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Computational Linguistics Volume 22, Number 1annotated text automatically and incorporate these rules into statistical models of gram-mar. In speech recognition, (Lucassen and Mercer 1984) have introduced a technique forautomatically discovering relevant features for the translation of word spelling to wordpronunciation.These e�orts, while varied in speci�cs, all confront two essential tasks of statisticalmodeling. The �rst task is to determine a set of statistics which capture the behavior ofa random process. Given a set of statistics, the second task is to corral these facts intoan accurate model of the process|a model capable of predicting the future output of theprocess. The �rst task is one of feature selection; the second is one of model selection.In the following pages we present a uni�ed approach to these two tasks based on themaximum entropy philosophy.Our discussion will proceed as follows. In Section 2 we give an overview of the max-imum entropy philosophy and work through a motivating example. In Section 3 wedescribe the mathematical structure of maximum entropy models and give an e�cientalgorithm for estimating the parameters of such models. In Section 4 we discuss featureselection, and present an automatic method for discovering facts about a process from asample of output from the process. We then present a series of re�nements to the methodto make it practical to implement. Finally, in Section 5 we describe the application ofmaximumentropy ideas to several tasks in stochastic language processing: bilingual sensedisambiguation, word reordering, and sentence segmentation.2. A Maximum Entropy OverviewWe introduce the concept of maximum entropy through a simple example. Suppose wewish to model an expert translator's decisions concerning the proper French rendering ofthe English word in. Our model p of the expert's decisions assigns to each French wordor phrase f an estimate, p(f), of the probability that the expert would choose f as atranslation of in. To guide us in developing p, we collect a large sample of instances ofthe expert's decisions. Our goal is to extract a set of facts about the decision-makingprocess from the sample (the �rst task of modeling) that will aid us in constructing amodel of this process (the second task).One obvious clue we might glean from the sample is the list of allowed translations.For example, we might discover that the expert translator always chooses among thefollowing �ve French phrases: fdans, en, �a, au cours de, pendantg. With this informationin hand, we can impose our �rst constraint on our model p:p(dans) + p(en) + p(�a) + p(au cours de) + p(pendant) = 1This equation represents our �rst statistic of the process; we can now proceed tosearch for a suitable model which obeys this equation. Of course, there are an in�nitenumber of models p for which this identity holds. One model which satis�es the aboveequation is p(dans) = 1; in other words, the model always predicts dans. Another modelwhich obeys this constraint predicts pendant with a probability of 1=2, and �a with aprobability of 1=2. But both of these models o�end our sensibilities: knowing only thatthe expert always chose from among these �ve French phrases, how can we justify eitherof these probability distributions? Each seems to be making rather bold assumptions,with no empirical justi�cation. Put another way, these two models assume more than weactually know about the expert's decision-making process. All we know is that the expertchose exclusively from among these �ve French phrases; given this, the most intuitivelyappealing model is the following:2



Berger, Della Pietra, Della Pietra A Maximum Entropy Approach to NLPp(dans) = 1=5p(en) = 1=5p(�a) = 1=5p(au cours de) = 1=5p(pendant) = 1=5This model, which allocates the total probability evenly among the �ve possible phrases,is the most uniformmodel subject to our knowledge. It is not, however, the most uniformoverall; that model would grant an equal probability to every possible French phrase.We might hope to glean more clues about the expert's decisions from our sample.Suppose we notice that the expert chose either dans or en 30% of the time. We couldapply this knowledge to update our model of the translation process by requiring that psatisfy two constraints: p(dans) + p(en) = 3=10p(dans) + p(en) + p(�a) + p(au cours de) + p(pendant) = 1Once again there are many probability distributions consistent with these two con-straints. In the absence of any other knowledge, a reasonable choice for p is again the mostuniform|that is, the distribution which allocates its probability as evenly as possible,subject to the constraints: p(dans) = 3=20p(en) = 3=20p(�a) = 7=30p(au cours de) = 7=30p(pendant) = 7=30Say we inspect the data once more, and this time notice another interesting fact: inhalf the cases, the expert chose either dans or �a. We can incorporate this informationinto our model as a third constraint:p(dans) + p(en) = 3=10p(dans) + p(en) + p(�a) + p(au cours de) + p(pendant) = 1p(dans) + p(�a) = 1=2We can once again look for the most uniform p satisfying these constraints, butnow the choice is not as obvious. As we have added complexity, we have encounteredtwo di�culties at once. First, what exactly is meant by \uniform," and how can onemeasure the uniformity of a model? Second, having determined a suitable answer tothese questions, how does one go about �nding the most uniform model subject to a setof constraints like those we have described?The maximumentropy method answers both these questions, as we will demonstratein the next few pages. Intuitively, the principle is simple: model all that is known and3



Computational Linguistics Volume 22, Number 1assume nothing about that which is unknown. In other words, given a collection of facts,choose a model which is consistent with all the facts, but otherwise as uniform as possible.This is precisely the approach we took in selecting our model p at each step in the aboveexample.The maximum entropy concept has a long history. Adopting the least complex hy-pothesis possible is embodied in Occam's Razor (\Nunquam ponenda est pluralitas sinenecesitate") and even appears earlier, in the Bible and the writings of Herotodus (Jaynes1990). Laplace might justly be considered the father of maximum entropy, having enun-ciated the underlying theme 200 years ago in his \Principle of Insu�cient Reason": whenone has no information to distinguish between the probability of two events, the beststrategy is to consider them equally likely (Guiasu and Shenitzer 1994). As E.T. Jaynes,a more recent pioneer of maximum entropy, put it (Jaynes 1990):...the fact that a certain probability distribution maximizes entropy sub-ject to certain constraints representing our incomplete information, isthe fundamental property which justi�es use of that distribution for in-ference; it agrees with everything that is known, but carefully avoids as-suming anything that is not known. It is a transcription into mathemat-ics of an ancient principle of wisdom...3. Maximum Entropy ModelingWe consider a random process which produces an output value y, a member of a �niteset Y. For the translation example just considered, the process generates a translationof the word in, and the output y can be any word in the set fdans, en, �a, au cours de,pendantg. In generating y, the process may be inuenced by some contextual informationx, a member of a �nite set X . In the present example, this information could include thewords in the English sentence surrounding in.Our task is to construct a stochastic model that accurately represents the behavior ofthe random process. Such a model is a method of estimating the conditional probabilitythat, given a context x, the process will output y. We will denote by p(yjx) the probabilitythat the model assigns to y in context x. With a slight abuse of notation, we will also usep(yjx) to denote the entire conditional probability distribution provided by the model,with the interpretation that y and x are placeholders rather than speci�c instantiations.The proper interpretation should be clear from the context. We will denote by P the setof all conditional probability distributions. Thus a model p(yjx) is, by de�nition, just anelement of P.3.1 Training DataTo study the process, we observe the behavior of the random process for some time,collecting a large number of samples (x1; y1); (x2; y2); : : : ; (xN ; yN ). In the example wehave been considering, each sample would consist of a phrase x containing the wordssurrounding in, together with the translation y of in which the process produced. Fornow we can imagine that these training samples have been generated by a human expertwho was presented with a number of random phrases containing in and asked to choosea good translation for each. When we discuss real-world applications in Section 5, wewill show how such samples can be automatically extracted from a bilingual corpus.We can summarize the training sample in terms of its empirical probability distri-4



