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Outline 
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• What's wrong with today's language models? 

• Whole sentence exponential language models 

• Sampling and smoothing of exponential distributions 

• Capturing syntactic features 

• Shannon experiments 

• An interactive methodology for linguistic feature induction 

• Modeling semantic coherence 

• Logistic regression for efficient training and feature construc

tion 

see JOt/~ P4 f;;(L 
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Existing Language Model Types 

1. N-gram: Pr(wilw1, ... , wi-1) ~ Pr(wilwi-N+1' ... , wi-1) 
Issues: smoothing, clustering, shrinking. 

2. Decision tree (using CART). 
Issues: finding a good tree. 

3. Probabilistic Context Free Grammar (using EM). 
Issues: finding a good one, if it exists. 

4. Exponential (Maximum Entropy) model (using GIS): 

1 
P(wih) = ( ) · Po(wih) · exp[LAifi(h,w)] 

Zh . 
't 

Best model so far. 
Issues: feature induction, computation (esp. normalization). 
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The VVorld of Broadcast News 

• WANDILE ZOTHE DO YOU PERSONALLY KNOW PEOPLE WHO WERE ARRESTED AND TORTURED 
DURING THE APARTHEID ERA </s> 

• SO HE PROBABLY WILL HAVE TO HAVE THEM TAXED BECAUSE THEY'RE NOT A TRADITIONAl 
PENSION FUND </s> 

• BUT THE TOBACCO COMPANIES AND NASCAR OFFICIALS SAY THEIR FANS ARE WILDLY 
LOYAL TO RACE ADVERTISERS </s> 

• THERE ARE A LOT OF QUALITY SWEATERS IN THE MARKET RIGHT NOW CASHMERE AND 
CASHMERE BLENDS </s> 

• POLICE SAY THE MAN RAN FROM THE FRONT OF THE HOUSE AND CAME AROUND THIS 
CORNER </s> 
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The VVorld According to Trigram 

• THEY PUNISHED US A GROUP CALLED THE NEXT THING WE CAN COOPERATE TO DIFFUSE 
THIS TAPE </s> 

• SAYING THAT HE DIDN'T WANT TO BE VERY GOOD ACTUALLY AFTER THE GULF WAR 
A REQUEST </s> 

• MY QUESTION TO YOU THOSE PICTURES MAY STILL NOT IN ROMANIA AND I LOOKED 
UP CLEAN </s> 

• YOU WERE GOING TO TAKE THEIR CUE FROM ANCHORAGE LIFTED OFF EVERYTHING WILL 
WORK SITE VERDI </s> 

• ARE YOU REFERRING TO IS EXTREMELY RISKY BECAUSE I'VE BEEN TESTED WHOSE 
ONLY WITH A MAIN </s> 

• Violates all global aspects of language 

• Easy for people to tell apart 'real' from 'pseudo' sentence 

• Should be easy to fix? 
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General Framework for Incorporating Linguistic Structure 

Language Modeling Basics Revisited: 

n 

Pr( s) == Pr( w1, ... , wn) == IT Pr( wi !w1, ... , wi-1) 
i==l 

But: 

• Chain rule not conducive to whole-sentence KSs 

• Grammatical info expressed w.r.t. whole sentence, not Pr(wlh) 

• Example: sentence length 

• Example: parsability 
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A VVhole Sentence Exponential Model 

Pr(s) def _!_. Po(s) · exp(l::Ai ·fi(s)) z . 
~ 

(1) 

• Po(s) is an arbitrary initial model (e.g.: uniform, trigram) 

• fi(s)'s are arbitrary computable properties of s 

(fill in your favorite linguistic theory!) 

