
Class-based n-gram models of natural languagePeter F. Brown, Vincent J. Della Pietra,Peter V. deSouza, Jenifer C. Lai,and Robert L. MercerWe address the problem of predicting a word from previous words in a sample of text.In particular, we discuss n-gram models based on classes of words. We also discussseveral statistical algorithms for assigning words to classes based on the frequencyof their co�occurrence with other words. We �nd that we are able to extract classesthat have the 
avor of either syntactically based groupings or semantically basedgroupings, depending on the nature of the underlying statistics.5.1 IntroductionIn a number of natural language processing tasks, we face the problem of recovering a stringof English words after it has been garbled by passage through a noisy channel. To tackle thisproblem successfully, we must be able to estimate the probability with which any particularstring of English words will be presented as input to the noisy channel. In this paper, we discussa method for making such estimates. We also discuss the related topic of assigning words toclasses according to statistical behavior in a large body of text.In the next section, we review the concept of a language model and give a de�nition of n-grammodels. In Section 3, we look at the subset of n-gram models in which the words are dividedinto classes. We show that for n = 2 the maximum likelihood assignment of words to classesis equivalent to the assignment for which the average mutual information of adjacent classes isgreatest. Finding an optimal assignment of words to classes is computationally hard, but wedescribe two algorithms for �nding a suboptimal assignment. In Section 4, we apply mutualinformation to two other forms of word clustering. First, we use it to �nd pairs of words thatfunction together as a single lexical entity. Then, by examining the probability that two wordswill appear within a reasonable distance of one another, we use it to �nd classes (see Table 6)that have some loose semantic coherence.In describing our work, we draw freely on terminology and notation from the mathematicaltheory of communication. The reader who is unfamiliar with this �eld or who has allowed hisThis chapter �rst appeared in Proceedings of the IBM Natural Language ITL, Paris, France; March, 1990.pp.283{298 59



CLASS-BASED MODELS OF LANGUAGESourceLanguageModel -W ChannelModel -YPr (W ) Pr (Y j W ) Pr (W;Y )� =Figure 5.1: Source-channel setupfacility with some of its concepts to fall into disrepair may pro�t from a brief perusal of references[48] and [53]. In the �rst of these, he should focus his attention on conditional probabilities andon Markov chains; in the second, on entropy and mutual information.5.2 Language ModelsFigure 5.1 shows a model that has long been used in automatic speech recognition [8] and hasrecently been proposed for machine translation [27] and for automatic spelling correction [75].In automatic speech recognition, y is an acoustic signal; in machine translation, y is a sequenceof words in another language; and in spelling correction, y is a sequence of characters producedby a possibly imperfect typist. In all three applications, given a signal y, we seek to determinethe string of English words, w, which gave rise to it. In general, many di�erent word stringscan give rise to the same signal and so we cannot hope to recover w successfully in all cases.We can, however, minimize our probability of error by choosing as our estimate of w that stringŵ for which the a posteriori probability of ŵ given y is greatest. For a �xed choice of y, thisprobability is proportional to the joint probability of ŵ and y which, as shown in Figure 5.1, isthe product of two terms: the a priori probability of ŵ and the probability that y will appear asthe output of the channel when ŵ is placed at the input. The a priori probability of ŵ, Pr (ŵ), isthe probability that the string ŵ will arise in English. We do not attempt a formal de�nition ofEnglish or of the concept of arising in English. Rather, we blithely assume that the productionof English text can be characterized by a set of conditional probabilities, Pr �wk j wk�11 �, interms of which the probability of a string of words, wk1 , can be expressed as a product:Pr �wk1� = Pr (w1)Pr (w2 j w1) � � �Pr �wk j wk�11 � : (5.1)Here, wk�11 represents the string w1w2 � � �wk�1: In the conditional probability Pr�wk j wk�11 �,we call wk�11 the history and wk the prediction. We refer to a computational mechanism forobtaining these