Berger, Della Pietra, Della Pietra A Maximum Entropy Approach to NLPbution ~p, de�ned by~p(x; y) � 1N � number of times that (x; y) occurs in the sampleTypically, a particular pair (x; y) will either not occur at all in the sample, or will occurat most a few times.3.2 Statistics, Features and ConstraintsOur goal is to construct a statistical model of the process which generated the trainingsample ~p(x; y). The building blocks of this model will be a set of statistics of the trainingsample. In the current example we have employed several such statistics: the frequencythat in translated to either dans or en was 3=10; the frequency that it translated to eitherdans or au cours de was 1=2; and so on. These particular statistics were independent ofthe context, but we could also consider statistics which depend on the conditioninginformation x. For instance, we might notice that, in the training sample, if April is theword following in, then the translation of in is en with frequency 9=10.To express the event that in translates as en when April is the following word, wecan introduce the indicator functionf(x; y) = � 1 if y = en and April follows in0 otherwiseThe expected value of f with respect to the empirical distribution ~p(x; y) is exactly thestatistic we are interested in. We denote this expected value by~p(f) �Xx;y ~p(x; y)f(x; y) (1)We can express any statistic of the sample as the expected value of an appropriate binary-valued indicator function f . We call such function a feature function or feature for short.(As with probability distributions, we will sometimes abuse notation and use f(x; y) todenote both the value of f at a particular pair (x; y) as well as the entire function f .)When we discover a statistic that we feel is useful, we can acknowledge its importanceby requiring that our model accord with it. We do this by constraining the expected valuethat the model assigns to the corresponding feature function f . The expected value of fwith respect to the model p(yjx) isp(f) �Xx;y ~p(x)p(yjx)f(x; y) (2)where ~p(x) is the empirical distribution of x in the training sample. We constrain thisexpected value to be the same as the expected value of f in the training sample. Thatis, we require p(f) = ~p(f) (3)Combining (1), (2) and (3) yields the more explicit equationXx;y ~p(x)p(yjx)f(x; y) =Xx;y ~p(x; y)f(x; y) 5



Computational Linguistics Volume 22, Number 1We call the requirement (3) a constraint equation or simply a constraint. By re-stricting attention to those models p(yjx) for which (3) holds, we are eliminating fromconsideration those models which do not agree with the training sample on how oftenthe output of the process should exhibit the feature f .To sum up so far, we now have a means of representing statistical phenomena inherentin a sample of data (namely, ~p(f)), and also a means of requiring that our model of theprocess exhibit these phenomena (namely, p(f) = ~p(f)).One �nal note about features and constraints bears repeating: though the words\feature" and \constraint" are often used interchangeably in discussions of maximumentropy, we will be vigilant to distinguish the two and urge the reader to do likewise:a feature is a binary-valued function of (x; y); a constraint is an equation between theexpected value of the feature function in the model and its expected value in the trainingdata.3.3 The Maximum Entropy PrincipleSuppose that we are given n feature functions fi, which determine statistics we feelare important in modeling the process. We would like our model to accord with thesestatistics. That is, we would like p to lie in the subset C of P de�ned byC � f p 2 P j p(fi) = ~p(fi) for i 2 f1; 2; : : : ; ngg (4)Figure 1 provides a geometric interpretation of this setup. Here P is the space of all(unconditional) probability distributions on 3 points, sometimes called a simplex. If weimpose no constraints (depicted in (a)), then all probability models are allowable. Im-posing one linear constraint C1 restricts us to those p 2 P which lie on the region de�nedby C1, as shown in (b). A second linear constraint could determine p exactly, if the twoconstraints are satis�able; this is the case in (c), where the intersection of C1 and C2is non-empty. Alternatively, a second linear constraint could be inconsistent with the�rst|for instance, the �rst might require that the probability of the �rst point is 1=3and the second that the probability of the third point is 3=4|this is shown in (d). In thepresent setting, however, the linear constraints are extracted from the training sampleand cannot, by construction, be inconsistent. Furthermore, the linear constraints in ourapplications will not even come close to determining p 2 P uniquely as they do in (c);instead, the set C = C1 \ C2 \ : : :\ Cn of allowable models will be in�nite.Among the models p 2 C, the maximum entropy philosophy dictates that we selectthe distribution which is most uniform. But now we face a question left open in Section2: what does \uniform" mean?A mathematical measure of the uniformity of a conditional distribution p(yjx) isprovided by the conditional entropy2H(p) � �Xx;y ~p(x)p(yjx) log p(yjx) (5)The entropy is bounded from below by zero, the entropy of a model with no uncertaintyat all, and from above by log jYj, the entropy of the uniform distribution over all possible2 A more common notation for the conditional entropy is H(Y j X), where Y and X are randomvariables with joint distribution ~p(x)p(yjx). To emphasize the dependence of the entropy on theprobability distribution p, we have adopted the alternate notation H(p).6
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(c) (d)Figure 1Four di�erent scenarios in constrained optimization. P represents the space of all probabilitydistributions. In (a), no constraints are applied, and all p 2 P are allowable. In (b), theconstraint C1 narrows the set of allowable models to those which lie on the line de�ned by thelinear constraint. In (c), two consistent constraints C1 and C2 de�ne a single model p 2 C1 \ C2.In (d), the two constraints are inconsistent (i.e. C1 \ C3 = ;); no p 2 P can satisfy them both.7



Computational Linguistics Volume 22, Number 1jYj values of y. With this de�nition in hand, we are ready to present the principle ofmaximum entropy.To select a model from a set C of allowed probability distributions, choosethe model p? 2 C with maximum entropy H(p):p? = argmaxp2C H(p) (6)It can be shown that p? is always well-de�ned; that is, there is always a unique modelp? with maximum entropy in any constrained set C.3.4 Parametric FormThe maximum entropy principle presents us with a problem in constrained optimization:�nd the p? 2 C which maximizes H(p). In simple cases, we can �nd the solution tothis problem analytically. This was true for the example presented in Section 2 whenwe imposed the �rst two constraints on p. Unfortunately, the solution of the generalmaximum entropy cannot be written explicitly, and we need a more indirect approach.(The reader is invited to try to calculate the solution for the same example when thethird constraint is imposed.)To address the general problem, we apply the method of Lagrange multipliers fromthe theory of constrained optimization. The relevant steps are outlined here; the readeris referred to (Della Pietra et al 1995) for a more thorough discussion of constrainedoptimization as applied to maximum entropy.� We will refer to the original constrained optimization problem,�nd p? = argmaxp2C H(p)as the primal problem.� For each feature fi we introduce a parameter �i (a Lagrange multiplier).We de�ne the Lagrangian �(p; �) by�(p; �) � H(p) +Xi �i (p(fi) � ~p(fi)) (7)� Holding � �xed, we compute the unconstrained maximum of theLagrangian �(p; �) over all p 2 P. We denote by p� the p where �(p; �)achieves its maximum and by 	(�) the value at this maximum:p� � argmaxp2P �(p; �) (8)	(�) � �(p�; �) (9)We call 	(�) the dual function. The functions p� and 	(�) may becalculated explicitly using simple calculus. We �ndp�(yjx) = 1Z�(x)exp Xi �ifi(x; y)! (10)	(�) = �Xx ~p(x) logZ�(x) +Xi �i~p(fi) (11)8



Berger, Della Pietra, Della Pietra A Maximum Entropy Approach to NLPwhere Z�(x) is a normalizing constant determined by the requirement thatPy p�(yjx) = 1 for all x:Z�(x) =Xy exp Xi �ifi(x; y)! (12)� Finally, we pose the unconstrained dual optimization problemFind �? = argmax� 	(�)At �rst glance it is not clear what these machinations achieve. However, a fundamen-tal principle in the theory of Lagrange multipliers, called generically the Kuhn-Tuckertheorem, asserts that under suitable assumptions, the primal and dual problems are, infact, closely related. This is the case in the present situation. Although a detailed accountof this relationship is beyond the scope of this paper, it is easy to state the �nal result:Suppose that �? is the solution of the dual problem. Then p�? is the solution of theprimal problem; that is p�? = p?. In other words,The maximum entropy model subject to the constraints C has the para-metric form3 p�? of (10), where the parameter values �? can be deter-mined by maximizing the dual function 	(�).The most important practical consequence of this result is that any algorithm for�nding the maximum �? of 	(�) can be used to �nd the maximum p? of H(p) for p 2 C.3.5 Relation to Maximum LikelihoodThe log-likelihood L~p(p) of the empirical distribution ~p as predicted by a model p isde�ned by4 L~p(p) � logYx;y p(yjx)~p(x; y) =Xx;y ~p(x; y) log p(yjx) (13)It is easy to check that the dual function 	(�) of the previous section is, in fact, just thelog-likelihood for the exponential model p�; that is	(�) = L~p(p�) (14)With this interpretation, the result of the previous section can be rephrased as:The model p? 2 C with maximumentropy is the model in the parametricfamily p�(yjx) that maximizes the likelihood of the training sample ~p.3 It might be that the dual function 	(�) does not achieve its maximum at any �nite �?. In this case,the maximum entropy model will not have the form p� for any �. However, it will be the limit ofmodels of this form, as indicated by the following result whose proof we omit:Suppose �n is any sequence such that 	(�n) converges to the maximum of 	(�). Then p�nconverges to p?.4 We will henceforth abbreviate L~p(p) by L(p) when the empirical distribution ~p is clear from context.9



