly ([, x| h)
= (h Py(x|h —_—
QU 16) = S elh)T Pulr |) 1o8 37
—z (e f) Y Pala [)Y e) log)
_ZChvf ZP¢$|h,f)10gP¢(f,x|h)
£ x

In particular, @(qb’ | #) is a concave function of the parameters ¢'(w). Note that

Gw) OPy(a, []h)
Po(w, f1h) 0d(w)

Taking partial derivatives of @ and including the Lagrange multiplier, we are led to

c(wz, fh) =

the condition that must be obtained at the unique maximum in the M-step:

c(h, f Py(x|h, fl—————— = \.
Zg: ()Zx: <b(|) ¢/(w)
This, in turn, leads to the EM update formula

Pry1(w —AIZ hfZP¢n$|h Pe(wsz b, f).
Thus, the reestimated parameters are normalized expected counts. The expectation

is interpreted as the expected number of times, under the model ¢,, that w is used
in generating f from h. We note that a similar analysis would hold for any model
which is a rational function of its parameters.

Computing the expected counts usually involves some kind of “forward-backward”
calculation or approximation to make the sum 3", manageable. For general finite-
state machines this calculation can be neatly characterized [2]. The calculation was
demonstrated in [1] for the case where the hidden data is a parse tree derived from a
context-free grammar. In the next section we will derive this calculation within the
framework that we have set up.

3. THE INSIDE-OUTSIDE ALGORITHM

Let GG be a context-free grammar consisting of a collection of rules {A — a},
where each « is a string of terminals and nonterminals. For each string w € L((),
the language of G, there is a corresponding set of parse trees t, each of which has
w = wywy --- wy as leaves. If we observe only w, then for an ambiguous grammar,
the actual tree used to derive w is hidden.

NOTES ON THE EM ALGORITHM 7

Suppose we have a joint distribution Py(w,t), giving the probability of deriving w
using the tree ¢. Then the marginal distribution

Py(w) = Zt:qu(wvt)

gives a language model. In the notation of Section 2, Py(w,t) is the complete data
density fs(x) and Py(w) is the incomplete data density g4(y). The fiber X'(w) over
the sentence w is a finite collection of parse trees. The joint distribution takes the
form

P, 1) = [T oyt
— H ¢(A—>Q)C(A_>a;t’w)

A—a

where ¢(A — «; t,w) is the number of times that the rule A — « appears in the
parse tree ¢ for the sentence w. The parameters ¢(A — «) are normalized so that

d (A= a)=1.

Thus, there will be a Lagrange multiplier for each nonterminal A.

Such a model may be deficient, and not assign probability one to finite strings.
A sufficient condition that this does not happen can be expressed by indexing the
nonterminals as Ay, ..., Ay, and letting M be the N x N matrix given by

Mi; =Y ¢(Ai = a)nj(a)

where n;(«) is the number of nonterminal symbols A; appearing in «. If M has
largest eigenvalue p < 1, then the language model P,(w) assigns probability one to
finite sentences in the language of the grammar.

The model is parameterized by making the Markov assumption that the probability
with which a nonterminal is rewritten as a string o depends only on the nonterminal,
and not on any surrounding context. This assumption leads to an efficient training
algorithm.

There are two distinct problems associated with this setup. The first, called the
language modeling problem, is to find the set of parameters which maximize the
probability [T,cc Ps(w) of some training corpus C. The second, called the parsing
problem, is to maximize the “correctness” of the most probable parse

t(w) = argmax, Py(t|w).

The EM algorithm is directly involved with only the language modeling problem.
Experience has shown it to be difficult to couple the two problems.

To apply the EM algorithm, we consider the auxiliary function

QUef 1) = X elw) 3 Palt) log %

Taking the derivative 9/0¢'(A — «) gives

0Q(¢'|¢) Py(t|w)e(A = o5 t,w)
(A > a) 2 clw) 2 (A= a)

w t

We thus need to compute the expected counts

ZP¢t|w (A= a; t,w).

The sum 3, is potentially exponential. But this is the same as evaluating

qb(A—}Oz) 8P¢
Pow) 8¢(A—>oz Zt:P¢t|w (A — a; t,w),

and it turns out that there is an efficient way of computing the partial derivative on

the lefthand side.

We’ll now assume, but only for convenience, that the grammar is in Chomsky
normal form. Thus, each rule is either of the form A — BC or A — w. The position
of a rule A — BC within a tree ¢t can be specified by a triple (7, j, k), 1+ < j < k.

The partial derivative of the probability Ps(S = w) = P,(w) with respect to the
parameter ¢(A — BC') only involves those parse trees which use the rule A — BC.
Consider the event “S = w using A — BC in position (i,7,k)”. Because of the
Markov property, the probability of this event can be written as a product of four
terms as follows:

Py(S = w; using A — BC in position (7,7, k)) =
P(b(S = Wy Wi Awk_H "'U)N) X
X qb(A—} BC)P(B:>wi---wj)P(c:>wj+1---wk).

From this it is not difficult to see that

OPy(S = w)
do(A = BC)
ZP¢(S:>wl---wi_lAwkH---wN)P(B:>wi---wj)P(C:>wj+1---wk).

0,5,k

NOTES ON THE EM ALGORITHM 9

Thus, the expected number of times that the rule A — BC is used in generating the
sentence w using the model ¢ is given by

Eyle(A — BC;w)] ZP¢t|w Je(A — BC; t,w)

= ¢<A — BC Zﬁzk Jevij(B)ajt1k(C)
1,7,k
where
a;j(A) = Py(A= w; - wj)
and
Bij(A) = Py(S = wy -+ wimy Awjyr - wy) -
Similarly,

Ey[A = a;w] =

There is an efficient method for computing the a’s and 3’s using the CKY chart-
parsing algorithm. The method for doing this is implicit in the following formulas:

aij(A) =D D d(A = BC)au(B) apw;(C)

B,Ci<k<j

Oé“(A) = qb(A — wi)
Bii(A) =22 d(B = CA)akio(C) Biy(B) +

B,C k<

+ Z Z gb(B — AC)Oz]‘_Hk(C) ﬁzk(B)

B,C k>j
Bin(A) = ds(A).
The reestimated parameters are then the normalized counts:
(A — a) = N count(A — a)
where

count(A — a) = Y Eyle(A — a);w].
weE

The sum is over all sentences in the training data €. The Lagrange multiplier A4 is

given by
Ag = Zcount(A — a).

10

The results of Sections 2 and 3 prove that the resulting model does not assign a
smaller likelihood to £.

REFERENCES

1. J.K. Baker, Trainable grammars for speech recognition, Proceedings of the Spring Conference of
the Acoustical Society of America (Boston, MA), pp. 547-550, 1979.

2. L.E. Baum, An inequality and associated maximization technique in statistical estimation of
probabilistic functions of a Markov process, Inequalities 3 (1972), 1-8.

3. A.P. Dempster, N.M. Laird, and D.B. Rubin, Mazimum likelihood from incomplete data via the
EM algorithm, Journal of the Royal Statistical Society 39 (1977) B, 1-38.

