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Abstract

Given a speech signal there are two kinds of information that may be extracted from it. On one hand

there is the linguistic information about what is being said, and on the other there is also speaker specific

information. This report deals with the task of speaker recognition where the goal is to determine which

one of a group known speakers best matches the input voice sample. The problem is made harder when the

speakers are not constrained to a particular word sequence,when there is only a very small amount of train

and test data, or when the train and test data are collected across different channels.

In this work, we concentrate on the task of improving the performance of Gaussian Mixture models for

speaker identification, without a substantial increase in computation, by extracting other features from

Gaussian Mixture probabilities that are better indicators of who the speaker is. This report looks closely

at the outputs of the mixtures when presented with a voice sample and some properties of the distribution

of these probabilities are noted. Using this knowledge, frame based voting to improve speaker identification

accuracy is suggested. This is shown to decrease the error rate by a factor of 5 or more (from 1.73% to .09%

in the best case), with little or no increase in computation. The voting method is also successfully applied to

a two-speaker segmentation task and decreases segmentation errors by a factor of 4. A disadvantage of voting

is identified and a way to improve it’s performance, which combines voting with conventional evaluation of

GMMs, or an estimator that uses the median of the Gaussian probabilities, is suggested. These methods

result in a decrease in error rate by a factor of 10 or more (from 1.07% to .05% in the best case).
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Chapter 1

Introduction

1.1 What is Speaker Recognition ?

As speech interaction with computers becomes more pervasive in activities such as financial services and

information retrieval from speech databases, the utility of automatically recognizing a speaker based solely

on vocal characteristics increases. Given a speech sample, speaker recognition is concerned with extracting

clues to the identity of the person who was the source of that utterance. Speaker recognition is divided into

two specific tasks: verification and identification. In speaker verification the goal is to determine from a voice

sample if a person is whom he or she claims. In speaker identification the goal is to determine which one of

a group of know voices best matches the input voice sample. In either case the speech can be constrained

to a known phrase (text-dependent) or totally unconstrained (text-independent). As telephones become

more pervasive, they may become the tool of choice for interacting with computers. The focus of this work

is on achieving significantly higher speaker identification rates using short utterances from unconstrained

conversational speech and robustness to degradations produced by transmission over a telephone channel.

1.2 Why can Speaker Recognition be Hard ?

There are many algorithms and models that can be used for speaker recognition including Neural Networks[1],

unimodal Gaussians, Vector Quantization[2], Radial Basis Functions[3], Hidden Markov Models and Gaussian

Mixture Models(GMMs)[4]. These perform well under clean speech conditions, but in many cases perfor-

mance degrades when test utterances are corrupted by noise, mismatched conditions or if there are only

3



Speaker Recognition using Gaussian Mixture Probabilities 4

small amounts of training and testing data. Among these methods GMMs are usually preferred because

they offer high classification accuracy while still being robust to corruptions in the speech signal[4].

When speech is corrupted by noise or by the limited bandwidth of telephone lines, speaker recognition ac-

curacy degrades. The feature vectors generated from corrupted speech are no longer similar to the class

distributions learned from the training data. Because of the channel effects, there is inherently more vari-

ability in the training data, and as a result, the variance of the distributions of the speaker classes increases.

This broadening of the class distributions leads to increased classification errors over the case where the

training and test speech are both clean. There is also an intrinsic variation in a person’s voice which is more

pronounced when the voice samples are collected at widely separated times.

1.3 What have people tried before?

This report focuses on robust text-independent speaker recognition of telephone quality conversational

speech, with small amounts of testing and training data recorded in different sessions. There are many

methods that have been suggested to overcome mismatched conditions and limited data such as Cepstral

Mean Normalization(CMN)[5], stochastic feature transformations [6][7], model adaptation [8][9] and score

based compensation [10] [11].

1.4 So why do we need more methods?

All the methods listed in the previous section involve additional processing of the features, models, or scores

on top of the computation involved in evaluating Gaussian Mixtures. CMN is known to degrade performance

when the amount of data available is small. The other adaptive algorithms are also susceptible to this

problem. The methods described in this report work only with the probabilities output by conventional

evaluation of GMMs. Thus, there is no extra processing involved during training and little or no extra

processing during the testing phase. The methods proposed here also suggest different ways of looking at

Gaussian probabilities and can be used in addition to other more complex schemes which have previously

been shown to be successful. The methods suggested are evaluated on telephone quality speech with different

amounts of training and testing data, and they are shown to provide a useful improvement in identification

accuracy.
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1.5 Overview of report

The rest of this thesis is organized as follows. Chapter 2 gives a more detailed description of the problem,

describes the databases used for evaluating the various algorithms. It also discusses the different situations

over which the methods are to be evaluated. The standard Gaussian Mixture Model for speaker recognition

is described and tested. Chapter 3 describes a voting based classifier to alleviate the effect of outlier frames.

Chapter 4 shows how voting can be used to improve performance on a simple two-speaker segmentation

task. Chapter 5 shows a simple method to improve the classifier of Chapters 3, by combining it with

the conventional Gaussian mixture models, while still not requiring a substantial increase in computation.

Chapter 6 describes an alternate view of Gaussian Mixture probabilities as indicators of the correct speaker.

Chapter 7 has the conclusions and some directions for future research.



Chapter 2

Gaussian Mixtures Models for

Speaker Identification

2.1 Introduction

As described earlier various models have been applied to the task of text independent speaker identification,

such as Neural Networks[1], unimodal Gaussians, Vector Quantization[2], Radial Basis Functions[3], Hidden

Markov Models and Gaussian Mixture Models(GMMs)[4]. Of these, GMMs have been the most successful,

leading to the extensive use of GMM based speaker recognition systems. The use of common corpora for

evaluation of speech and speaker recognition systems has proved to be invaluable in comparing different

approaches, sharing results, and generally advancing the technology state-of-the-art. In this chapter we

first describe the baseline GMM from [4] for speaker identification. We describe the databases used in

evaluating the algorithms presented here, and select the parameters of the baseline system that provide the

best performance.