• Sentence s is viewed as bag of features 

• Z is a universal normalizing constant 

• Has been used successfully for conditional modeling: 

Pr(wlh) 
def 1 

Z(h) · Po(wlh) · e'LiAi·fi(h,w) 

7 Roni Rosenfeld 



- ----- -- I 

VVhole Sentence Maximum Entropy Training 

Initialize: 

1. Select features fi(s) (syntax, semantics, speech acts, ... ) 

2. Collect target expectations of features in a training set: E_p[!il 

3. Throw away the training set. 

4. Set initial parameters Ai, thus defining a tentative PA(s) 

Iterate until convergence: 

1. Compute feature expectations under the current PA(s): 

def """' EpA[fi] = 6PA(s)fi(s) Vi 
s 

2. Compare to target expectations, and update the parameters: 

E_p[fi] 
.\ +- Ai + log [ 

EpA fi 
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Issues in ME/MDI Training: 

1. Smoothing - prior on Ai 

2. Convergence rate- Step size Fi 

3. Computational efficiency 

4. Feature selection 

Problems specific to whole-sentence models: 

1. Cannot feasibly compute feature expectations 

==>> sample! Ep[fi] def Ls P(s)fi(s) ~ )J L 
sample 
from P 

• Efficient sampling is the name of the game 

fi(s) 

• Computational bottleneck: rare features, exact modeling 

2. P(s) is unnormalizable > normalization not needed! 

9 Roni Rosenfeld 



~-~ -- I 

Sampling from an Exponential Distribution 

• Need to sample sentences from Pexp(s) ==} Po(s) eLi;..i.fi(s) 

• No known efficient method 

1. Importance Sampling 

2. Monte Carlo Markov Chain (MCMC) methods: 

• Metropolis Sampling 

• Gibbs Sampling 

• Independence Sampling (hybrid Metropolis/Importance) 

weakness: efficiency hampered by correlations between suc

cessive sentences 
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Importance Sampling 

• Idea: instead of sampling from Pexp, sample from some other 
distribution Pgen(s) that is easier to generate from, then 

weigh the samples by Pexp(s) 
Pgen(s) 

def """"" """"" Pexp(s) Pexp 
Epexp[Ji] = L....,Pexp(s)fi(s) = L....,Pgen(s) p ( )fi(S) = Epgen[p fi] 

s s gen S gen 

• weakness: variance too great if Pexp(s) or Pgen(s) are large 
Pgen(s) Pexp(s) 

• efficiency depends on distance between Pexp and P 9en 

• we take Pgen(s) = P0 (s) (the trigram-based distribution) 

• for unnormalized distributions 

L~ Pexp(sj) fi(s ·) 
J -1 Pgen ( s j) J 

Epexp[Ji] ~ E1V!__ Pexp(Sj) 
J-1 Pgen(Sj) 
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Applying MCMC methods to Natural Language 

Language is: 

• categorical (sort of) 

• very high dimensional (typically 100,000) 

• variable length 

• neighbourhood? what neighbourhood? 

~> as different from an Ising model as can be! 

• only requirement: "detail balance" 
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Gibbs Sampling of Utterances 

THIS IS A SIMPLE SENTENCE </s> </s> · · · 
~ 
A 

AARDVARK 

ZYMURGY 
zzzzz 

• Sweep through the current utterance, one word at a time 

• Replace the current word with a new word w, randomly se
lected according to the posterior Pexp(w!rest of utterance) 

• Requires efficient computation of the posterior 

• Can be applied to word sequences of any length 
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Metropolis Sampling of Utterances 

THIS IS A SIMPLE SENTENCE </s> </s> · · · 

-U-
=>rob == Pgen) propose DIFFERENT 

-lJ- accept (Prob == min{l Pexp(snew)Pgen(sold)}) 
' Pexp (sold) Pgen ( snew) 

THIS IS A DIFFERENT SENTENCE </s> </s> · · · 
-U-

propose WHY 
-1J- reject 

THIS IS A DIFFERENT SENTENCE </s> 
-U-

propose THE 

</s> ... 

-1J- accept 
THIS IS A DIFFERENT SENTENCE THE </s> 

• Distance between Pexp and Pgen determines efficiency 

• Can be applied to word sequences of any length 

• When applied to entire utterance > Independence Sampling 
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Sampling Efficiency 

sampling efficiency 

• estimating fraction of sentences of certain lengths 

sampling algorithm 
Metropolis independence importance 

11,4 0.38±0.07 0.438±0.001 0.439±0.001 

15,8 0.10±0.02 0.1001±0.0004 0.1001±0.0006 

19,12 0.08±0.01 0.0834±0.0006 0.0831±0.0006 

113,16 0.073±0.008 0.0672±0.0005 0.0676±0.0007 

/1_7,CX) 0.37±0.09 0.311±0.001 0.310±0.002 
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ME/MDI Smoothing 