Computational Linguistics Volume 22, Number 1Primal Dualproblem argmaxp2CH(p) argmax�	(�)description maximum entropy maximum likelihoodtype of search constrained optimization unconstrained optimizationsearch domain p 2 C real-valued vectors f�1; �2 : : :gsolution p? �?Kuhn-Tucker theorem: p? = p�?Table 1The duality of maximum entropy and maximum likelihood is an example of the more generalphenomenon of duality in constrained optimization.This result provides an added justi�cation for the maximum entropy principle: if thenotion of selecting a model p? on the basis of maximum entropy isn't compelling enough,it so happens that this same p? is also the model which, from among all models of thesame parametric form (10), can best account for the training sample.Table 1 summarizes the primal-dual framework we have established.3.6 Computing the ParametersFor all but the most simple problems, the �? that maximize 	(�) cannot be found analyt-ically. Instead, we must resort to numerical methods. From the perspective of numericaloptimization, the function 	(�) is well behaved, since it is smooth and convex-\ in �.Consequently, a variety of numerical methods can be used to calculate �?. One simplemethod is coordinate-wise ascent, in which �? is computed by iteratively maximizing	(�)one coordinate at a time. When applied to the maximumentropy problem, this techniqueyields the popular Brown algorithm (Brown 1959). Other general purpose methods thatcan be used to maximize 	(�) include gradient ascent and conjugate gradient.An optimizationmethod speci�cally tailored to the maximumentropy problem is theiterative scaling algorithm of Darroch and Ratcli� (Darroch and Ratli� 1972).We presenthere a version of this algorithm speci�cally designed for the problem at hand; a proof ofthe monotonicity and convergence of the algorithm is given in (Della Pietra et al 1995).The algorithm is applicable whenever the feature functions fi(x; y) are non-negative:fi(x; y) � 0 for all i, x, and y (15)This is, of course, true for the binary-valued feature functions we are considering here.The algorithm generalizes the Darroch-Ratcli� procedure, which requires, in addition tothe non-negativity, that the feature functions satisfy Pi fi(x; y) = 1 for all x; y.Algorithm 1 : Improved Iterative ScalingInput: Feature functions f1; f2; : : :fn; empirical distribution ~p(x; y)Output: Optimal parameter values �?i; optimal model p�?1. Start with �i = 0 for all i 2 f1; 2; : : : ; ng2. Do for each i 2 f1; 2; : : : ; ng:a. Let ��i be the solution toXx;y ~p(x)p(yjx)fi(x; y)exp(��if#(x; y)) = ~p(fi) (16)10



Berger, Della Pietra, Della Pietra A Maximum Entropy Approach to NLPwhere f#(x; y) � nXi=1 fi(x; y) (17)b. Update the value of �i according to: �i  �i +��i3. Go to step 2 if not all the �i have convergedThe key step in the algorithm is step (2a), the computation of the increments ��ithat solve (16). If f#(x; y) is constant (f#(x; y) = M for all x; y, say) then ��i is givenexplicitly as ��i = 1M log ~p(fi)p�(fi)If f#(x; y) is not constant, then ��i must be computed numerically. A simple ande�ective way of doing this is by Newton's method. This method computes the solution�? of an equation g(�?) = 0 iteratively by the recurrence�n+1 = �n � g(�n)g0(�n) (18)with an appropriate choice for �0 and suitable attention paid to the domain of g.4. Feature SelectionEarlier we divided the statistical modeling problem into two steps: �nding appropriatefacts about the data; the second is to incorporate these facts into the model. Up to thispoint we have proceeded by assuming that the �rst task was somehow performed for us.Even in the simple example of Section 2, we did not explicitly state how we selected thoseparticular constraints. That is, why is the fact that dans or �a was chosen by the experttranslator 50% of the time any more important than countless other facts contained inthe data? In fact, the principle of maximum entropy does not directly concern itselfwith the issue of feature selection: it merely provides a recipe for combining constraintsinto a model. But the feature selection problem is critical, since the universe of possibleconstraints is typically in the thousands or even millions. In this section we introduce amethod for automatically selecting the features to be included in a maximum entropymodel, and then o�er a series of re�nements to ease the computational burden.4.1 MotivationWe begin by specifying a large collection F of candidate features. We do not requirea priori that these features are actually relevant or useful. Instead, we let the pool beas large as practically possible. Only a small subset of this collection of features willeventually be employed in our �nal model.If we had a training sample of in�nite size, we could determine the \true" expectedvalue for a candidate feature f 2 F simply by computing the fraction of events in thesample for which f(x; y) = 1. In real-life applications, however, we are provided withonly a small sample of N events, which cannot be trusted to represent the process fullyand accurately. Speci�cally, we cannot expect that for every feature f 2 F , the estimateof ~p(f) we derive from this sample will be close to its value in the limit as n grows large.Employing a larger (or even just a di�erent) sample of data from the same process mightresult in di�erent estimates of ~p(f) for many candidate features. 11



Computational Linguistics Volume 22, Number 1In short, we would like to include in the model only a subset S of the full set ofcandidate features F . We will call S the set of active features. The choice of S mustcapture as much information about the random process as possible, yet only includefeatures whose expected values can be reliably estimated.To �nd S, we adopt an incremental approach to feature selection, similar to thestrategy used for growing decision trees (Bahl et al 1989). The idea is to build up S bysuccessively adding features. The choice of feature to add at each step is determined bythe training data. Let us denote the set of models determined by the feature set S asC(S). \Adding" a feature f is shorthand for requiring that the set of allowable models allsatisfy the equality ~p(f) = p(f). Only some members of C(S) will satisfy this equality;the ones that do we denote by C(S [ f).Thus, each time a candidate feature is adjoined to S, another linear constraint isimposed on the space C(S) of models allowed by the features in S. As a result, C(S)shrinks; the model p? in C with the greatest entropy reects ever-increasing knowledge andthus, hopefully, becomes a more accurate representation of the process. This narrowingof the space of permissible models was represented in �gure 1 by a series of intersectinglines (hyperplanes, in general) in a probability simplex. Perhaps more intuitively, wecould represent it by a series of nested subsets of P, as in �gure 2.
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(S )Figure 2A nested sequence of subsets C(S1) � C(S2) � C(S3) : : : of P corresponding to increasinglylarge sets of features S1 � S2 � S3 : : :4.2 Basic Feature SelectionThe basic incremental growth procedure may be outlined as follows. Every stage of theprocess is characterized by a set of active features S. These determine a space of modelsC(S) � fp 2 P j p(f) = ~p(f) for all f 2 Sg (19)The optimal model in this space, denoted by pS , is the model with the greatest entropy:pS � argmaxp2C(S) H(p) (20)By adding feature f̂ to S, we obtain a new set of active features S [ f̂ . Following (19),this set of features determines a set of modelsC(S [ f̂ ) � fp 2 P j p(f) = ~p(f) for all f 2 S [ f̂g (21)12