2.2 Feature Extraction

There are a number of different speech features that have been shown to be indicative of speaker identity.

These include pitch related features, Linear Prediction Cepstral Coefficients (LPCCs)[12] and Maximum Au-

toCorrelation Value(MACV)[13] features. Although there are no exclusively speaker distinguishing features,

the speech spectrum has been shown to be very effective for speaker recognition. Here we use Mel Frequency

6
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Figure 2.1: Extraction of MFCCs

Cepstral Coefficients[14] (MFCCs) extracted from the spectrum. The main reason for this is that in many

applications speaker identification is a precursor to further speech processing, especially speech recognition,

to identify what is being said. Among the possible features MFCCs have proved to be the most successful

and robust features for speech recognition. So, to limit computation in a possible application, it makes sense

to use the same features for speaker recognition. Also, the focus of this report is on extracting additional

information from Gaussian Mixture probabilities irrespective of the features used.

Figure 2.1 shows the block diagram of the procedure used for feature extraction in the front end. The

speech signal is divided into 30 msec long segments overlapping by 15 msec using a Hamming window. The

magnitude spectrum of this short time segment is passed through a simulated mel-scale filter bank consisting

of 30 filters. The filter bank is similar to the one described in [14]. The log of the output energy of each

filter is calculated and collected into a vector. This is then cosine transformed into cepstral coefficients. The

cepstral coefficients are truncated to obtain MFCCs. In all the experiments in this report, 20 MFCC features

per frame are used, since they were found to give the best performance in most cases.

2.3 Gaussian Mixture Models for Speaker Recognition

The use of Gaussian Mixture models for modeling speaker identity is motivated by the interpretation that

the Gaussian components represent some general speaker dependent spectral shapes and the capability of
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Figure 2.2: GMMs for speaker recognition: from [4]

Gaussian mixtures to model arbitrary densities. A GMM is the weighed sum of M component densities as

shown in Figure 2.2, given by the equation,

p( ~X|λ) =
M∑
i=1

pibi(~x) (2.1)

Where ~X is a sequence of feature vectors from the audio data, ~x is D dimensional speech feature vector,

bi(~x), i=1....M are component densities and pi,i=1....M are the mixture weights. Each component density is

a D variate Gaussian function of the form,

bi(~x) =
1

(2π)D/2|Σi|
1
2
exp

{
−1

2
(~x− ~µi)

′
Σ−1

i (~x− ~µi)
}

(2.2)

with mean vector ~µi and covariance matrix Σi. The mixture weights are such that
∑M

i=1 pi = 1.

For speaker identification, each speaker is represented by a GMM λi which is completely parameterized

by its mixture weights, means and covariance matrices collectively represented as,

λi = {pi, ~ui,Σi} (2.3)

For computational ease and improved performance, the covariance matrices are constrained to be diagonal.

There are two principal motivations for using GMMs to model speaker identity. The first is that the compo-
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nents of such a multi-modal density may represent some underlying set of acoustic classes. It is reasonable

to assume that the acoustic space corresponding to a speakers voice can be characterized by a set of acoustic

classes representing some broad phonetic events such as vowels, nasals or fricatives. These acoustic classes

reflect some general speaker-dependent vocal tract configurations that are useful for characterizing speaker

identity. The spectral shape of the ith acoustic class can in turn be represented by the mean µi and covari-

ance matrix Σi. Because all the training or testing speech is unlabeled, the acoustic classes are hidden in

that the class of an observation is unknown.

The second motivation for using Gaussian mixture densities for speaker identification is that a linear com-

bination of Gaussian basis functions is capable of modeling a large class of sample distributions. A GMM

can form smooth approximations to arbitrarily shaped densities.

There are several techniques that can be used to estimate the parameters of a GMM, λ, which describes

the distribution of the training feature vectors. By far the most popular and well-established is Maximum

Likelihood (ML) estimation.

These GMMs are trained separately on each speaker’s enrollment data using the Expectation Maximization

(EM) algorithm [15]. The update equations that guarantee a monotonic increase in the model’s likelihood

value are:

Mixture Weights:

pi =
1
T

T∑
t=1

p(i|~xt, λ) (2.4)

Means:

~µi =
∑T

t=1 p(i|~xt, λ)~xt∑T
t=1 p(i|~xt, λ)

(2.5)

Variances:

σi
2 =

∑T
t=1 p(i|~xt, λ)~xt

2∑T
t=1 p(i|~xt, λ)

− ~µi
2

(2.6)

where σ2
i , xt and µi are elements of ~σi

2, ~xt and ~µi, respectively. The a posteriori probability for acoustic

class i is given by,

p(i|~xt, λ) =
pibi(~xt)∑M

k=1 pkbk(~xt)
(2.7)

In speaker identification, given a group of speakers S = {1, 2....M} , represented by GMMs λ1, λ2, λ3....λS ,

the objective is to find the speaker model which has the maximum a posteriori probability for a given test
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sequence,

Ŝ = arg max
1≤k≤M

p(λk) = arg max
1≤k≤M

p( ~X|λk)p(λk)

p( ~X)
(2.8)

Assuming that all speakers are equally likely and that the observations are independent, and since p(X) is

same for all speakers, this simplifies to

Ŝ = arg max
1≤k≤M

p( ~X|λk) = arg max
1≤k≤M

[
T∏

t=1

(p(~xt|λk)] (2.9)

Each GMM outputs a probability for each frame, which is multiplied across all the frames. The classifier

makes a decision based on these product posterior probabilities.

2.4 Databases used for Experimental Evaluation

The use of common corpora for evaluation of speech and speaker recognition systems has proved to be

invaluable in comparing different approaches, sharing results, and generally advancing the technology state-

of-the-art. Within the last five years the number of publicly available speech corpora has increased dramat-

ically. Two databases were used during the evaluations described in this report, to show that the results are

not specific to a certain database or certain voice collection conditions. The databases are KING[16] and

SPIDRE[17]. The characteristics that made these databases appropriate are:

• They both have 40-50 speakers. The speaker recognition problem is not easy, and it is similar to the

one expected in a typical application.