ME/MDI training is ML training 

• Ep[!i] == 0 =? for all s: fi(s) i= 0, P(s)--+ 0 

smoothing 

• Gaussian prior on A.i (variance a-2 ) 

• MAP training 

Ep[fi] == Ep[fi] =} 
A.· 

Ep[fi] == Ep[fi] - o-; 
• (modified) iterative scaling still guaranteed to converge 
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Experiment 1: Extended N-grams 

1 
P(s) ==- · Po(s) · exp ( ~Aifi(s) z 

't 

Domain: SWITCHBOARD 

Prior: P0 (s) ==probability of s ace. to (Kneser-Ney) trigram model 

Features types: 

• word n-grams (upton== 4) 

• class n-grams (up to n == 5, 1000 classes) 

• distance-2 n-grams (up to n == 3) 

fa(s) == # of times n-gram a occurs in s 
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Extended N-grams Feature Selection 

find n-grams whose 

• frequency in training data differs significantly from frequency 

according to prior trigram model 

• by comparing counts of each n-gram in training corpus and 
in corpus generated with trigram model 

n-gram training trigram 
WHEN I GOING 1 0 
WHEN I GOT 92 89 
WHEN I GO 71 61 
WHEN I WOULD 7 9 
WHEN I CAN 18 14 I 

WHEN I MEAN 2 23 
WHEN I GOOD 0 1 
WHEN I NOW 1 0 
WHEN I I'VE 1 4 
WHEN I KIND 0 3 
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Extended N-grams Feature Selection (cont.) 

training trigram 
corpus corpus 

feature count count x2 
TALKING TO YOU KNOW 0 148 43512.50 
TALKING TO _ KNOW 0 148 43512.50 
TALKING/CHATTING TO YOU KNOW 0 148 43512.50 I 
NICE/HUMONGOUS TALKING/CHATTING 0 60 7080.50 

TO YOU KNOW 

HOW ABOUT YOU KNOW 0 56 6160.50 
HOW ABOUT _ KNOW 0 56 6160.50 
<s> HAVE _ KNOW 0 42 3444.50 I 

KIND OF A WHILE/SUDDEN 0 42 3444.50 
VAGUELY/BLUNTLY 15389 22604 3382.69 
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Experiment 1: Recognition Results 

N-best list rescoring 

• 8,300 word Switchboard/Call Home test set 

• 200-best lists generated by Janus system (CMU) 

• unnormalized model - PP difficult to calculate exactly 

x2 threshhold 
trigram 100 30 15 

# features 0 3.5k 19k 52k 

WER 36.53 36.49 36.37 36.29 
LM only 40.92 40.95 40.68 40.46 
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Experiment 1: Recognition Results (cont.) 

ME/MDI word word 4-gram + I 

trigram x2 > 15 4-gram class 5-gram 
# features 0 52k 2.1M 7.9M 

WER 36.53 36.29 36.21 35.95 
LM only 40.92 40.46 40.52 40.03 

- - ... 

performance by feature type (x2 > 15) 

word class dista nce-2 
trigram all n-grams n-grams n-grams 

# features 0 52k 14k 20k 19k 

WER 36.53 36.29 36.51 36.34 36.37 
LM only 40.92 40.46 40.71 40.75 40.76 
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Experiment 1: Perplexity Estimation 

• Normalization estimation 

P(s) 
1 z · Po(s) · exp E Aifi(s) def _!_ . p* ( s) -z 

~ 

P*(s) 

P(s) 
z 

ME/MDI word word 4-gram + 
trigram x 2 > 100 4-gram class 5-gram 

1 PP J 81.4 1 80.6 1 8o.s 1 77.6 1 
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Feature Induction 

How can we take advantage of the whole-sentence paradigm to 

find useful features? 

• Original corpus and trigram-generated ('fake') corpus 

• Pose a challenge: find (computable) differences 

• Course project for 3 students: 

1. unigram marginals (surprise!) 

2. distance-k class ngrams 

3. parse based features 
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Experiment 2: Parse Based Features 

• Use Klaus Zechner's shallow Switchboard parser 

• Parser maps sentence into variable-length constituents: 

NP, ADJ, VB, AUX, 

• 3 feature types: 

- constituent strings, e.g. fnp-vb-prep-adj-np(s) 

- constituent sets, e.g. fnp-vb-prep-adj(s) 

-constituent trigram, e.g. fnp-vb-prep(s), fvb-prep-adj(s), ... 