Berger, Della Pietra, Della Pietra A Maximum Entropy Approach to NLPThe optimal model in this space of models ispS[f̂ � argmaxp2C(S[f̂ )H(p) (22)Adding the feature f̂ allows the model pS[f̂ to better account for the training sample;this results in a gain �L(S; f̂) in the log-likelihood of the training data�L(S; f̂) � L(pS[f̂ )� L(pS ) (23)At each stage of the model-construction process, our goal is to select the candidate featuref̂ 2 F which maximizes the gain �L(S; f̂); that is, we select the candidate feature which,when adjoined to the set of active features S, produces the greatest increase in likelihoodof the training sample. This strategy is implemented inAlgorithm 2: Basic Feature SelectionInput: Collection F of candidate features; empirical distribution ~p(x; y)Output: Set S of active features; model pS incorporating these features1. Start with S = ;; thus pS is uniform2. Do for each candidate feature f 2 F :Compute the model pS[f using Algorithm 1Compute the gain in the log-likelihood from adding this featureusing (23)3. Check the termination condition4. Select the feature f̂ with maximal gain �L(S; f̂)5. Adjoin f̂ to S6. Compute pS using Algorithm 17. Go to step 2One issue left unaddressed by this algorithm is the termination condition. Obviously,we would like a condition which applies exactly when all the \useful" features have beenselected. One reasonable stopping criterion is to subject each proposed feature to cross-validation on a held-out sample of data. If the feature does not lead to an increase inlikelihood of the held-out sample of data, the feature is discarded. We will have more tosay about the stopping criterion in Section 5.3.4.3 Approximate GainsAlgorithm 2 is not a practical method for incremental feature selection. For each candi-date feature f 2 F considered in step 2, we must compute the maximum entropy modelpS[f , a task that is computationally costly even with the e�cient iterative scaling algo-rithm introduced earlier. We therefore introduce a modi�cation to the algorithm,makingit greedy but much more feasible. We replace the computation of the gain �L(S; f) of afeature f with an approximation, which we will denote by ��L(S; f ).Recall that a model pS has a set of parameters �, one for each feature in S. The modelpS[f contains this set of parameters, plus a single new parameter �, corresponding to f .55 Another way to think of this is that the models pS[f and pS have the same number of parameters,but � = 0 for pS. 13



Computational Linguistics Volume 22, Number 1Given this structure, we might hope that the optimal values for � do not change as thefeature f is adjoined to S. Were this the case, imposing an additional constraint wouldrequire only optimizing the single parameter � to maximize the likelihood. Unfortunately,when a new constraint is imposed, the optimal values of all parameters change.However, to make the feature-ranking computation tractable, we make the approx-imation that the addition of a feature f a�ects only �, leaving the �-values associatedwith other features unchanged. That is, when determining the gain of f over the modelpS , we pretend that the best model containing features S [ f has the formp�S;f = 1Z�(x)pS(yjx)e�f(x;y); for some real valued � (24)where Z�(x) =Xy pS (yjx)e�f(x;y) (25)The only parameter which distinguishes models of the form (24) is �. Among thesemodels, we are interested in the one which maximizes the approximate gainGS;f (�) � L(p�S;f ) � L(pS )= �Xx ~p(x) logZ�(x) + �~p(f) (26)We will denote the gain of this model by��L(S; f ) � max� GS;f (�) (27)and the optimal model by �pS[f � argmaxp�S;f GS;f (�) (28)Despite the rather unwieldy notation, the idea is simple. Computing the approxi-mate gain in likelihood from adding feature f to pS has been reduced to a simple one-dimensional optimization problem over the single parameter �, which can be solved byany popular line-search technique such as Newton's method. This yields a great savingsin computational complexity over computing the exact gain, an n-dimensional optimiza-tion problem requiring more sophisticated methods such as conjugate gradient. But thesavings comes at a price: for any particular feature f , we are probably underestimating itsgain, and there is a reasonable chance that we will select a feature f whose approximategain ��L(S; f ) was highest and pass over the feature f̂ with maximal gain �L(S; f̂ ).A graphical representation of this approximation is provided in �gure 3. Here thelog-likelihood is represented as an arbitrary convex function over two parameters: �corresponds to the \old" parameter, and � to the \new" parameter. Holding � �xedand adjusting � to maximize the log-likelihood involves a search over the darkened line,rather than a search over the entire space of (�; �).The actual algorithms, along with the appropriate mathematical framework, arepresented in the appendix.5. Case StudiesIn the next few pages we discuss several applications of maximum entropy modelingwithin Candide, a fully automatic French-to-English machine translation system under14
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αFigure 3The likelihood L(p) is a convex function of its parameters. If we start from a one-constraintmodel whose optimal parameter value is � = �0 and consider the increase in L~p(p) fromadjoining a second constraint with the parameter �, the exact answer requires a search over(�;�). We can simplify this task by holding � = �0 constant and performing a line search overthe possible values of the new parameter �. In (a), the darkened line represents the searchspace we restrict attention to. In (b) we show the reduced problem: a line search over �.
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Computational Linguistics Volume 22, Number 1development at IBM. Over the past few years, we have used Candide as a test bed forexploring the e�cacy of various techniques in modeling problems arising in machinetranslation.We begin in Section 5.1 with a review of the general theory of statistical translation,describing in some detail the models employed in Candide. In Section 5.2 we describehow we have applied maximum entropy modeling to predict the French translation ofan English word in context. In Section 5.3 we describe maximum entropy models thatpredict di�erences between French word order and English word order. In Section 5.4 wedescribe a maximum entropy model that predicts how to divide a French sentence intoshort segments that can be translated sequentially.5.1 Review of Statistical TranslationWhen presented with a French sentence F , Candide's task is to �nd the English sentenceÊ which is most likely given F :Ê = argmaxE p(EjF ) (29)By Bayes' theorem, this is equivalent to �nding Ê such thatÊ = argmaxE p(F jE)p(E) (30)Candide estimates p(E)|the probability that a string E of English words is a well-formed English sentence|using a parametric model of the English language, commonlyreferred to as a language model. The system estimates p(F jE)|the probability that aFrench sentence F is a translation of E|using a parametric model of the process ofEnglish-to-French translation known as a translation model. These two models, plus asearch strategy for �nding the Ê which maximizes (30) for some F , comprise the engineof the translation system.We now briey describe the translation model for the probability P (F jE); a morethorough account is provided in (Brown et al 1991). We imagine that an English sentenceE generates a French sentence F in two steps. First each word in E independentlygenerates zero or more French words. These words are then ordered to give a Frenchsentence F . We denote the ith word of E by ei and the jth word of F by yj . (Weemploy yj rather than the more intuitive fj to avoid confusion with the feature functionnotation.) We denote the number of words in the sentence E by jEj and the numberof words in the sentence F by jF j. The generative process yields not only the Frenchsentence F but also an association of the words of F with the words of E. We call thisassociation an alignment, and denote it by A. An alignment A is parametrized by asequence of jF j numbers aj, with 1 � ai � jEj. For every word position j in F , aj isthe word position in E of the English word that generates yj . Figure 4 depicts a typicalalignment.The probability p(F jE) that F is the translation of E is expressed as the sum overall possible alignments A between E and F of the probability of F and A given E:p(F jE) =XA p(F;AjE) (31)The sum in equation (31) is computationally unwieldy; it involves a sum over all jEjjF jpossible alignments between the words in the two sentences. For this reason we sometimes16