conditional probabilities as a language model.Often we must choose which of two di�erent language models is the better one. The perfor-mance of a language model in a complete system depends on a delicate interplay between thelanguage model and other components of the system. One language model may surpass anotheras part of a speech recognition system but perform less well in a translation system. However,because it is expensive to evaluate a language model in the context of a complete system, weare led to seek an intrinsic measure of the quality of a language model. We might, for example,use each language model to compute the joint probability of some collection of strings and judgeas better the language model which yields the greater probability. The perplexity of a language



5.2. LANGUAGE MODELSmodel with respect to a sample of text, S, is the reciprocal of the geometric average of theprobabilities of the predictions in S. If S has j S j words, then the perplexity is Pr (S)� 1jSj :Thus, the language model with the smaller perplexity will be the one which assigns the largerprobability to S. Because the perplexity depends not only on the language model but also onthe text with respect to which it is measured, it is important that the text be representative ofthat for which the language model is intended. Because perplexity is subject to sampling error,making �ne distinctions between language models may require that the perplexity be measuredwith respect to a large sample.In an n-gram language model, we treat two histories as equivalent if they end in the samen � 1 words, i.e., we assume that for k � n, Pr �wk j wk�11 � is equal to Pr�wk j wk�1k�n+1� : Fora vocabulary of size V , a 1-gram model has V � 1 independent parameters, one for each wordminus one for the constraint that all of the probabilities add up to 1. A 2-gram model hasV (V � 1) independent parameters of the form Pr (w2 j w1) and V � 1 of the form Pr (w) for atotal of V 2 � 1 independent parameters. In general, an n-gram model has V n � 1 independentparameters: V n�1(V �1) of the form Pr �wn j wn�11 �, which we call the order-n parameters, plusthe V n�1 � 1 parameters of an (n� 1)-gram model.We estimate the parameters of an n-gram model by examining a sample of text, tT1 , whichwe call the training text, in a process called training. If C(w) is the number of times that thestring w occurs in the string tT1 , then for a 1-gram language model the maximum likelihoodestimate for the parameter Pr (w) is C(w)=T . To estimate the parameters of an n-gram model,we estimate the parameters of the (n � 1)-gram model which it contains and then choose theorder-n parameters so as to maximize Pr �tTn j tn�11 �. Thus, the order-n parameters arePr �wn j wn�11 � = C(wn�11 wn)Pw C(wn�11 w) : (5.2)We call this method of parameter estimation sequential maximum likelihood estimation.We can think of the order-n parameters of an n-grammodel as constituting the transition ma-trix of a Markov model the states of which are sequences of n�1 words. Thus, the probability ofa transition between the state w1w2 � � �wn�1 and the state w2w3 � � �wn is Pr (wn j w1w2 � � �wn�1) :The steady-state distribution for this transition matrix assigns a probability to each (n�1)-gramwhich we denote S(wn�11 ):We say that an n-gram language model is consistent if, for each stringwn�11 , the probability that the model assigns to wn�11 is S(wn�11 ): Sequential maximum likelihoodestimation does not, in general, lead to a consistent model, although for large values of T , themodel will be very nearly consistent. Maximum likelihood estimation of the parameters of aconsistent n-gram language model is an interesting topic, but is beyond the scope of this paper.The vocabulary of English is very large and so, even for small values of n, the number ofparameters in an n-gram model is enormous. The IBM Tangora speech recognition systemhas a vocabulary of about 20,000 words and employs a 3-gram language model with over eighttrillion parameters [6]. We can illustrate the problems attendant to parameter estimation fora 3-gram language model with the data in Table 1. Here, we show the number of 1-, 2-, and3-grams appearing with various frequencies in a sample of 365,893,263 words of English textfrom a variety of sources. The vocabulary consists of the 260,740 di�erent words plus a specialunknown word into which all other words are mapped. Of the 6:799� 1010 2-grams that mighthave occurred in the data, only 14,494,217 actually did occur and of these, 8,045,024 occurredonly once each. Similarly, of the 1:773�1016 3-grams that might have occurred, only 75,349,888actually did occur and of these, 53,737,350 occurred only once each. From these data andTuring's formula [57], we can expect that maximum likelihood estimates will be zero for 14.7percent of the 3-grams and for 2.2 percent of the 2-grams in a new sample of English text. We