• They both have speech corrupted by different telephone handsets and channels. They test the ability

of a speaker recognition system to generalize to different channel conditions.

• Results on these databases are available for a number of different algorithms allowing easy comparison

of the results across systems

KING-92

The KING corpus was collected at ITT in 1987 under a US Government research contract. The version now

available from LDC, referred to as KING-92, is based on a 1992 reprocessing of the original recordings. It

contains recorded speech from 51 male speakers in two versions, which differ in channel characteristics: one

from a telephone handset and one from a high-quality microphone. The speakers are further subdivided into

two groups, 25 in one and 26 in the other, who were recorded at different locations. For each speaker and



Speaker Recognition using Gaussian Mixture Probabilities 11

channel, there are 10 files, corresponding to sessions of about 30 to 60 seconds duration each. Of these 51

speakers, 49 were used for evaluation.

SPIDRE

This corpus is a 2-CD subset of the Switchboard-I collection selected for speaker ID research, and with

special attention to telephone instrument variation [18]. Combining the two sides of the conversations also

permits speaker change detection or speaker monitoring experiments. There are 45 target speakers; four

conversations from each target are included, of which two are from the same handset. Since all conversations

are two-sided, this results in 180 target sides. However, for this evaluation, only 44 speakers were used.

2.5 Train and Test data selection

There are 2 test settings that were defined to evaluate different aspects of any speaker recognition algorithm.

These are:

Case 1: Training data is recorded on two channels, and test data could be from either of these two channels

This setting is to test how well the models can train when data is from different channels. The problem is

still not very hard since we have training data on every channel that we have testing data for.

Case 2: Training data is recorded on two channels, and test data is from a completely different channel

This setting is hard and most algorithms perform poorly in this test. This is because we do not have any

ideas as to the properties of the test channel during training. This tests the ability of the algorithm to

generalize to new channels.

In each setting we can have different amounts of data for training and testing. The training data lengths

were 5,10,20 sec enrollment for KING 5,10,20 and 30 sec for SPIDRE. All the remaining data, depending on

Case 1 or 2, was used for testing. This data was split into segments of length 5,10,20 and 30 sec as described

below. Since this covers most of the expected usage conditions, it should give us a good idea of the variation

in performance of an algorithm when it has different amounts of training and testing data.
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Table 2.1: Error Rate on KING with 49 Speakers for different model orders: Case 1

Train Test M = 8 M = 16 M = 32
(sec) (sec) (%ER) (%ER) (%ER)

5 5 58.18 56.30 62.02
5 10 55.46 52.66 60.26
5 20 52.82 51.34 59.98
10 5 35.37 29.89 31.13
10 10 32.77 25.17 27.73
10 20 30.41 23.85 24.57
20 5 15.21 12.85 11.20
20 10 11.08 8.64 7.92
20 20 9.32 6.48 3.00

Testing involved at least 50 test utterances per speaker per train-test length combination, so that the

results are statistically significant. The sequence of feature vectors was divided into overlapping segments of

T feature vectors similar to [4]
Segment1︷ ︸︸ ︷

~x1, ~x2....... ~xT−1, ~xT , ~xT+1....

~xn,

Segment2︷ ︸︸ ︷
~xn+1, ~xn+2..... ~xn+T−1, ~xn+T , ~xT+T+1....

A test segment of 5 sec corresponds to T = 620 feature vectors. Each segment of T feature vectors is treated

as a separate test utterance. The error rate is computed as:

% error rate (ER) =

number of incorrectly identified segments
total number of segments

∗ 100

2.6 Setting up the Baseline

Model Order:

The initial base line is as described earlier. The first parameter that needs to be set is the number of

Gaussians used to model each speaker. Determining the number of components M in a mixture needed to

model a speaker adequately is an important but difficult problem. There is no theoretical way to determine

the number of mixture components a priori. The results of the experiments with different training and

testing lengths, for different model orders is shown in the Tables 2.1 and 2.2.
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Table 2.2: Error Rate on SPIDRE with 44 Speakers for different model orders : Case 1

Train Test M = 8 M = 16 M = 32
(sec) (sec) (%ER) (%ER) (%ER)

5 5 20.17 19.70 30.53
5 10 15.78 16.85 16.43
5 20 11.39 12.37 11.90
5 30 10.36 4.62 8.73
10 5 10.46 7.84 7.80
10 10 7.19 5.88 5.70
10 20 4.20 2.94 2.94
10 30 3.17 1.72 2.43
20 5 8.17 5.60 4.76
20 10 5.88 3.45 2.80
20 20 4.34 2.19 1.54
20 30 2.19 1.70 0.75

When more training data is available, 32 or sometimes only 16 Gaussians are needed. When less data is

available, 8 Gaussians gives the best performance. 16 Gaussians were found to give similar or slightly worse

performance than 32 Gaussians per speaker in most cases of interest, at half the computational cost. When

64 or more Gaussians per speaker were used, performance was found to fall off. 16 Gaussians are used to

model each speaker in all the experiments in this report.

Spectral Shape Compensation:

When the speech signal passes through a linear filter h[n] representing the telephone channel, it’s magnitude

spectrum is multiplied by the magnitude response of the filter. If it is assumed that the magnitude of the

spectrum is relatively smooth,it can be shown that the effect of the filter is an additive component on the

mel-cepstral feature vector.

~z = ~x + ~h (2.10)

where ~z is the observed cepstral vector, ~h is the channel filter cepstral vector, and ~x is the input speech

cepstral vector.