Berger, Della Pietra, Della Pietra A Maximum Entropy Approach to NLPThe1 dog2 ate3 my4 homework5Le1 chien2 a3 mang�e4 mes5 devoirs6HHHHH HHHHH HHHHHFigure 4Alignment of a French{English sentence pair. The subscripts give the position of each word inits sentence. Here a1 = 1, a2 = 2, a3 = a4 = 3, a5 = 4, and a6 = 5.make the simplifying assumption that there exists one extremely probable alignment Â,called the \Viterbi alignment," for whichp(F jE) � p(F; ÂjE) (32)Given some alignmentA (Viterbi or otherwise) between E and F , the probability p(F;AjE)is given by p(F;AjE) = jEjYi=1 p(n(ei)jei) � jF jYj=1p(yj jeaj ) � d(AjE;F ) (33)where n(ei) denotes the number of French words aligned with ei. In this expression� p(nje) is the probability that the English word e generates n French words,� p(yje) is the probability that the English word e generates the French wordy; and� d(AjE;F ) is the probability of the particular order of French words.We call the model described by equations (31) and (33) the basic translation model.We take the probabilities p(nje) and p(yje) as the fundamental parameters of themodel, and parametrize the distortion probability in terms of simpler distributions.(Brown et al 1991) describe a method of estimating these parameters to maximize thelikelihood of a large bilingual corpus of English and French sentences. Their methodis based on the Estimation-Maximization (EM) algorithm, a well-known iterative tech-nique for maximum likelihood training of a model involving hidden statistics. For thebasic translation model, the hidden information is the alignment A between E and F .We employed the EM algorithm to estimate the parameters of the basic translationmodel so as to maximize the likelihood of a bilingual corpus obtained from the proceedingsof the Canadian parliament. For historical reasons, these proceedings are sometimes called\Hansards." Our Hansard corpus contains 3:6 million English-French sentence pairs fora total of a little under 100 million words in each language. Table 2 shows our parameterestimates for the translation probabilities p(yjin). The basic translation model has workedadmirably: given only the bilingual corpus, with no additional knowledge of the languagesor any relation between them, it has uncovered some highly plausible translations.Nevertheless, the basic translation model has one major shortcoming: it does not takethe English context into account. That is, the model does not account for surroundingEnglish words when predicting the appropriate French rendering of an English word. Aswe pointed out in Section 3, this is not how successful translation works. The best Frenchtranslation of in is a function of the surrounding English words: if a month's time are17



Computational Linguistics Volume 22, Number 1
Translation Probabilitydans 0.3004�a 0.2275de 0.1428en 0.1361pour 0.0349(OTHER) 0.0290au cours de 0.0233, 0.0154sur 0.0123par 0.0101pendant 0.0044Table 2Most frequent French translations of in as estimated using EM-training. (OTHER) representsa catch-all classi�er for any French phrase not listed, none of which had a probabilityexceeding 0:0043.
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Berger, Della Pietra, Della Pietra A Maximum Entropy Approach to NLP|||||||||||||||Je dirais même que les chances sont sup�erieures �a 50%.#I would even say that the odds are superior to 50%.Il semble que Bank of Boston ait pratiquement achev�e son r�eexamen de Shawmut.#He appears that Bank of Boston has almost completed its review of Shawmut.|||||||||||||||Figure 5Typical errors encountered in using EM-based model of Brown et. al. in a French-to-Englishtranslation systemthe subsequent words, pendant might be more likely, but if the �scal year 1992 are whatfollows, then dans is more likely. The basic model is blind to context, always assigning aprobability of 0:3004 to dans and 0:0044 to pendant.This can yield errors when Candide is called upon to translate a French sentence.Examples of two such errors are shown in Figure 5. In the �rst example, the systemhas chosen an English sentence in which the French word sup�erieures has been renderedas superior when greater or higher is a preferable translation. With no knowledge ofcontext, an expert translator is also quite likely to select superior as the English wordwhich generates sup�erieures. But if the expert were privy to the fact that 50% was amongthe next few words, he might be more inclined to select greater or higher. Similarly, inthe second example, the incorrect rendering of Il as He might have been avoided had thetranslation model used the fact that the word following it is appears.5.2 Context-Dependent Word ModelsIn the hope of rectifying these errors, we consider the problem of context-sensitive mod-eling of word translation. We envision, in practice, a separate maximum entropy model,pe(yjx), for each English word e, where pe(yjx) represents the probability that an experttranslator would choose y as the French rendering of e, given the surrounding Englishcontext x. This is just a slightly recast version of a longstanding problem in compu-tational linguistics, namely sense disambiguation|the determination of a word's sensefrom its context.We begin with a training sample of English-French sentence pairs (E;F ) randomlyextracted from the Hansard corpus, such that E contains the English word in. For eachsentence pair, we use the basic translation model to compute the Viterbi alignment Âbetween E and F . Using this alignment, we then construct an (x; y) training event. Theevent consists of a context x containing the six words in E surrounding in and a futurey equal to the French word which is (according to the Viterbi alignment Â) aligned within. A few actual examples of such events for in are depicted in Table 3.Next we de�ne the set of candidate features. For this application, we employ featuresthat are indicator functions of simply described sets. Speci�cally, we consider functionsf(x; y) which are one if y is some particular French word and the context x contains agiven English word, and are zero otherwise. We employ the following notation to representthese features: 19



Computational Linguistics Volume 22, Number 1
translation e�3 e�2 e�1 e+1 e+2 e+3dans the committee stated � a letter to�a work was required � respect of theau cours de � the �scal yeardans by the government � the same postal�a of diphtheria reported � Canada , byde not given notice � the ordinary wayTable 3Several actual training events for the maximum entropy translation model for in, extractedfrom the transcribed proceedings of the Canadian parliament.
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Berger, Della Pietra, Della Pietra A Maximum Entropy Approach to NLPNumber ofTemplate actual features f(x;y) = 1 if and only if : : :1 jVF j y = 32 jVF j � jVE j y = 3 and 2 2 �3 jVF j � jVE j y = 3 and 2 2 �4 jVF j � jVE j y = 3 and 2 2 � � �5 jVF j � jVE j y = 3 and 2 2 � � �Table 4Feature templates for word-translation modeling. jVEj is the size of the English vocabulary;jVF j the size of the French vocabulary.f1(x; y) = 8><>: 1 y =en and April 2 �0 otherwisef2(x; y) = 8><>: 1 y =pendant and weeks 2 � � �0 otherwiseHere f1 = 1 when April follows in and en is the translation of in; f2 = 1 when weeks isone of the three words following in and pendant is the translation.The set of features under consideration is vast, but may be expressed in abbreviatedform in Table 4. In the table, the symbol 3 is a placeholder for a possible French wordand the symbol 2 is placeholder for a possible English word. The feature f1 mentionedabove is thus derived from template 2 with 3 =en and 2 =April; the feature f2 is derivedfrom template 5 with 3 =pendant and 2 =weeks. If there are jVE j total English wordsand jVF j total French words, there are jVF j template-1 features, and jVE j� jVF j features oftemplates 2,3,4 and 5.Template 1 features give rise to constraints that enforce equality between the prob-ability of any French translation y of in according to the model and the probability ofthat translation in the empirical distribution. Examples of such constraints arep(y = dans) = ~p(y = dans)p(y = �a) = ~p(y = �a)p(y = de) = ~p(y = de)p(y = en) = ~p(y = en)...A maximum entropy model that uses only template 1 features predicts each French21