CLASS-BASED MODELS OF LANGUAGECount 1-grams 2-grams 3-grams1 36,789 8,045,024 53,737,3502 20,269 2,065,469 9,229,9583 13,123 970,434 3,653,791> 3 135,335 3,413,290 8,728,789> 0 205,516 14,494,217 75,349,888� 0 260,741 6:799� 1010 1:773� 1016Table 5.1: Number of n-grams with various frequencies in 365,893,263wordsof running text.can be con�dent that any 3-gram that does not appear in our sample is, in fact, rare, but thereare so many of them, that their aggregate probability is substantial.As n increases, the accuracy of an n-grammodel increases, but the reliability of our parameterestimates, drawn as they must be from a limited training text, decreases. Jelinek and Mercer[63] describe a technique called interpolated estimation that combines the estimates of severallanguage models so as to use the estimates of the more accurate models where they are reliableand, where they are unreliable, to fall back on the more reliable estimates of less accurate models.If Pr(j)(wi j wi�11 ) is the conditional probability as determined by the jth language model, thenthe interpolated estimate, P̂ �wi j wi�11 �, is given byP̂ �wi j wi�11 � =Xj �j(wi�11 )Pr(j)(wi j wi�11 ): (5.3)Given values for Pr(j)(�), the �j(wi�11 ) are chosen, with the help of the EM algorithm, so as tomaximize the probability of some additional sample of text called the held-out data [15, 46, 63].When we use interpolated estimation to combine the estimates from 1-, 2-, and 3-gram models,we choose the �'s to depend on the history, wi�11 , only through the count of the 2-gram, wi�2wi�1.We expect that where the count of the 2-gram is high, the 3-gram estimates will be reliable, and,where the count is low, the estimates will be unreliable. We have constructed an interpolated3-gram model in which we have divided the �'s into 1782 di�erent sets according to the 2-gramcounts. We estimated these �'s from a held-out sample of 4,630,934 million words. We measurethe performance of our model on the Brown corpus which contains a variety of English text andis not included in either our training or held-out data [67]. The Brown corpus contains 1,014,312words and has a perplexity of 244 with respect to our interpolated model.5.3 Word classesClearly, some words are similar to other words in their meaning and syntactic function. Wewould not be surprised to learn that the probability distribution of words in the vicinity ofThursday is very much like that for words in the vicinity of Friday. Of course, they will not beidentical: we rarely hear someone say Thank God it's Thursday! or worry about Thursday the13th: If we can successfully assign words to classes, it may be possible to make more reasonablepredictions for histories that we have not previously seen by assuming that they are similar toother histories that we have seen.Suppose that we partition a vocabulary of V words into C classes using a function, �,which maps a word, wi, into its class, ci. We say that a language model is an n-gram classmodel if it is an n-gram language model and if, in addition, for 1 � k � n, Pr�wk j wk�11 � =



5.3. WORD CLASSESPr (wk j ck)Pr�ck j ck�11 �. An n-gram class model has Cn � 1+V �C independent parameters:V � C of the form Pr (wi j ci), plus the Cn � 1 independent parameters of an n-gram languagemodel for a vocabulary of size C. Thus, except in the trivial cases in which C = V or n = 1, ann-gram class language model always has fewer independent parameters than a general n-gramlanguage model.Given training text, tT1 , the maximum likelihood estimates of the parameters of a 1-gramclass model are Pr (w j c) = C(w)C(c) ; (5.4)and Pr (c) = C(c)T ; (5.5)where by C(c) we mean the number of words in tT1 for which the class is c. From these equations,we see that, since c = �(w), Pr (w) = Pr (w j c)Pr (c) = C(w)=T . For a 1-gram class model, thechoice of the mapping � has no e�ect. For a 2-gram class model, the sequential maximum like-lihood estimates of the order-2 parameters maximize Pr (tT2 j t1) or, equivalently, log Pr (tT2 j t1)and are given by Pr (c2 j c1) = C(c1c2)PcC(c1c) : (5.6)By de�nition, Pr (c1c2) = Pr (c1)Pr (c2 j c1), and so, for sequential maximum likelihood