The method of mean normalization – Cepstral Mean Normalization (CMN) has been used in many speaker

recognition systems. Essentially, it consists of removing the bias component by subtracting the global average

vector from each feature vector. The global average vector is

~m =
1
T

T∑
t=1

~z (2.11)
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Table 2.3: Comparison of results with and without CMN on SPIDRE for Case 1

Train Test With CMN Without CMN
(sec) (sec) (%ER) (%ER)

5 5 41.18 19.70
5 10 36.32 16.85
5 20 36.32 12.37
5 30 63.91 4.62
10 5 16.2 7.84
10 10 10.45 5.88
10 20 7.42 2.94
10 30 6.72 1.72
20 5 7.33 5.60
20 10 4.20 3.45
20 20 2.80 2.19
20 30 2.94 1.07

and the channel compensated vectors are given by,

~zcomp = ~zt − ~m (2.12)

However, if the amount of data available per channel is low, then the ~m is not a good estimate of the mean

and CMN can do more harm than good. Also, in two of the settings data is available from the test channels

and hence cmn is not required, and again using CMN results in an increase in error rate. The comparative

results with and without CMN are presented in Table 2.3 which has results for Case 1: Training data taken

from first two files and all remaining data from first four files used for testing on SPIDRE.

In most of the settings of importance here, not only does CMN not help, but actually makes things worse.

So, all the results in this report here are without CMN.



Chapter 3

Voting for speaker estimation

3.1 Introduction

In this chapter we look at a method to improve speaker identification accuracy using GMMs, while not

increasing the computational burden significantly. We look at the output probabilities of the GMMs and

hypothesize that the probabilities of outlier frames are an important cause of speaker identification errors.

The probabilities of the outlier frames are themselves outliers, which may be caused by the fact that speech

from a single speaker is not actually generated as a mixture of Gaussians. We propose frame by frame

voting[19] as an alternative to estimate the correct speaker, that normalizes the contribution of each frame,

and thus mitigates the effect of outliers.

3.2 Looking at Gaussian Probabilities

Evaluation of GMMs for speaker recognition is done as per equation

Ŝ = arg max
1≤k≤M

p( ~X|λk) = arg max
1≤k≤M

[
T∏

t=1

(p(~xt|λk)] (3.1)

Taking both sides, to the power 1
N , we obtain

Ŝ = arg max
1≤k≤M

(p( ~X|λk))
1
N = arg max

1≤k≤M
[

T∏
t=1

((p(~xt|λk))]
1
N (3.2)

Thus, in conventional GMM evaluation, we find the geometric mean of the output probabilities of the

15
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Figure 3.1: Output probabilities of the Gaussian Mixtures for different speakers: Incorrect speaker in Yellow

GMM and use this as an indicator of the correct speaker. To decide what possible alternatives exist to the

geometric mean, we explore the properties of the output probabilities.

From the Figures 3.1 and 3.2, we see that the output probabilities are very spiky. The incorrect speaker

in yellow in 3.1, is some times many orders of magnitudes higher than the correct speaker in red.

From the Figure 3.3, we see that there are a few frames where all the speakers have very low probabilities

(the figure is in log domain). These frames may be noise or non speech frames which match all the models

poorly, that is they lie in the tail of most distributions. The fall in probability is often more than -20 in

the log domain which corresponds to 10−20 in the probability domain. If the probabilities are multiplied,

then even a few such outliers could dominate the final result, resulting in identification errors. Many of the

utterances which were recognized incorrectly using GMMs had at least five or six such frames. When these

few regions were identified and removed by hand, many errors made by the system were corrected. To avoid

the influence of a few bad frames causing wrong identification, there is a need to make the influence of the

frames more uniform. We would like to somehow limit the effect of these outliers frames. One simple way

to do this is frame by frame voting as described below.
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Figure 3.2: Output log probabilities of the Gaussian Mixtures for different speakers: Correct speaker in red

Figure 3.3: Output log probabilities of the Gaussian Mixtures for different speakers: Correct speaker in red
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Figure 3.4: Comparison of voting and conventional evaluation of GMMs



Speaker Recognition using Gaussian Mixture Probabilities 19

3.3 Frames as classifiers

An alternate view of the speaker recognition problem is that each frame is an independent classifier. Using

the GMM parameters, each classifier makes an independent decision as to who the speaker is. In the

case of classical GMMs, the outputs of the frames are the probabilities p(~xi|λ) which are then combined

by multiplication. But there are alternative methods to combine the output of multiple classifiers. Since

we believe that the errors are being made because of a few outlier frames with small probability values

dominating the final results, we are looking for a method that weighs each classifier (frame) equally. In the

proposed method, the decisions of all the classifiers (frames) are combined by voting. The difference is shown

in Figure 3.4. Thus, in the voting scheme, for each frame we find the most likely speaker Ŝ for that frame

by,

Ŝ = arg max
1≤k≤M

p(~xi|λk) (3.3)

The frames together function as an ensemble classifier. In an ensemble classifier, each classifier is run and

casts a ’vote’ as to who the correct speaker is. The votes are then collated and the speaker with the greatest

number of votes becomes the final classification. This is also a good way to prevent a few bad frames from

having a unreasonably large effect on the result, as each frame has an equal contribution to the final result.

Pseudo code for the algorithm is shown below.

10 Initialize a counter for each speaker to 0

20 For each frame j (LOOP 1)

30 For each Speaker i (LOOP 2)

40 Evaluate
p( ~xj |λi) =

M∑
k=1

pkbk( ~xj)

50 End For (LOOP 2)

60 Find the speaker v with maximum probability for the frame j

v = arg max
1≤k≤M

p( ~xj |λk)

70 Increment the counter for speaker v by one

80 End For (LOOP 1)

90 The speaker with the largest counter (i.e. largest number of votes)

is hypothesized as the correct speaker.
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Table 3.1: Voting on KING Case 1

Train Test Conv. Voting Improvement
(sec) (sec) (%ER) (%ER) (%)

5 5 56.30 44.82 20.40
5 10 52.66 39.18 25.61
5 20 51.34 33.93 33.90
10 5 29.89 24.45 18.21
10 10 25.17 17.09 32.11
10 20 23.85 13.85 41.95
20 5 12.85 13.00 -1.25
20 10 8.64 7.92 8.33
20 20 6.48 5.24 19.14

3.4 Evaluation

The voting method is evaluated in all four settings described before:

• Table 3.1 has results for Case 1: Training data taken from first two files and all remaining data from

first two files used for testing on KING.