Computational Linguistics Volume 22, Number 1translation y with the probability ~p(y) determined by the empirical data. This is exactlythe distribution employed by the basic translation model.Since template 1 features are independent of x, the maximum entropy model whichemploys only constraints derived from template 1 features takes no account of contextualinformation in assigning a probability to y. When we include constraints derived fromtemplate 2 features, we take our �rst step towards a context-dependent model. Ratherthan simply constraining the expected probability of a French word y to equal its em-pirical probability, these constraints require that the expected joint probability of theEnglish word immediately following in and the French rendering of in be equal to itsempirical probability. An example of a template 2 constraint isp(y = pendant; e+1 = several) = ~p(y = pendant; e+1 = several)A maximumentropy model that incorporates this constraint will predict the translationsof in in a manner consistent with whether or not the following word is several. In par-ticular, if in the empirical sample, the presence of several led to a greater probability forpendant, this will be reected in a maximumentropy model incorporating this constraint.We have thus taken our �rst step toward context-sensitive translation modeling.Templates 3, 4 and 5 consider, each in a di�erent way, various parts of the context.For instance, template 5 constraints allow us to model how an expert translator is biasedby the appearance of a word somewhere in the three words following the word he istranslating. If house appears within the next three words (e.g. the phrases in the houseand in the red house), then dans might be a more likely translation. On the other hand,if year appears within the same window of words (as in in the year 1941 or in that fatefulyear), then au cours de might be more likely. Together, the �ve constraint templatesallow the model to condition its assignment of probabilities on a window of six wordsaround e0, the word in question.We constructed a maximum entropy model pin(yjx) by the iterative model-growingmethod described in Section 4. The automatic feature selection algorithm �rst selecteda template 1 constraint for each of the translations of in seen in the sample (12 in all),thus constraining the model's expected probability of each of these translations to theirempirical probabilities. The next few constraints selected by the algorithm are shownin Table 5. The �rst column gives the identity of the feature whose expected value isconstrained; the second column gives ��L(S; f ), the approximate increase in the model'slog-likelihood on the data as a result of imposing this constraint; the third column givesL(p), the log-likelihood after adjoining the feature and recomputing the model.Let us consider the �fth row in the table. This constraint requires that the model'sexpected probability of dans, if one of the three words to the right of in is the wordspeech, is equal to that in the empirical sample. Before imposing this constraint on themodel during the iterative model-growing process, the log-likelihood of the current modelon the empirical sample was �2:8703 bits. The feature selection algorithm described inSection 4 calculated that if this constraint were imposed on the model, the log-likelihoodwould rise by approximately 0:019059 bits; since this value was higher than for any otherconstraint considered, the constraint was selected. After applying iterative scaling torecompute the parameters of the new model, the likelihood of the empirical sample roseto �2:8525 bits, an increase of 0:0178 bits.Table 6 lists the �rst few selected features for the model for translating the Englishword run. The \Hansard avor"|the rather speci�c domain of parliamentary discourserelated to Canadian a�airs|is easy to detect in many of the features in this Table 5.It is not hard to incorporate the maximum entropy word translation models into atranslation model p(F jE) for a French sentence given an English sentence. We merely22



Berger, Della Pietra, Della Pietra A Maximum Entropy Approach to NLP
Feature f(x; y) ��L(S; f) L(p)y=�a and Canada 2 � 0:0415 �2:9674y=�a and House 2 � 0:0361 �2:9281y=en and the 2 � 0:0221 �2:8944y=pour and order 2 � 0:0224 �2:8703y=dans and speech 2 � � � 0:0190 �2:8525y=dans and area 2 � � � 0:0153 �2:8377y=de and increase 2 � � � 0:0151 �2:8209y=[verb marker] and my 2 � 0:0141 �2:8034y=dans and case 2 � � � 0:0116 �2:7918y=au cours de and year 2 � � � 0:0104 �2:7792Table 5Maximum entropy model to predict French translation of in. Features shown here were the�rst non template 1 features selected. [verb marker] denotes a morphological marker insertedto indicate the presence of a verb as the next word.
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Computational Linguistics Volume 22, Number 1
Feature f(x; y) ��L(S; f) L(p)y=�epuiser and out 2 � � � 0:0252 �4:8499y=manquer and out 2 � � � 0:0221 �4:8201y=�ecouler and time 2 � � � 0:0157 �4:7969y=accumuler and up 2 � 0:0149 �4:7771y=nous and we 2 � 0:0140 �4:7582y=aller and counter 2 � � � 0:0131 �4:7445y=candidat and for 2 � � � 0:0124 �4:7295y=diriger and the 2 � � � 0:0123 �4:7146Table 6Maximum entropy model to predict French translation of to run: top-ranked features not fromtemplate 1
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Berger, Della Pietra, Della Pietra A Maximum Entropy Approach to NLP|||||||||||||||Je dirais même que les chances sont sup�erieures �a 50%.#I would even say that the odds are greater than 50%.Il semble que Bank of Boston ait pratiquement achev�e son r�eexamen de Shawmut.#It appears that Bank of Boston has almost completed its review of Shawmut .|||||||||||||||Figure 6Improved French-to-English translations resulting from maximum entropy-based systemreplace the simple context-independent models p(yje) used in the basic translation model(33) with the more general context-dependent models pe(yjx):p(F;AjE) = jEjYi=1 p(n(ei)jei) � jF jYj=1peaj (yj jxaj ) � d(AjE;F )where xaj denotes the context of the English word eaj .Figure 6 illustrates how using this improved translation model in the Candide systemled to improved translations for the two sample sentences given earlier.5.3 SegmentationThough an ideal machine translation system could devour input sentences of unrestrictedlength, a typical stochastic system must cut the French sentence into polite lengths beforedigesting them. If the processing time is exponential in the length of the input passage(as is the case with the Candide system), then not splitting the French sentence intoreasonably-sized segments would result in an exponential slowdown in translation.Thus, a common task in machine translation is to �nd safe positions at which tosplit input sentences in order to speed the translation process. \Safe" is a vague term;one might, for instance, reasonably de�ne a safe segmentation as one which results incoherent blocks of words. For our purposes, however, a safe segmentation is dependent onthe Viterbi alignment Â between the input French sentence F and its English translationE. We de�ne a rift as a position j in F such that for all k < j, ak � aj and for all k > j,ak � aj. In other words, the words to the left of the French word yj are generated bywords to the left of the English word eaj , and the words to the right of yj are generatedby words to the right of eaj . In the alignment of �gure 4, for example, there are rifts atpositions j = 1; 2; 4; 5 in the French sentence. One visual method of determining whethera rift occurs after the French word j is to try to trace a line from the last letter of yjup to the last letter of eaj ; if the line can be drawn without intersecting any alignmentlines, position f is a rift.Using our de�nition of rifts, we can rede�ne a \safe" segmentation as one in which thesegment boundaries are located only at rifts. Figure 7 illustrates an unsafe segmentation,in which a segment boundary (denoted by the k symbol) lies between a and mang�e, wherethere is no rift. Figure 8, on the other hand, illustrates a safe segmentation.The reader will notice that a safe segmentation does not necessarily result in se-mantically coherent segments: mes and devoirs are certainly part of one logical unit,25