estima-tion, we have Pr (c1c2) = C(c1c2)T � C(c1)Pc C(c1c) : (5.7)Since C(c1) and PcC(c1c) are the numbers of words for which the class is c1 in the strings tT1and tT�11 respectively, the �nal term in this equation tends to 1 as T tends to in�nity. Thus,Pr (c1c2) tends to the relative frequency of c1c2 as consecutive classes in the training text.Let L(�) = (T � 1)�1 log Pr (tT2 j t1). ThenL(�) = Xw1w2 C(w1w2)T � 1 log Pr (c2 j c1)Pr (w2 j c2)= Xc1c2 C(c1c2)T � 1 log Pr (c2 j c1)Pr (c2) +Xw2 Pw C(ww2)T � 1 log Pr (w2 j c2)Pr (c2)| {z }Pr(w2) : (5.8)Therefore, since Pw C(ww2)=(T � 1) tends to the relative frequency of w2 in the training text,and hence to Pr (w2), we must have, in the limit,L(�) = Xw Pr (w) log Pr (w) +Xc1c2 Pr (c1c2) log Pr (c2 j c1)Pr (c2)= �H(w) + I(c1; c2); (5.9)where H(w) is the entropy of the 1-gram word distribution and I(c1; c2) is the average mutualinformation of adjacent classes. Because L(�) depends on � only through this average mu-tual information, the partition which maximizes L(�) is, in the limit, also the partition whichmaximizes the average mutual information of adjacent classes.We know of no practical method for �nding one of the partitions that maximize the averagemutual information. Indeed, given such a partition, we know of no practical method for demon-strating that it does, in fact, maximize the average mutual information. We have, however,obtained interesting results using a greedy algorithm. Initially, we assign each word to a distinct



CLASS-BASED MODELS OF LANGUAGEclass and compute the average mutual information between adjacent classes. We then mergethat pair of classes for which the loss in average mutual information is least. After V �C of thesemerges, C classes remain. Often, we �nd that for classes obtained in this way the average mutualinformation can be made larger by moving some words from one class to another. Therefore,after having derived a set of classes from successive merges, we cycle through the vocabularymoving each word to the class for which the resulting partition has the greatest average mutualinformation. Eventually no potential reassignment of a word leads to a partition with greateraverage mutual information. At this point, we stop. It may be possible to �nd a partition withhigher average mutual information by simultaneously reassigning two or more words, but weregard such a search as too costly to be feasible.To make even this suboptimal algorithm practical one must exercise a certain care in im-plementation. There are approximately (V � i)2=2 merges which we must investigate to carryout the ith step. The average mutual information remaining after any one of them is the sumof (V � i)2 terms each of which involves a logarithm. Since altogether we must make V � Cmerges, this straight-forward approach to the computation is of order V 5. We cannot seriouslycontemplate such a calculation except for very small values of V . A more frugal organizationof the computation must take advantage of the redundancy in this straight-forward calculation.As we shall see, we can make the computation of the average mutual information remainingafter a merge in constant time, independent of V .Suppose that we have already made V �k merges, resulting in classes Ck(1); Ck(2); � � � ; Ck(k)and that we now wish to investigate the merge of Ck(i) with Ck(j) for 1 � i < j � k. Letpk(l;m) = Pr (Ck(l); Ck(m)), i.e., the probability that a word in class Ck(m) follows a word inclass Ck(l). Let plk(l) =Xm pk(l;m); (5.10)let prk(m) =Xl pk(l;m); (5.11)and let qk(l;m) = pk(l;m) log pk(l;m)plk(l)prk(m) : (5.12)The average mutual information remaining after V � k merges isIk =Xl;m qk(l;m): (5.13)We use the notation i+ j to represent the cluster obtained by merging Ck(i) and Ck(j). Thus,for example, pk(i+ j;m) = pk(i;m) + pk(j;m) andqk(i+ j;m) = pk(i+ j;m) log pk(i+ j;m)plk(i+ j)prk(m) : (5.14)The average mutual information remaining after we merge Ck(i) and Ck(j) is thenIk(i; j) = Ik � sk(i)� sk(j) + qk(i; j) + qk(j; i) + qk(i+ j; i+ j)+ Xl6=i;j qk(l; i+ j) + Xm6=i;j qk(i+ j;m); (5.15)where sk(i) =Xl qk(l; i) +Xm qk(i;m)� qk(i; i): (5.16)