• Table 3.2 has results for Case 2: Training data taken from first two files and all remaining data from

first four files used for testing on KING.

• Table 3.3 has results for Case 1: Training data taken from first two files and all remaining data from

first two files used for testing on SPIDRE.

• Table 3.4 has results for Case 2: Training data taken from first two files and all remaining data from

first four files used for testing on SPIDRE.

3.5 Conclusions

From the results presented, we can see that frame by frame voting gives a substantial increase in speaker

identification accuracy in almost all the cases, even with many different test and train lengths.

The best performance is seen when there is only a small amount of training data. This method seems to

overcome deficiencies in the model which arise due to insufficient training data. Models trained with very

little data, tend to be sharp and give spikes when faced with outliers. Also, speech from a single speaker

may not be well modeled by a mixture of a small number of Gaussians (which is all we can train with finite
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Table 3.2: Voting on KING Case 2

Train Test Conv. Voting Improvement
(sec) (sec) (%ER) (%ER) (%)

5 5 77.39 74.35 3.93
5 10 74.27 69.87 5.93
5 20 72.71 66.11 9.08
10 5 58.14 55.66 4.27
10 10 57.18 48.34 15.47
10 20 55.30 41.86 24.31
20 5 36.93 41.21 1.34
20 10 36.93 32.77 11.27
20 20 34.89 27.37 21.56

Table 3.3: Voting on SPIDRE for Case 1

Train Test Conv. Voting Improvement
(sec) (sec) (%ER) (%ER) (%)

5 5 19.7 12.09 38.63
5 10 16.85 7.42 55.96
5 20 12.37 3.73 69.85
5 30 4.62 2.85 38.38
10 5 7.84 5.18 33.93
10 10 5.88 1.91 67.52
10 20 2.94 0.56 80.95
10 30 1.73 0.09 94.8
20 5 5.6 4.06 27.5
20 10 3.45 2.19 36.52
20 20 2.19 0.84 61.64
20 30 1.07 0.56 47.66
30 5 4.62 2.85 38.38
30 10 2.75 1.91 30.55
30 20 2.57 0.84 67.32
30 30 1.07 0.33 69.16
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Table 3.4: Voting on SPIDRE for Case 2

Train Test Conv. Voting Improvement
(sec) (sec) (%ER) (%ER) (%)

5 5 64.75 57.38 11.38
5 10 63.12 54.34 13.91
5 20 60.5 50.14 17.12
5 30 73.25 68.53 6.44
10 5 58.45 54.25 7.19
10 10 56.26 49.49 12.03
10 20 54.11 44.35 18.04
10 30 52.94 39.26 25.84
20 5 48.74 46.27 5.07
20 10 44.82 42.11 6.05
20 20 41.69 39.31 5.71
20 30 40.1 36.51 8.95
30 5 47.67 47.67 0
30 10 44.07 44.02 0.11
30 20 41.92 38.75 7.56
30 30 40.1 35.39 11.75

training data), leading to some test data falling in the tails of these distributions. When voting is performed,

each frame is normalized to have a total contribution of 1 since each frame is allowed to vote for only one

speaker. Hence, outliers do not have the same large effect in a voting scheme. This is one possible reason as

to why this model works.

The improvement (while still noticeable) is not as great when the test data is from a different channel. This

method does not increase the generalization of the model. This encourages us to try different adaptation

methods to get better models, but then use voting to increase the accuracy. As described, voting performs

best when there is very little training data(resulting in sharp models) and larger amounts of test data (with

higher probability of having an outlier frame in the test utterance).



Chapter 4

Voting for speaker segmentation

4.1 Introduction

This chapter describes an application of the voting algorithm of the previous chapter to a two-speaker

segmentation problem. In speaker identification applications, it is often assumed that the speech file contains

data of a single speaker. However, in many applications such as identifying participants in a telephone

conversation or in a conference, speech from different speakers is intermixed. Under such circumstances,

classification of speech according to who is speaking becomes important. To do this, the beginning and end

points of each speakers voice are required. The process of locating the end points of each speakers voice in

an audio file is called speaker segmentation. In this chapter a novel method for two-speaker segmentation is

presented that assumes assumes no prior knowledge of the characteristics of the speakers. It is also shown

that frame based voting improves the performance of the segmentation [20].

4.2 Background

A good segmentation algorithm should meet the following requirements:

• It should not be overly sensitive to parameters such as window length, window overlap, and window

shift so that they can be selected as a trade off between speed and accuracy.

• It should have the ability to detect the speaker change points accurately.

• It should result in segments with a single speaker.

23
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• It should have optional refinement stages, which allow increased accuracy at the cost of speed.

4.3 Previous Work

Current methods to detect speaker changes are based on decoder based splitting, model based splitting or

metric based splitting. Several cluster distances have been tested in [21],[22].

Model based splitting uses models for each speaker, which are trained beforehand and is preferred when

prior audio information is available about the speakers. Metric based splitting finds speaker changes based

on maxima of some distance measure between two adjacent windows shifted along the speech signal. These

segmentation algorithms suffer from a lack of stability since they rely on thresholding of distance values.

The GLR is the most computationally expensive distance measure but produces the best results [23], showing

high and narrow peaks at speaker change points. The segmentation algorithm based on Bayesian Information

Criterion (BIC), cannot detect two speaker changes closer to one another in time, as BIC has been shown

to require longer speech segments [24],[25]. The content based indexing proposed in [26],[27] combines the

Generalized Likelihood Ratio(GLR) distance measure to detect the speaker change points and the BIC

technique to refine the results in order to fight over-segmentation.