• Found 7,000 features with significant (T, To) discrepancy 

• Exam pie: f conj-np-aux-adj ( s) 
(Never occurred in the original SWB corpus, but occurred 
19 times in the trigram-generated corpus, e.g. "and you can 

convenient".) 

• ~> slight improvement in PP & recognition 
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Experiment 2: Results 

• Perplexity: 81.37 > 80.49 

• N-best rescoring WER: 36.53% ====> 36.38% 
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Analysis 

Q: Why aren't we making a bigger difference? 

• Upper bound on improvement from feature fi is the K-L 

distance between P(fi) (the true distribution of fi and P(fi) 
(the current model's distribution of fi). 

• For the parse-based features: l::i D( P(fi) II Po(fi)) = 0.062 

S 
. ~ ~. ~ 0.062 

• o perplexity can improve by aL'-f-.llOSt o.jZ-PYo (2 J?:) 
~~ 10 

A: need more powerful (i.e. common) feature~)~~~.' 
p,~!z 

• fi(s) ="sentences makes sense" 77 
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"Makes Sense" Feature: A Shannon Experiment 

• 17 members of the Sphinx research group 

• 40 sentences (20 "real", 20 trigram-generated 

1. original sents 
2. common words removed 
3. +trigram neighborhood removed 

human error 
10% ± 5% 
34% ± 9% 
38% ± 10% 

Consider the features !makes sense(s) that people presumably relied 
on: 

D( P(fl) II Po(fl)) = 3.0 
D( F(f2) II Po(f2)) = 0.3 

D( P(f2) II Po(f2)) = 0.01 

==>> 12% PP reduction 
:::=:::} 1.2% PP reduction 

--=-=> 0.7% PP reduction 
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A Methodology for Feature Induction 

Given corpus T of training sentences: 

1. Train best-possible baseline model, P0 (s) 

2. Use P0 (s) to generate corpus To of "pseudo sentences" 

3. Pose a challenge: find (computable) differences 

• Does Po adequately model your favorite linguistic aspects? 

4. Encode the differences as features fi(s) 

5. Train a new mode: P1 (s) == }· Po(s) . eLi Ai·!i(s) 

6. Use P1 (s) to generate corpus T1 of "pseudo sentences" 

7. Go to step 3 

• Emphasis is on the "human in the loop" 
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In Search of Computable Differences 

• WANDILE ZOTHE DO YOU PERSONALLY KNOW PEOPLE WHO WERE ARRESTED AND TORTURED 
DURING THE APARTHEID ERA </s> 

• SO HE PROBABLY WILL HAVE TO HAVE THEM TAXED BECAUSE THEY'RE NOT A TRADITIONAl 
PENSION FUND </s> 

• BUT THE TOBACCO COMPANIES AND NASCAR OFFICIALS SAY THEIR FANS ARE WILDLY 
LOYAL TO RACE ADVERTISERS </s> 

• THERE ARE A LOT OF QUALITY SWEATERS IN THE MARKET RIGHT NOW CASHMERE AND 
CASHMERE BLENDS </s> 

• THEY PUNISHED US A GROUP CALLED THE NEXT THING WE CAN COOPERATE TO DIFFUSE 
THIS TAPE </s> 

• SAYING THAT HE DIDN'T WANT TO BE VERY GOOD ACTUALLY AFTER THE GULF WAR 
A REQUEST </s> 

• MY QUESTION TO YOU THOSE PICTURES MAY STILL NOT IN ROMANIA AND I LOOKED 
UP CLEAN </s> 

• YOU WERE GOING TO TAKE THEIR CUE FROM ANCHORAGE LIFTED OFF EVERYTHING WILL 
WORK SITE VERDI </s> 
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Going After Semantic (in)Coherence 

• Define "content words" (all but top 200; 40% of tokens) 

• Model distribution of content words in sentence 

• Simplify: model pairwise co-occurrences ("content word pairs") 

• Exclude trigram effects 

• Collect Contingency tables: 
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Semantic Association between Content VVordPairs 