5.3. WORD CLASSESIf we know Ik, sk(i), and sk(j), then the majority of the time involved in computing Ik(i; j) isdevoted to computing the sums on the second line of equation 5.15. Each of these sums hasapproximately V � k terms and so we have reduced the problem of evaluating Ik(i; j) from oneof order V 2 to one of order V . We can improve this further by keeping track of those pairsl;m for which pk(l;m) is di�erent from zero. We recall from Table 1, for example, that of the6:799�1010 2-grams that might have occurred in the training data, only 14,494,217 actually didoccur. Thus, in this case, the sums required in equation 5.15 have, on average, only about 56non-zero terms instead of 260,741 as we might expect from the size of the vocabulary.By examining all pairs, we can �nd that pair, i < j, for which the loss in average mutualinformation, Lk(i; j) � Ik � Ik(i; j), is least. We complete the step by merging Ck(i) and Ck(j)to form a new cluster Ck�1(i). If j 6= k, we rename Ck(k) as Ck�1(j) and for l 6= i; j, we setCk�1(l) to Ck(l). Obviously, Ik�1 = Ik(i; j). The values of pk�1, plk�1, prk�1, and qk�1 can beobtained easily from pk, plk, prk, and qk. If l and m both denote indices neither of which isequal to either i or j, then it is easy to establish thatsk�1(l) = sk(l)� qk(l; i)� qk(i; l)� qk(l; j)� qk(j; l)+ qk�1(l; i) + qk�1(i; l)sk�1(j) = sk(k)� qk(k; i)� qk(i; k)� qk(k; j)� qk(j; k) + qk�1(j; i) + qk�1(i; j)Lk�1(l;m) = Lk(l;m)� qk(l+m; i)� qk(i; l+m)� qk(l+m; j)� qk(j; l+m)+qk�1(l+m; i) + qk�1(i; l+m)Lk�1(l; j) = Lk(l; k)� qk(l+ k; i)� qk(i; l+ k)� qk(l+ k; j)� qk(j; l+ k)+qk�1(l+ j; i) + qk�1(i; l+ j)Lk�1(j; l) = Lk�1(l; j) (5.17)Finally, we must evaluate sk�1(i) and Lk�1(l; i) from equations 5.15 and 7.43. Thus, the entireupdate process requires something on the order of V 2 computations in the course of which wewill determine the next pair of clusters to merge. The algorithm, then, is of order V 3.Although we have described this algorithm as one for �nding clusters, we actually determinemuch more. If we continue the algorithm for V � 1 merges, then we will have a single clusterwhich, of course, will be the entire vocabulary. The order in which clusters are merged, however,determines a binary tree the root of which corresponds to this single cluster and the leaves ofwhich correspond to the words in the vocabulary. Intermediate nodes of the tree correspond togroupings of words intermediate between single words and the entire vocabulary. Words thatare statistically similar with respect to their immediate neighbors in running text will be closetogether in the tree. We have applied this tree-building algorithm to vocabularies of up to 5000words. Figure 5.2 shows some of the substructures in a tree constructed in this manner for the1000 most frequent words in a collection of o�ce correspondence.Beyond 5000 words this algorithm also fails of practicality. To obtain clusters for largervocabularies, we proceed as follows. We arrange the words in the vocabulary in order of frequencywith the most frequent words �rst and assign each of the �rst C words to its own, distinct class.At the �rst step of the algorithm, we assign the (C + 1)st most probable word to a new classand merge that pair among the resulting C + 1 classes for which the loss in average mutualinformation is least. At the kth step of the algorithm, we assign the (C + k)th most probableword to a new class. This restores the number of classes to C +1, and we again merge that pairfor which the loss in average mutual information is least. After V � C steps, each of the wordsin the vocabulary will have been assigned to one of C classes.We have used this algorithm to divide the 260,741-word vocabulary of Table 1 into 1000classes. Table 5.2 contains examples of classes that we �nd particularly interesting. Table 5.3contains examples that were selected at random. Each of the lines in the tables contains membersof a di�erent class. The average class has 260 words and so to make the table manageable, we



CLASS-BASED MODELS OF LANGUAGE

reprepresentativerepresentativesrepshalfquartermonthweekyearday studentsemployeesindividualscustomerspeopleaccountsdraftstatementchargequestioncasememorequestletterplan discussionconversationopinionunderstandinganalysisassessmentevaluation
