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Let xi be the i-th data point, and zi = (zi1, . . . , zil) be the latent variables associated with xi.
Denote the set of parameters by θ. The complete likelihood P (xi, zi|θ) is said to belong to the
exponential family if it has the following form:

L(xi, zi|θ) = c(xi, θ) exp

 l∑
j=1

zijgj(xi, θ)

 (1)

In this case, the log-likelihood is linear in the latent variables:

logL(xi, zi|θ) = log c(xi, θ) +

l∑
j=1

zijgj(xi, θ) (2)

The auxiliary function of the EM algorithm, which is the expectation of the log-likelihood, can be
obtained by replacing the latent variables with their expectations:

Ezi|xi,θ(k) [logL(xi, zi|θ
(k+1))] = log c(xi, θ

(k+1)) +
l∑

j=1

E[zij |xi, θ(k)]gj(xi, θ(k+1)) (3)

As a result, the EM algorithm boils down to:

• Write down the maximum likelihood estimator of the parameters as if the latent variables zij
are known;

• Replace the latent variables zij by their expectations E[zij |xi, θ(k)] to get the recursive formula
for θ(k+1), and iterate until convergence.

The above procedure can always be used if the model is a mixture of sub-models. We can
choose the latent variables zij to be mutually exclusive indicators, i.e. if the i-th data point came
from the j-th sub-model, let zij = 1 and all the other zik = 0 (k 6= j). Furthermore, let c(xi, θ) = 1
and gj(xi, θ) be the log-likelihood of the i-th data point if it came from the j-th sub-model. Then
we can see that the complete likelihood function does have the form of Eq. (1).

For example, let’s consider estimating the parameters of a Gaussian mixture model (GMM)
with unit variances but unknown means µ1, . . . , µl and priors λ1, . . . , λl. For each data point xi,
we associate it with l latent variables zi1, . . . , zil, where zij = 1 if xi came from the j-th Gaussian
and 0 otherwise. If the latent variables were known (i.e. we knew which data points came from
which Gaussians), the maximum likelihood estimates of the means and priors would be:

µ̂j,ML =

∑n
i=1 zijxi∑n
i=1 zij

(4)



λ̂j,ML =

∑n
i=1 zij
n

(5)

where n is the total number of data points. When the latent variables are not known, we replace
the zij in the formulas above with its expectation E[zij |xi, θ(k)]:

µ
(k+1)
j =

∑n
i=1E[zij |xi, θ(k)]xi∑n
i=1E[zij |xi, θ(k)]

(6)

λ
(k+1)
j =

∑n
i=1E[zij |xi, θ(k)]

n
(7)

The expectation can be calculated as follows:

E[zij |xi, θ(k)] =
λ
(k)
j exp[−1

2(xi − µ
(k)
j )2]∑l

j′=1 λ
(k)
j′ exp[−1

2(xi − µ
(k)
j′ )2]

(8)

The entire EM algorithm runs as follows:

1. Initialize the means µ
(0)
j and priors λ

(0)
j (j = 1, . . . , l);

2. E-step: Calculate the expectations of latent variables with Eq. (8);

3. M-step: Update the means and priors with Eqs. (6) and (7);

4. Terminate if converged, otherwise go to step 2.
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