4.4 Computing the Generalized Likelihood Ratio (GLR) distance

Take two segments of speech characterized by a sequence of spectral feature vectors, which we will denote

by xn, n = 1, ...N1 and yn, n = 1...N2, with a total of N = N1 + N2 vectors. Assume that the vectors

in each of these segments were generated by a multivariate Gaussian distribution, and that the segments

are statistically independent. We form the likelihood ratio of the observations with the unknown model

parameters replaced by their Maximum Likelihood estimates. L1 is the likelihood that the two segments

were generated by different speakers and L2 is the likelihood that the two segments were generated by the

same speaker. The ratio of L1 and L2 is called the likelihood ratio λ, and it can be expressed as

λ = λcov ∗ λmean =
L1
L2

(4.1)

If a = N1
N , S1 and S2 are the sample covariances for each of the two segments and W is their frequency

weighted average,

W =
N1

N
∗ S1 +

N2

N
∗ S2 (4.2)
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Then we have,

λcov = (
|S1|α ∗ |S2|1−α

|W |
)

N
2 (4.3)

From these we obtain a measure of distance between segments by taking the negative logarithm of the

likelihood ratio λ from Equation 4.1.

4.5 Proposed Method

The proposed method consists of two major parts, the initial speaker change detection and the refining of

models and change points. In many speech and speaker recognition tasks, models can be trained from a flat

start, but in such cases, the models used for segmentation may converge to speech classes (say consonants

and vowels) rather than to different speakers. To force the models to converge to models of the speakers,

we need spectral features across longer segments, (at least 1-2s in length), to capture the long term speaker

information but average out the short term speech information, that is, an initial segmentation that is more

likely to contain data of a single speaker. An effective solution to this problem is to use the GLR metric.

An algorithm to derive good initial speaker models is described in Section 4.5.3.

4.5.1 Silence Removal

A drawback of training HMMs on unlabelled data with silences is that some of the models may converge

to these silence regions. The method used for silence removal in this paper is similar to the second method

in the NIST stnr routine [28],a technique suggested by Ned Neuberg, Jordan Cohen and others. To save

computation, only the first 5-10s is used for detecting the speech-silence threshold. A signal energy his-

togram is generated by computing the root mean squared (RMS) power, in decibels, over a 20ms window

and then updating the appropriate histogram bin. The window is then shifted by 10 ms and the next power

is computed. A plot of these power coefficients is seen to be bi-modal, with a sharp low energy silence mode

and a flatter higher energy speech mode. The point of inflection between these two modes is the boundary

between speech and silence. However, during the course of experimentation it was found that the threshold

obtained at this point was too high and resulted in an increased number of deletion errors. The threshold

was chosen to be the peak of the mode corresponding to the noise or silence region, since the method is

robust to small silence regions.
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Figure 4.1: Distance computation for the GLR metric

4.5.2 Initial Segmentation

In this step, the dissimilarity between two contiguous windows of the parameterized signal is calculated. The

GLR distance is computed for a pair of adjacent windows of the same size, and the windows are then shifted

by a fixed step along the whole parameterized speech signal [27] as shown in Figure 4.1. A large distance

indicates change in speaker, whereas low values signify that the two portions of the signal correspond to the

same speaker.

Let D(i-1,i) denote the GLR distance between the (i − 1)th and ith speech sub-segment. The initial

segmentation is performed at peaks of this distance measure, which are above a threshold Thi. The difficulty

lies in setting the threshold, Thi without any prior knowledge. A robust threshold can be set based on the

previous N successive distances as follows [29],

Thi = α
1
N

N∑
n=1

D(i− 2n− 1, i− 2n) (4.4)

Where, N is the number of previous distances used for predicting the threshold, and α is a coefficient used
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as an amplifier and it is set to 1.0. The threshold determined in this way was found to work satisfactorily.

Thus, the threshold is set automatically and need not be derived experimentally on each new data set.

The above procedure splits the audio data into a series of segments, SEG1, SEG2, ..., SEGn defined by the

change points located at the peaks of the GLR distance metric.

4.5.3 Initialization of the GMMs for the two speakers/states

The segment between the starting point of the conversation and the first detected change point is assumed

to represent the first speakers data. The feature vectors of this segment are modeled as a GMM, λa.

The feature vectors of each segment are modeled using one GMM per segment as λ2, λ3, .....λn.

Ŝ = arg min
2≤k≤n

p(λk|SEG1) (4.5)

By Bayes rule this becomes,

Ŝ = arg min
2≤k≤n

p(SEG1|λk)p(λk)
p(SEG1)

(4.6)

where, p(λk) = 1
n is probability of choosing a particular model, p(SEG1) remains same for models λk, and

the set of feature vectors SEG1 = ~seg11, ~seg12, ... ~seg1T therefore,

Ŝ = arg min
2≤k≤n

p(SEG1|λk) (4.7)

Ŝ = arg min
2≤k≤n

σT
t=1log(p( ~seg1t|λk)) (4.8)

The model, Ŝ having the minimum a posteriori probability for SEG1, found using 4.8, is assumed to represent

the second speakers data. This step results in the initialization of the parameters of GMMs representing the

two states, to the values λa and the λk corresponding to the segment, Ŝ . In this way, each state is initialized

to a segment which is most likely to be from a different speaker.

4.5.4 Refinement of the clusters and change points

The two clusters created in the initialization step are now used as the two reference models (λa and λb) and

4.9 is computed for all the segments created by the speaker change detection step. The objective here is to

find the model which has the maximum aposteriori probability for each segment SEGy, where, y=2,3..n. If

the reference model, λa, shows a higher a posteriori probability compared to λb for SEGy, then SEGy will
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be labeled as the first speaker’s data, otherwise SEGy will be labeled as the second speaker’s data. The

segments are clustered based on the labels.

Ŝ = arg max
y=a,b

p(λm|SEGy) (4.9)

λm = 1
2 (any segment is equally likely to belong to either speaker). This is similar to the Viterbi training

algorithm for HMMs with all transition probabilities fixed and equal. A second iteration is performed to

obtain clusters of high purity for the two speakers. This procedure can be repeated till convergence. The

performance was found not to increase significantly beyond the fourth iteration.