Figure 5.2: Sample subtrees from a 1000-word mutual information tree.include only words that occur at least ten times and we include no more than the ten mostfrequent words of any class (the other two months would appear with the class of months ifwe extended this limit to twelve). The degree to which the classes capture both syntactic andsemantic aspects of English is quite surprising given that they were constructed from nothingmore than counts of bigrams. The class fthatthatheatg is interesting because although tha andtheat are English words, the computer has discovered that in our data each of them is most oftena mistyped that.Table 4 shows the number of class 1-, 2-, and 3-grams occurring in the text with variousfrequencies. We can expect from these data that maximum likelihood estimates will assign aprobability of zero to about 3.8 percent of the class 3-grams and to about .02 percent of theclass 2-grams in a new sample of English text. This is a substantial improvement over thecorresponding numbers for a 3-gram language model, which are 14.7 percent for word 3-gramsand 2.2 percent for word 2-grams, but we have achieved this at the expense of precision in themodel. With a class model, we distinguish between two di�erent words of the same class onlyaccording to their relative frequencies in the text as a whole. Looking at the classes in tables 2and 3, we feel that this is reasonable for pairs like John and George or liberal and conservativebut perhaps less so for pairs like little and prima or Minister and mover.We used these classes to construct an interpolated 3-gram class model using the same trainingtext and held-out data as we used for the word-based language model we discussed above. Wemeasured the perplexity of the Brown corpus with respect to this model and found it to be 271.We then interpolated the class-based estimators with the word-based estimators and found theperplexity of the test data to be 236 which is a small improvement over the perplexity of 244we obtained with the word-based model.



5.3. WORD CLASSES
Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays SaturdaysJune March July April January December October November September Augustpeople guys folks fellows CEOs chaps doubters commies unfortunates blokesdown backwards ashore sideways southward northward overboard aloft downwards adriftwater gas coal liquid acid sand carbon steam shale irongreat big vast sudden mere sheer gigantic lifelong scant colossalman woman boy girl lawyer doctor guy farmer teacher citizenAmerican Indian European Japanese German African Catholic Israeli Italian Arabpressure temperature permeability density porosity stress velocity viscosity gravity tensionmother wife father son husband brother daughter sister boss unclemachine device controller processor CPU printer spindle subsystem compiler plotterJohn George James Bob Robert Paul William Jim David Mikeanyone someone anybody somebodyfeet miles pounds degrees inches barrels tons acres meters bytesdirector chief professor commissioner commander treasurer founder superintendent dean custo-dianliberal conservative parliamentary royal progressive Tory provisional separatist federalist PQhad hadn't hath would've could've should've must've might'veasking telling wondering instructing informing kidding reminding bothering thanking deposingthat tha theathead body hands eyes voice arm seat eye hair mouthTable 5.2: Classes from a 260,741-word vocabulary
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little prima moment's tri
e tad Litle minute's tinker's hornet's teammate's6ask remind instruct urge interrupt invite congratulate commend warn applaudobject apologize apologise avow whishcost expense risk pro�tability deferral earmarks capstone cardinality mintage resellerB dept. AA Whitey CL pi Namerow PA Mgr. LaRose# Rel rel. #S ShreeS Gens nai Matsuzawa ow Kageyama Nishida Sumit Zollner Mallikresearch training education science advertising arts medicine machinery Art AIDSrise focus depend rely concentrate dwell capitalize embark intrude typewritingMinister mover Sydneys Minster Miniter3running moving playing setting holding carrying passing cutting driving �ghtingcourt judge jury slam Edelstein magistrate marshal Abella Scalia larcenyannual regular monthly daily weekly quarterly periodic Good yearly convertibleaware unaware unsure cognizant apprised mindful partakersforce ethic stoppage force's conditioner stoppages conditioners waybill forwarder Atonabeesystems magnetics loggers products' coupler Econ databanks Centre inscriber correctorsindustry producers makers �shery Arabia growers addiction medalist inhalation addictbrought moved opened picked caught tied gathered cleared hung liftedTable 5.3: Randomly selected word classes