Computational Linguistics Volume 22, Number 1The1 dog2 ate3 my4 homework5Le1 chien2 a3 mang�e4 mes5 devoirs6HHHHH HHHHH HHHHHk kFigure 7Example of an unsafe segmentation. A word in the translated sentence (e3) is aligned to words(y3 and y4) in two di�erent segments of the input sentence.yet are separated in this safe segmentation. Once such a safe segmentation has beenapplied to the French sentence, we can make the assumption while searching for theappropriate English translation that no word in the translated English sentence willhave to account for French words located in multiple segments. Disallowing intersegmentalignments dramatically reduces the scale of the computation involved in generating atranslation, particularly for large sentences. We can consider each segment sequentiallywhile generating the translation, working from left to right in the French sentence.The1 dog2 ate3 my4 homework5Le1 chien2 a3 mang�e4 mes5 devoirs6HHHHH HHHHH HHHHHk kFigure 8Example of a safe segmentationWe now describe a maximum entropy model which assigns to each location in aFrench sentence a score which is a measure of the safety in cutting the sentence atthat location. We begin as in the word translation problem, with a training sample ofEnglish-French sentence pairs (E;F ) randomly extracted from the Hansard corpus. Foreach sentence pair we use the basic translation model to compute the Viterbi alignmentÂ between E and F . We also use a stochastic part of speech tagger as described in(Merialdo 1990) to label each word in F with its part of speech. For each position j in Fwe then construct a (x; y) training event. The value y is rift if a rift belongs at positionj and is no-rift otherwise. The context information x is reminiscent of that employedin the word translation application described earlier. It includes a six-word window ofFrench words: three to the left of yj and three to the right of yj . It also includes thepart-of-speech tags for these words, and the classes of these words as derived from amutual-information clustering scheme described in (Brown et al 1990). The complete(x; y) pair is illustrated in Figure 9.In creating p(riftjx), we are (at least in principle) modeling the decisions of anexpert French segmenter. We have a sample of his work in the training sample ~p(x; y),rift?y eai�3 : : : eai+3 tag(eai�3) : : : tag(eai+3)x class(eai�3) : : : class(eai+3)Figure 9(x;y) for sentence segmentation26
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Figure 10Change in log-likelihood during segmenting model-growing. (Overtraining begins to occur atabout 40 features)and we measure the worth of a model by the log-likelihood L~p(p). During the iterativemodel-growing procedure, the algorithm selects constraints on the basis of howmuch theyincrease this objective function. As the algorithm proceeds, more and more constraintsare imposed on the model p, bringing it into ever-stricter compliance with the empiricaldata ~p(x; y). This is useful to a point; insofar as the empirical data embodies the expertknowledge of the French segmenter, we would like to incorporate this knowledge intoa model. But the data contains only so much expert knowledge; the algorithm shouldterminate when it has extracted this knowledge. Otherwise, the model p(yjx) will beginto �t itself to quirks in the empirical data.A standard approach in statistical modeling to avoid the problem of over�tting thetraining data is employ cross-validation techniques. Separate the training data ~p(x; y)into a training portion, ~pr , and a heldout portion, ~ph. Use only ~pr in the model-growingprocess; that is, select features based on how much they increase the likelihood L~pr (p).As the algorithm progresses, L~pr (p) thus increases monotonically. As long as each newconstraint imposed allows p to better account for the random process which generatedboth ~pr and ~ph, the quantity L~ph(p) also increases. At the point when over�tting begins,however, the new constraints no longer help p model the random process, but insteadrequire p to model the noise in the sample ~pr itself. At this point, L~pr (p) continues torise, but L~ph (p) no longer does. It is at this point that the algorithm should terminate.Figure 10 illustrates the change in log-likelihood of training data L~pr (p) and held-outdata L~ph(p). Had the algorithm terminated when the log-likelihood of the held-out datastopped increasing, the �nal model p would contain slightly less than 40 features.We have employed this segmenting model as a component in a French-English ma-chine translation system in the following manner. The model assigns to each position inthe French sentence a score, p(rift j x), which is a measure of how appropriate a splitwould be at that location. A dynamic programming algorithm then selects, given the\appropriateness" score at each position and the requirement that no segment may con-tain more than 10 words, an optimal (or, at least, reasonable) splitting of the sentence.27



Computational Linguistics Volume 22, Number 1Monsieur l'Orateur,j'aimerais poser une question auMinistre des Transports.|{A quelle date lenouveau r�eglement devrait il entrer en vigeur?|{Quels furent les crit�eres utilis�espour l'�evaluationde ces biens.|{Noussavons que si nous pouvions contrôler la folle avoinedans l'ouest du Canada, enun an nousaugmenterions notre rendement enc�er�eales de 1 milliard de dollars.Figure 11Maximum entropy segmenter behavior on four sentences selected at random from the HansarddataFigure 11 shows the system's segmentation of four sentences selected at random fromthe Hansard data. We remind the reader to keep in mind when evaluating Figure 11 thatthe segmenter's task is not to produce logically coherent blocks of words, but to dividethe sentence into blocks which can be translated sequentially from left to right.5.4 Word ReorderingTranslating a French sentence into English involves not only selecting appropriate En-glish renderings of the words in the French sentence, but also selecting an ordering forthe English words. This order is often very di�erent from the French word order. Oneway Candide captures word-order di�erences in the two languages is to allow for align-ments with crossing lines. In addition, Candide performs, during a pre-processing stage,a reordering step which shu�es the words in the input French sentence into an ordermore closely resembling English word order.One component of this word reordering step deals with French phrases which havethe noun de noun form. For some noun de noun phrases, the best English transla-tion is nearly word for word: conit d'int�erêt, for example, is almost always rendered asconict of interest. For other phrases, however, the best translation is obtained by inter-changing the two nouns and dropping the de. The French phrase taux d'int�erêt, for exam-ple, is best rendered as interest rate. Table 7 gives several examples of noun de nounphrases together with their most appropriate English translations.In this section we describe a maximumentropy model which, given a French noun de nounphrase, estimates the probability that the best English translation involves an interchangeof the two nouns. We begin with a sample of English-French sentence pairs (E;F ) ran-domly extracted from the Hansard corpus, such that F contains a de phrase. For eachsentence pair we use the basic translation model to compute the Viterbi alignment Âbetween the words in E and F . Using Â we construct an (x; y) training event as fol-lows. We let the context x be the pair of French nouns (nounL ;nounR). We let y be28
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word-for-word phrasessomme d'argent sum of moneypays d'origin country of originquestion de privil�ege question of privilegeconit d'int�erêt conict of interestinterchanged phrasesbureau de poste post o�cetaux d'int�erêt interest ratecompagnie d'assurance insurance companygardien de prison prison guardTable 7noun de noun phrases and their English equivalents
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Computational Linguistics Volume 22, Number 1Number ofTemplate actual features f(x;y) = 1 if and only if : : :1 2jVF j y = 3 and nounL = 22 2jVF j y = 3 and nounR = 23 2jVF j2 y = 3 and nounL = 21 and nounR = 22Table 8Template features for noun de noun modelno-interchange if the English translation is a word-for-word translation of the Frenchphrase and y = interchange if the order of the nouns in the English and French phrasesare interchanged.We de�ne candidate features based upon the template features shown in Table 8. Inthis table, the symbol3 is a placeholder for either interchange or no-interchange andthe symbols 21 and 22 are placeholders for possible French words. If there are jVF j totalFrench words, there are 2jVF j possible features of templates 1 and 2 and 2jVF j2 featuresof template 3.Template 1 features consider only the left noun. We expect these features to berelevant when the decision of whether to interchange the nouns is inuenced by theidentity of the left noun. For example, including the template 1 featuref(x; y) = � 1 y=interchange and nounL= syst�eme0 otherwisegives the model sensitivity to the fact that the nouns in French noun de noun phraseswhich begin with syst�eme (such as syst�eme de surveillance and syst�eme de quota) aremore likely to be interchanged in the English translation. Similarly, including the tem-plate 1 featuref(x; y) = � 1 y=no-interchange and nounL= mois0 otherwisegives the model sensitivity to the fact that French noun de noun phrases which beginwith mois, such as mois de mai (month of May) are more likely to be translated wordfor word.Template 3 features are useful in dealing with translating noun de noun phrases inwhich the interchange decision is inuenced by both nouns. For example, noun de nounphrases ending in int�erêt are sometimes translated word for word, as in conit d'int�erêt(conict of interest) and are sometimes interchanged, as in taux d'int�erêt (interest rate).We used the feature-selection algorithm of section 4 to construct a maximumentropymodel from candidate features derived from templates 1,2 and 3. The model was grownon 10,000 training events randomly selected from the Hansard corpus. The �nal modelcontained 358 constraints.To test the model, we constructed a noun de noun word-reordering module whichinterchanges the order of the nouns if p(interchange j x) > 0:5 and keeps the order thesame otherwise. Table 9 compares performance on a suite of test data against a baselinenoun de noun reordering module which never the swaps the word order.Table 12 shows some randomly-chosen noun de noun phrases extracted from thistest suite along with p(interchangejx), the probability which the model assigned toinversion. On the right are phrases such as saison d'hiver for which the model strongly30