4.6 Evaluation

A good segmentation task should detect the speaker change points accurately. There are two types of errors

related to speaker change detection, an insertion error occurs when a speaker change is detected although it

does not exist, a deletion error occurs when a true speaker change is not detected. To compare the proposed

approach with [26] [27] the same evaluation tasks, on TIMIT and SWITCHBOARD (published by NIST

and distributed by the LDC in 1992-3), are used. A set of 40 speakers (T) is taken from the dialect regions

DR1 and DR2 from TIMIT. A conversation is obtained by concatenating sentences of 2s on average from

two speakers taken from the set, T (clean speech). Two files from SWITCHBOARD, sw2005 and sw2007

are used in a second part of the comparison. Finally results are presented for some other SWITCHBOARD

files to show that the proposed method is robust to noise/ silence regions and other variations in the speech

signal.

12th order Mel-cepstral coefficients are computed for every frame of 16 ms length with 6.25ms shift for

parameter extraction. For speaker change detection, the length of each window is set to 1s and shifted by

0.5s. A four component GMM with diagonal covariance is used to compute the GLR distance between two

consecutive windows. For modeling the segments created, eight component GMM with diagonal covariance

is used. The method suggested in [26] involves two passes. In the first pass, a distance based segmentation

is done using a 2s window shifted by 0.1s. The BIC is then used during the second pass to refine the

previously detected change points. The number of deletion errors increases after the second pass, because

when BIC is used for segmentation long speech segments are required. Table 4.1 gives results obtained using

the segmentation technique given in [26]. The first two and the next two columns correspond to the results
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Table 4.1: Comparison of [26] and the Proposed Method on TIMIT and SWITCHBOARD. I - number of
Insertions, D - number of Deletions F-female, M-male, CPs - Change Points

Files
GLR,BIC [26] Prop.

1stPass 1stPass Meth.
I D I D I D

TIMIT 29 CPs 26 3 9 7 2 2
TIMIT 27 CPs 23 3 9 7 3 2

sw2005(M-M) 19 CPs 41 6 17 7 0 2
sw2008(F-F)30 CPs 31 17 18 17 4 3

obtained after the first and second pass respectively. The last two columns show the results obtained using

the method proposed.

One warning is that this is not a completely fair comparison since BIC is looking for the number of clusters,

but that information is already known in this case. It is just used as a baseline to compare performance.

The resolution of the proposed method is t=0.5s, and therefore, if any segment boundary is hypothesized

within the time interval, t0−δt < t < t0+δt of the reference boundary t0, it is regarded as correct. Utterances

of less than 0.5s duration were not taken into account while marking the correct change points. As can be

seen from Table 4.1, the proposed method decreases number of errors on SWITCHBOARD by 84.75%.

4.7 Voting for speaker segmentation

During the refinement stage of the Sub-section 4.5.4, the two clusters created in the initialization step are

now used as the two reference models (λa and λb) and 4.9 is computed for all the segments created by the

speaker change detection step, to find the model which has the maximum a posteriori probability for each

segment SEGy, where, y=2,3..n. Instead of this, we can use a frame based voting on each segment, similar

to Chapter 3. We then assign a label to each segment depending on which cluster gets the most number of

votes. The segments are clustered based on the labels, and the reference models λa and λb can be retrained

using the clustered segments. This procedure can then be repeated iteratively as before.

4.8 Evaluation of voting for speaker segmentation

The system is evaluated on the a series of SWITCHBOARD files and performance of the methods of Section

4.5 and 4.7 are compared. The algorithm for segmentation improves over the baseline GLR-BIC method. It
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Table 4.2: Comparison of conventional GMM evaluation and voting on SWITCHBOARD. I - number of
Insertions, D - number of Deletions F-female, M-male, CPs - Change Points

Files
Conv.. Voting

CharacteristicsGMM Method
I D I D

sw2001(F-F) 34 CPs 3 7 3 3 some background noise
sw2006(F-M) 25 CPs 7 4 2 2 large silences, noisy
sw2010(F-M) 45 CPs 9 4 2 4 some background noise
sw2015(F-M) 24 CPs 2 2 0 3 some background noise
sw2017(F-M) 37 CPs 14 3 6 1 some background noise
sw2018(F-F) 65 CPs 14 5 8 2 overlapped speech, background noise
sw2102(F-M) 52 CPs 7 4 2 2 noisy, few silences
sw2105 (F-M) 52 CPs 3 6 2 2 noisy, large silences

is seen that voting based segmentation results in a substantial improvement in the segmentation accuracy

over this new algorithm

4.9 Conclusions

In this chapter a novel method for two speaker segmentation [20] was described. A modification based on the

voting scheme of Chapter 3 was evaluated and shown to provide an appreciable improvement in accuracy.



Chapter 5

Combining voting and conventional

GMMs

5.1 Introduction

In Chapter 3, a frame by frame voting based classifier was proposed and evaluated. This was found to

give substantial improvement in many cases. In this chapter we look in more detail at the performance of

the voting based classifier. We note in some vary rare cases voting performs worse than conventional GMM

evaluation. We hypothesize that this is because when there are many possible speakers and limited test data,

the finite number of votes(=number of test frames) results in no single speaker as a clear cut winner. We

suggest a combination scheme that further improves performance of the voting based classifier, by decreasing

the number of competing speaker in a first pass using conventional GMM evaluation[19].

5.2 Effect of number of speaker on the voting classifier

One disadvantage of this method is apparent from Figure 5.1. Figure 5.1 shows the number of votes per

speaker in two experiments, one with 11 speakers and the other with 48 speakers, in a series of experiments

where the correct speaker is held constant. It is seen that the method is not as effective when there are a

large number of speakers on KING database. When the number of speakers increase, the peak in the voting

histogram becomes less prominent and hence speakers are more confusable. Though this would be common

in any method, it appears to be especially pronounced when voting is used.

31
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Figure 5.1: Effect of increase in number of speakers in the voting classifier

Another way to think of this is that the total number of votes is fixed for a given length of the test utterance,

and votes can only be assigned in a discrete manner. On the other hand, when probabilities are used, each

frame can contribute any amount (between 0 and 1) to any or all speakers.

