EM Shortcut for the Exponential Family

Yun Wang
(Based on a 2001 version by Guy Lebanon)

Language and Statistics, Spring 2013

Let x_{i} be the i-th data point, and $z_{i}=\left(z_{i 1}, \ldots, z_{i l}\right)$ be the latent variables associated with x_{i}. Denote the set of parameters by θ. The complete likelihood $P\left(x_{i}, z_{i} \mid \theta\right)$ is said to belong to the exponential family if it has the following form:

$$
\begin{equation*}
L\left(x_{i}, z_{i} \mid \theta\right)=c\left(x_{i}, \theta\right) \exp \left[\sum_{j=1}^{l} z_{i j} g_{j}\left(x_{i}, \theta\right)\right] \tag{1}
\end{equation*}
$$

In this case, the log-likelihood is linear in the latent variables:

$$
\begin{equation*}
\log L\left(x_{i}, z_{i} \mid \theta\right)=\log c\left(x_{i}, \theta\right)+\sum_{j=1}^{l} z_{i j} g_{j}\left(x_{i}, \theta\right) \tag{2}
\end{equation*}
$$

The auxiliary function of the EM algorithm, which is the expectation of the log-likelihood, can be obtained by replacing the latent variables with their expectations:

$$
\begin{equation*}
E_{z_{i} \mid x_{i}, \theta^{(k)}}\left[\log L\left(x_{i}, z_{i} \mid \theta^{(k+1)}\right)\right]=\log c\left(x_{i}, \theta^{(k+1)}\right)+\sum_{j=1}^{l} E\left[z_{i j} \mid x_{i}, \theta^{(k)}\right] g_{j}\left(x_{i}, \theta^{(k+1)}\right) \tag{3}
\end{equation*}
$$

As a result, the EM algorithm boils down to:

- Write down the maximum likelihood estimator of the parameters as if the latent variables $z_{i j}$ are known;
- Replace the latent variables $z_{i j}$ by their expectations $E\left[z_{i j} \mid x_{i}, \theta^{(k)}\right]$ to get the recursive formula for $\theta^{(k+1)}$, and iterate until convergence.

The above procedure can always be used if the model is a mixture of sub-models. We can choose the latent variables $z_{i j}$ to be mutually exclusive indicators, i.e. if the i-th data point came from the j-th sub-model, let $z_{i j}=1$ and all the other $z_{i k}=0(k \neq j)$. Furthermore, let $c\left(x_{i}, \theta\right)=1$ and $g_{j}\left(x_{i}, \theta\right)$ be the log-likelihood of the i-th data point if it came from the j-th sub-model. Then we can see that the complete likelihood function does have the form of Eq. (1).

For example, let's consider estimating the parameters of a Gaussian mixture model (GMM) with unit variances but unknown means μ_{1}, \ldots, μ_{l} and priors $\lambda_{1}, \ldots, \lambda_{l}$. For each data point x_{i}, we associate it with l latent variables $z_{i 1}, \ldots, z_{i l}$, where $z_{i j}=1$ if x_{i} came from the j-th Gaussian and 0 otherwise. If the latent variables were known (i.e. we knew which data points came from which Gaussians), the maximum likelihood estimates of the means and priors would be:

$$
\begin{equation*}
\hat{\mu}_{j, \mathrm{ML}}=\frac{\sum_{i=1}^{n} z_{i j} x_{i}}{\sum_{i=1}^{n} z_{i j}} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\hat{\lambda}_{j, \mathrm{ML}}=\frac{\sum_{i=1}^{n} z_{i j}}{n} \tag{5}
\end{equation*}
$$

where n is the total number of data points. When the latent variables are not known, we replace the $z_{i j}$ in the formulas above with its expectation $E\left[z_{i j} \mid x_{i}, \theta^{(k)}\right]$:

$$
\begin{align*}
\mu_{j}^{(k+1)} & =\frac{\sum_{i=1}^{n} E\left[z_{i j} \mid x_{i}, \theta^{(k)}\right] x_{i}}{\sum_{i=1}^{n} E\left[z_{i j} \mid x_{i}, \theta^{(k)}\right]} \tag{6}\\
\lambda_{j}^{(k+1)} & =\frac{\sum_{i=1}^{n} E\left[z_{i j} \mid x_{i}, \theta^{(k)}\right]}{n} \tag{7}
\end{align*}
$$

The expectation can be calculated as follows:

$$
\begin{equation*}
E\left[z_{i j} \mid x_{i}, \theta^{(k)}\right]=\frac{\lambda_{j}^{(k)} \exp \left[-\frac{1}{2}\left(x_{i}-\mu_{j}^{(k)}\right)^{2}\right]}{\sum_{j^{\prime}=1}^{l} \lambda_{j^{\prime}}^{(k)} \exp \left[-\frac{1}{2}\left(x_{i}-\mu_{j^{\prime}}^{(k)}\right)^{2}\right]} \tag{8}
\end{equation*}
$$

The entire EM algorithm runs as follows:

1. Initialize the means $\mu_{j}^{(0)}$ and priors $\lambda_{j}^{(0)}(j=1, \ldots, l)$;
2. E-step: Calculate the expectations of latent variables with Eq. (8);
3. M-step: Update the means and priors with Eqs. (6) and (7);
4. Terminate if converged, otherwise go to step 2.