• SO HE PROBABLY WILL HAVE TO HAVE THEM TAXED BECAUSE THEY'RE NOT A TRADITION~ 
PENSION FUND </s> 

• Contingency table: 

FUND 
Yes I No 

TAXED Yes e 11 e12 

No e21 e24:_ 

e 11 =Number of sentences containing content 

wordpair FUND TAXED 

e12 = e2- e11 

e21 = e1- e11 

e22 = N- e11- e12- e21 

31 Ron i Rosenfeld 
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Measures of Association 

• Correlation coefficient: 

~ C11C22- C12C21 
p= ~============= 

jc1+c2+c+1c+2 

• Pearson chi-square 

• Mutual information: 

I = L __3:1_ log N ~1 C·· ( C·· ) 

i,j==1,2 N ci+cj+ 

• Yule's measure of association: 

Q = Cn C22 - C12C21 

c11C22 + C12C21 
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Examples Q values 

ENTERTAINMENT WITNESS -0.89 

ANGELES CONGRESS -0.70 

ABORTION REPUBLICAN 0.74 

ARTISTS SONY 0.89 

M H 1 

33 
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Modeling Semantic Coeherence 

• Collect contingency table counts, and Q statistics, for all 
content wordpairs in the training data. 

• For each sentence in the 'true' test set and the 'pseudo' (tri
gram -generated) set: 

A sentence 
-O-

wl W2, w1 W3, · · · 
-U-

Q12' Q13, ... 
-0-

Qmean, Qmedian' Qmax, Qmin 
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q 
0 N 

(lj 
tq 

tq ,... 
,... 

0 q ,... 
,... 

10 10 

ci ci 

0 0 
ci ci 

·1.0 -0.5 0.0 0.5 1.0 ·1.0 ·0.5 0.0 0.5 1.0 
median Q of real text mean Q of real text 

10 

10 

.i 
(lj 

(lj 0 
0 (lj 
(lj 

tq 
tq ,... 
,... 
q q 

,... ,... 
10 
ci 
0 
ci 

·1.0 ·0.5 0.0 0.5 1.0 -1.0 ·0.5 0.0 0.5 1.0 
median Q of fake text mean Q of fake text 
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0 
Cli 

'1'111 
~ 

(!) 

I 
,.. 

~ 
(\J ,.. 

Ill 
0 

O' 0 
0 

-1.0 ·0.5 0.0 0.5 1.0 -1.0 ·0.5 0.0 0.5 1.0 
minimal Q of real text maximal Q of real text 

<D ~ ,.. 
Ill o:l 

0 
'1' <D 

(!) 
0 
'1' 

(\J 0 
(\J 

0 

O' 0 
0 

-1.0 -0.5 0.0 0.5 1.0 -1.0 ·0.5 0.0 0.5 1.0 
minimal Q of fake text maximal Q of fake text 
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From M L Estimation to Logistic Regression 

• How to best exploit these distributional differences? 

• Use the Q stats as features 

• Recall: P(s; A)== }Po(s) · exp(~i Aifi(s)) 

• Find the MLE 

• Alternatively, convert into a discrimination problem, and use 

regression 
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Exponential Model Fitting by Logistic Regression 

• Let s 1 , ... sn be "real" sents (supposedly drawn from P(s)) 

• Let sn+l' ... , s2n be "pseudo" sents, gen'ed by baseline Po(s) 

• Seek function h(s) that maximally discriminates P from Po 

• Let y == { 1 s E p 
0 s E Po 

• Let h(s) == P(Y ==lis) 

h(s) P(Y ==lis) 
P(siY == l)P(Y == 1) 

P(siY == 1)P(Y == 1) + P(siY == O)P(Y == 0) 
P(s) 

P(s) + Po(s) 

• h(s) _ P(s) 
1-h(s) - Po(s) 
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Logistic Regression (cont.) 

• h(s) _ P(s) 
1-h(s) - Po(s) 

• Recall P(s; ,\) == }Po(s) · exp(I:i ,\ifi(s)) 

h(s) ] 
log[ 1 _ h(s) 

• For logistic regression: 

-log Z + L Aifi(s) 
~ 

f3o + L!3ifi(s) 
~ 

logit(s) == f3o + L!3ifi 
~ 

• For generalized additive model (GAM): 

logit(s) ==so+ L s(fi) 
~ 
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VVhy Logistic Regression? 