Berger, Della Pietra, Della Pietra A Maximum Entropy Approach to NLP
Test data Simple Model Maximum EntropyAccuracy Model Accuracy50,229 not interchanged 100% 93.5%21,326 interchanged 0% 49.2%71,555 total 70.2% 80.4%Table 9noun de noun model performance: simple approach vs. maximum entropy
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Computational Linguistics Volume 22, Number 1predicted an inversion. On the left are phrases which the model strongly prefers notto interchange, such as somme d'argent, abus de privil�ege and chambre de commerce.Perhaps most intriguing are those phrases which lie in the middle, such as taux d'ination,which can translate either to ination rate or rate of ination.6. ConclusionWe began by introducing the building blocks of maximumentropy modeling|real-valuedfeatures and constraints built from these features. We then discussed the maximum en-tropy principle. This principle instructs us to choose, among all the models consistentwith the constraints, the model with the greatest entropy. We observed that this modelwas a member of an exponential familywith one adjustable parameter for each constraint.The optimal values of these parameters are obtained by maximizing the likelihood of thetraining data. Thus two di�erent philosophical approaches|maximumentropy and max-imum likelihood|yield the same result: the model with the greatest entropy consistentwith the constraints is the same as the exponential model which best predicts the sampleof data.We next discussed algorithms for constructing maximumentropy models, concentrat-ing our attention on the two main problems facing would-be modelers: selecting a set offeatures to include in a model, and computing the parameters of a model which containsthese features. The general feature-selection is too slow in practice, and we presentedseveral techniques for making the algorithm feasible.In the second part of this paper we described several applications of our algorithms,concerning modeling tasks arising in Candide, an automatic machine-translation systemunder development at IBM. These applications demonstrate the e�cacy of maximumentropy techniques for performing context-sensitive modeling.AcknowledgmentsThe authors wish to thank Harry Printz and John La�erty for suggestions and com-ments on a preliminary draft of this paper, and Jerome Bellegarda for providing expertFrench knowledge.ReferencesBahl, L., Brown, P., de Souza, P., Mercer, R. (1989) A tree-based statistical language modelfor natural language speech recognition. IEEE Transactions on Acoustics, Speech, andSignal Processing, vol. 37, no. 7.Berger, A., Brown, P., Della Pietra, S., Della Pietra, V., Gillett, J., La�erty, J., Printz, H.,Ure�s, L. (1994) The Candide system for machine translation. Proceedings of the ARPAConference on Human Language Technology, Plainsborough, New Jersey.Black, E., Jelinek, F., La�erty, J., Magerman, D., Mercer, R. and Roukos, S. (1992) Towardshistory-based grammars: using richer models for probabilistic parsing. Proceedings of theDARPA Speech and Natural Language Workshop, Arden House, New York.Brown, D. (1959) A note on approximations to discrete probability distributions. Informationand Control, vol. 2, 386{392.Brown, P., Della Pietra, S., Della Pietra, V. Mercer, R. (1993) The mathematics of statisticalmachine translation: parameter estimation. Computational Linguistics, vol. 19, no. 2,263{311.Brown, P., Cocke, J. Della Pietra, S., Della Pietra, V., Jelinek, F., La�erty, J., Mercer, R., andRoossin, P. (1990) A statistical approach to machine translation. Computational Linguistics,vol. 16, 79{85.Brown, P., Della Pietra, V, de Souza, P., Mercer, R. (1990) Class-based n-gram models ofnatural language. Proceedings of the IBM Natural Language ITL, 283{298.32
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Computational Linguistics Volume 22, Number 1GS;f (�n) will increase monotonically. This is a consequence of the convexity of GS;f (�)in �.We can solve an equation g(�) = 0 by Newton's method, which produces a sequence�n by the recurrence given in (18), repeated here for convenience:�n+1 = �n � g(�n)g0(�n) (34)If we start with �0 su�ciently close to �?, then the sequence �n will converge to �?and g(�n) will converge to zero. In general, though, the g(�n) will not be monotonic.However, it can be shown that the sequence is monotonic in the following importantcases: if �0 � �? and g(�) is either decreasing and convex-[ or increasing and convex-\.The function G0S;f (�) is neither convex-\ or convex-[ as a function of �. However,it can be shown (by taking derivatives) that G0S;f (�) is decreasing and convex-[ ine�, and is increasing and convex-\ in e��. Thus, if �? > 0 so that e0 < e�? , we canapply Newton's method in e� to obtain a sequence of �n for which G0S;f (�n) increasesmonotonically to zero. Similarly, if �? < 0 so that e0 < e��? , we can apply Newton'smethod in e�� to obtain a sequence �n for which G0S;f (�n) decreases monotonically tozero. In either case, GS;f (�n) increases monotonically to its maximumGS;f (�?).The updates resulting from Newton's method applied in the variable er�, for r = 1or r = �1 are easily computed:�n+1 = �n + 1r log �1� 1r G0S;f (�n)G00S;f (�n)� (35)In order to solve the recurrence in (35), we need to compute G0S;f and G00S;f . Thezeroth, �rst and second derivatives of G areGS;f (�) = �Xx ~p(x) logZ�(x) + �~p(f) (36)G0S;f (�) = ~p(f) �Xx ~p(x)p�S;f (f jx) (37)G00S;f (�) = �Xx ~p(x)p�S;f ((f � p�S;f (f jx))2jx) (38)where p�S;f (hjx) �Xy p�S;f (yjx)h(x; y) (39)With these in place, we are ready to enumerateAlgorithm 3: Computing the Gain of a Single FeatureInput: Empirical distribution ~p(x; y); initial model pS ; candidate feature fOutput: Approximate gain ��L(S; f ) of feature f1. Let r = � 1 if ~p(f) � pS(f)�1 otherwise (40)2. Set �0 034



Berger, Della Pietra, Della Pietra A Maximum Entropy Approach to NLP3. Repeat the following until GS;f (�n) has converged:Compute �n+1 from �n using (35)Compute GS;f (�n+1) using (26)4. Set ��L(S; f ) GS;f (�n)Computing Approximate Gains in ParallelFor the purpose of incremental model growing as outlined in Algorithm 2, we need tocompute the maximum approximate gain ��L(S; f ) for each candidate feature f 2 F .One obvious approach is to cycle through all candidate features and apply Algorithm 3for each one sequentially. Since Algorithm 3 requires one pass through every event in thetraining sample per iteration, this could entail millions of passes through the trainingsample. Because a signi�cant cost often exists for reading the training data|if the datacannot be stored in memory but must be accessed from disk, for example|an algorithmwhich passes a minimal number of times through the data may be of some utility. Wenow give a parallel algorithm speci�cally tailored to this scenario.Algorithm 4: Computing Approximate Gains for A Collection of FeaturesInput: Collection F of candidate features; empirical distribution ~p(x; y);initial model pSOutput: Approximate gain ��L(S; f ) for each candidate feature f 2 F1. For each f 2 F , calculate ~p(f), the expected value of f in the training data2. For each x, determine the set F(x) � F of f that are active for x:F(x) � ff 2 F j f(x; y)pS (yjx)~p(x) > 0 for some yg (41)3. For each f , let r(f) = � 1 if ~p(f) � pS(f)�1 otherwise (42)4. For each f 2 F , initialize �(f)  05. Repeat the following until �(f) converges for each f 2 F :(a) For each f 2 F , set G0(f)  ~p(f)G00(f)  0(b) For each x, do the following:For each f 2 F(x), update G0(f) and G00(f) byG0(f)  G0(f) � ~p(x)p�S;f (f jx) (43)G00(f)  G00(f) � ~p(x)p�S;f ((f � p�S;f (f jx))2jx)(44)where p�S;f (f jx) �Py p�S;f (yjx)f(x; y) 35



Computational Linguistics Volume 22, Number 1(c) For each f 2 F , update �(f) by�(f) �(f) + 1r(f) log �1� 1r(f) G0(f)G00(f)� (45)6. For each f 2 F , substitute �(f) into (26) to determine ��L(S; f ).Convergence for this algorithm is guaranteed just as it was for algorithm 3 { aftereach iteration of step 5, the value of �(f) for each candidate feature f is closer to itsoptimal value �?(f) and, more importantly, the gain GS;f is closer to the maximal gain��L(S; f ).
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