5.4. STICKY PAIRS AND SEMANTIC CLASSESCount 1-grams 2-grams 3-grams1 0 81,171 13,873,1922 0 57,056 4,109,9983 0 43,752 2,012,394> 3 1000 658,564 6,917,746> 0 1000 840,543 26,913,330� 0 1000 1,000,000 1:000� 109Table 5.4: Number of class n-grams with various frequencies in 365,893,263words of running text.5.4 Sticky Pairs and Semantic ClassesIn the previous section, we discussed some methods for grouping words together according tothe statistical similarity of their surroundings. Here, we discuss two additional types of relationsbetween words that can be discovered by examining various co�occurrence statistics.The mutual information of the pair w1 and w2 as adjacent words islog Pr (w1w2)Pr (w1)Pr (w2): (5.18)If w2 follows w1 less often than we would expect on the basis of their independent frequencies,then the mutual information is negative. If w2 follows w1 more often than we would expect,then the mutual information is positive. We say that the pair w1w2 is sticky if the mutualinformation for the pair is substantially greater than zero. In Table 5, we list the 20 stickiestpairs of words found in a 59,537,595-word sample of text from the Canadian parliament. Themutual information for each pair is given in bits, which corresponds to using 2 as the base of thelogarithm in equation 5.18. Most of the pairs are proper names like Pontius Pilate or foreignphrases that have been adopted into English like mutatis mutandis and avant garde. The mutualinformation for Humpty Dumpty, 22.5 bits, means that the pair occurs roughly 6 million timesmore than one would expect from the individual frequencies of Humpty and Dumpty. Noticethat the property of being a sticky pair is not symmetric and so, while Humpty Dumpty formsa sticky pair, Dumpty Humpty does not.Instead of seeking pairs of words that occur next to one another more than we would expect,we can seek pairs of words that simply occur near one another more than we would expect.We avoid �nding sticky pairs again by not considering pairs of words that occur too close toone another. To be precise, let Prnear (w1w2) be the probability that a word chosen at randomfrom the text is w1 and that a second word, chosen at random from a window of 1001 wordscentered on w1 but excluding the words in a window of �ve centered on w1, is w2. We say thatw1 and w2 are semantically sticky if Prnear (w1w2) is much larger than Pr (w1)Pr (w2) : Unlikestickiness, semantic stickiness is symmetric so that if w1 sticks semantically to w2, then w2 stickssemantically to w1.In Table 6, we show some interesting classes that we constructed, using Prnear (w1w2), in amanner similar to that described in the preceding section. Some classes group together wordswith the same morphological stem like performance, performed, perform, performs, and per-forming. Other classes contain words that are semantically related but have di�erent stems, likeattorney, counsel, trial, court, and judge.
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Word pair Mutual InformationHumpty Dumpty 22.5Klux Klan 22.2Ku Klux 22.2Chah Nulth 22.2Lao Bao 22.2Nuu Chah 22.1Tse Tung 22.1avant garde 22.1Carena Bancorp 22.0gizzard shad 22.0Bobby Orr 22.0Warnock Hersey 22.0mutatis mutandis 21.9Taj Mahal 21.8Pontius Pilate 21.7ammonium nitrate 21.7jiggery pokery 21.6Pitney Bowes 21.6Lubor Zink 21.5anciens combattants 21.5Abu Dhabi 21.4Aldo Moro 21.4fuddle duddle 21.4helter skelter 21.4mumbo jumbo 21.4Table 5.5: Sticky word pairs



5.5. DISCUSSION we our us ourselves oursquestion questions asking answer answers answeringperformance performed perform performs performingtie jacket suitwrite writes writing written wrote penmorning noon evening night nights midnight bedattorney counsel trial court judgeproblems problem solution solve analyzed solved solvingletter addressed enclosed letters correspondencelarge size small larger smalleroperations operations operating operate operatedschool classroom teaching grade mathstreet block avenue corner blockstable tables dining chairs platepublished publication author publish writer titledwall ceiling walls enclosure roofsell buy selling buying soldTable 5.6: Semantic Clusters5.5 DiscussionWe have described several methods here that we feel clearly demonstrate the value of simple sta-tistical techniques as allies in the struggle to tease from words their linguistic secrets. However,we have not as yet demonstrated the full value of the secrets thus gleaned. At the expense of aslightly greater perplexity, the 3-gram model with word classes requires only about one third asmuch storage as the 3-gram language model in which each word is treated as a unique individual(see Tables 1 and 4). Even when we combine the two models, we are not able to achieve muchimprovement in the perplexity. Nonetheless, we are con�dent that we will eventually be able tomake signi�cant improvements to 3-gram language models with the help of classes of the kindthat we have described here.