• Fitting logistic regression is much easier than Iterative Scal-

ing (no sampling, no normalization) 

• Tap into huge existing base of methods and software 

• Can do "model selection" (ie play with features) very easily 

• Like MLE, estimate is unbiased, asymptotically normal con

vergence 

• Estimation is not as data-efficient as MLE (loss of informa
tion given by the Fisher Information). But there's unlimited 

Po data! 

• Generalized Additive models: efficiently search for non-linear 

combinations of the given features 
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Results from Regression 

• Logistic regression: 

h(s) 
log[ ( J = f3o + f31fl(s) + ... + f36f6(s) 

1-hs 

Coefficient t value 
(Intercept) 0.02 1.83 

Q_min -1.30 -32.40 
Q_med -1.81 -25.99 
Q_max -0.12 -3.00 

Q_mean 6.20 51.69 
#words -0.007 -6.55 

# wordpairs -0.002 -9.79 
- ----------

41 Ron i Rosenfeld 



--.. I 

Results from GAM 

h(s) 
log[ ( J = f3o + sl(h(s)) + ... + s6(f6(s)) 

1-hs 

Chisq P(Chi) 
s(Q_min) 533.63 0 
s(Q_med) 1308.84 0 
s(Q_max) 6185.01 0 

s(Q_mean) 315.21 0 
s(#words) 144.01 0 

s(#wordpairs) 496.24 0 
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VVhat About Perplexity? 

• P(s; .A)== }Po(s) · exp(Li Ai!i(s)) 

• Features modify the probability of the entire sentence 

• Effect of single feature on per-word probability is very small 

• Using only the 6 features above, PP reduction was: 

1. Linear logistic regression: 29% per sentence (1.5% per 

word) 

2. GAM model: 79% per sentence (3.5% per word) 
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Exponential Models: ML vs. MCE 

• ME/MDI is Maximum Likelihood Estimation within the ex

ponential family 

• Can train exponential model to directly reduce WER: 

P(s) = ~. Po(s). e'Li Ai·fi(s) 
z 

log P(s) =Canst.+ log Po(s) + LJ-Li!i(s) 

• Minimize WER by heuristically searching over the JL/S (Pow
ell's algorithm) 
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Summary 

• Whole-Sentence ME: A framework for modeling language 

Facilitates long-range and whole-sentence modeling 

Opens the door to "Putting language back into 'Language 
Modeling"' (Jelinek, 1995) 

Focuses attention on feature induction 

• Methodology for feature induction 

- Put a human in the loop 

- Model is still optimized on data 
- Integrates linguistic intuition with statistical methodology 

• Modeling Semantic Coherence 

Major weakness of current models 

- For now, global stats of pairwise content word correlations 

• Logistic regression 

- Parametric regression for efficient training 

- Non-parametric regression for powerful feature construc-
tion 
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Linguistic Structure in Statistical Language Models 

Why aren't we there yet? 

1. Linguistic theories deal with existence, SLM with prevalence 

2. Lack of general framework 

• each linguistic theory poses a new estimation problem 

3. Mental straightjacket of the conditional formulation ( P(wlh)) 

4. Non-informative priors (Bayesian view) 

• Data will always be sparse - good prior is crucial 

• Must encode linguistic knowledge as prior 

• We still don't know how to do that! 
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The Catch-22 of Non-Informative Priors 

Example: Vacabulary Clustering 

• Many greedy algorithms [IBM, Philips, ... ] 

• Can be seeded with POS information 

• Example classes from [Chen, unpublished]: 

- MY THY JESSICA'S SARAH'S KEVIN'S CONGESTIVE KAREN'S HEIDI'S 

- THEN THEREFORE CONSEQUENTLY THIRDLY LASTLY BEHOLD FRO ABETTIN 

-DOWN ASIDE ASHORE INS OVERBOARD IDLY ... AFIRE ROUGHSHOD 

- LET EXCUSE FORGIVE PARDON TICKLE 

- STATE CENSUS COMMONWEALTH PROVISIONAL FOOTHILLS 

-WASHINGTON LONDON MOSCOW PARIS TOKYO ... ISLAMABAD EDGEWISE 

• Catch: rarest words clustered least well 

• Mildly successful 
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