5.3 What can we do?

Thus, using only the probabilities of the classical GMM we can extract two types of information

• Probability of the utterance given a model using multiplication

• Probable source of each frame and hence the entire utterance, using voting

It was observed that the errors made by the voting scheme and the classical GMM are in some sense

orthogonal. Very few (usually only 1) speaker(s) are common to the N best lists of both systems. This

suggests a natural method to overcome the limitations of the voting based identifier.

If voting is to be used in cases where many speakers are enrolled, it is essential that the number of competing

speakers is reduced by a first pass and then voting is used in the second pass. At the same time, if it is

required that the amount of computation should not be increased, the second pass should not require the

calculation of an entirely different set of probabilities.
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Table 5.1: Combination I on KING Case 1

Train Test Conv. Voting N=15 Impr. Voting N=20 Impr. Voting N=30 Impr.
(sec) (sec) (%ER) (%ER) (%) (%ER) (%) (%ER) (%)

5 5 56.30 44.46 21.04 44.26 21.39 44.42 21.11
5 10 52.66 39.58 24.85 40.10 23.86 40.06 23.94
5 20 51.34 35.37 31.10 35.65 30.55 37.17 27.59
10 5 30.85 20.21 34.50 21.89 29.05 24.17 21.66
10 10 27.37 13.93 49.12 15.41 43.71 17.01 37.87
10 20 25.65 10.72 58.19 11.60 54.76 13.77 46.33
20 5 13.37 8.28 38.02 7.40 44.61 9.20 31.14
20 10 9.40 4.52 51.91 3.40 63.83 4.76 49.36
20 20 7.60 2.96 61.05 1.24 83.68 2.16 71.58

The solution proposed is to perform a first pass using classical GMM and pick out the top N speakers,

that is the N speakers λj which have highest probability p( ~X|λj) of generating the utterance ~X. The

probabilities of each frame, for each speaker calculated using the speakers corresponding GMM are stored

for later processing. These top N speakers are then compared using the voting mechanism in a second pass.

The probabilities of each frame are the same as those calculated in the first pass and hence the stored values

may be reused.In this second pass, instead of multiplying the probabilities to find the best speaker, which is

what was done with classical GMMs, voting is performed as described in Chapter 3. Thus, the benefits of

both the classical GMM and the voting method may be obtained with negligible increase in computation.

5.4 Evaluation

The combination scheme(Combo1) was evaluated on the KING and SPIDRE databases. The percentage

improvement for different values of N (where N is the the number of best matching speakers remaining after

the first pass with classical GMM) is shown in the Tables 5.1, 5.2, 5.3, 5.3.

5.5 Conclusions

We see that in almost all cases, Combination method I with N=15 for KING and N=20 for SPIDRE, per-

forms better than either voting or conventional evaluation of GMMs. Since trivially N=1 is equivalent to

conventional GMM evaluation and N = Total Number of Speakers is equivalent to just the voting algorithm,

we can always find an N that is as good as the better one of these two.
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Table 5.2: Combination I on KING Case 2

Train Test Conv. Voting N=15 Impr. Voting N=20 Impr. Voting N=30 Impr.
(sec) (sec) (%ER) (%ER) (%) (%ER) (%) (%ER) (%)

5 5 77.39 72.79 5.95 72.63 6.15 74.79 3.36
5 10 74.27 67.27 9.43 67.47 9.16 69.87 5.93
5 20 72.71 63.91 12.11 65.63 9.74 67.39 7.32
10 5 58.14 50.38 13.35 51.62 11.22 53.54 7.91
10 10 55.30 44.06 20.33 44.22 20.04 46.58 15.77
10 20 53.98 38.54 28.61 37.62 30.32 40.78 24.46
20 5 42.78 34.53 19.27 34.45 19.46 37.05 13.38
20 10 37.09 26.09 29.67 26.37 28.91 28.65 22.76
20 20 33.65 20.49 39.12 21.53 36.03 23.09 31.39

Table 5.3: Combination I on SPIDRE for Case 1

Train Test Conv. Voting N=15 Impr. Voting N=20 Impr. Voting N=30 Impr.
(sec) (sec) (%ER) (%ER) (%) (%ER) (%) (%ER) (%)

5 5 19.70 11.58 41.23 11.53 41.47 11.62 41.00
5 10 16.85 7.42 55.96 7.47 55.68 7.70 54.29
5 20 12.37 3.03 75.47 3.55 71.32 3.59 70.94
5 30 9.71 0.79 91.83 1.40 97.12 1.87 80.77
10 5 7.84 3.92 50.00 4.76 39.29 4.81 38.69
10 10 5.88 1.82 69.05 1.96 66.67 1.87 68.25
10 20 2.94 0.61 79.37 0.70 76.19 0.51 82.54
10 30 1.73 0.09 94.59 0.09 94.59 0.14 91.89
20 5 5.60 3.41 39.17 3.31 40.83 3.22 42.50
20 10 3.45 1.77 48.65 1.54 55.41 2.05 40.54
20 20 2.19 1.03 53.19 0.56 74.47 1.03 53.19
20 30 1.07 0.61 43.48 0.05 95.65 0.84 21.74
30 5 4.30 3.22 25.11 2.99 30.47 3.13 27.21
30 10 2.75 1.73 37.29 1.87 32.20 1.59 42.37
30 20 2.57 0.98 61.82 1.63 36.36 0.75 70.91
30 30 1.07 0.42 60.87 0.70 34.78 0.28 73.91
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Table 5.4: Combination I on SPIDRE for Case 2

Train Test Conv. Voting N=15 Impr. Voting N=20 Impr. Voting N=30 Impr.
(sec) (sec) (%ER) (%ER) (%) (%ER) (%) (%ER) (%)

5 5 64.75 57.05 11.90 56.30 13.05 56.77 12.33
5 10 63.12 53.36 15.46 52.71 16.49 53.78 14.79
5 20 60.50 49.16 18.75 48.93 19.14 49.81 17.67
5 30 73.25 69.70 4.84 43.46 40.66 46.08 37.09
10 5 58.45 51.87 11.26 51.59 11.74 53.31 8.79
10 10 56.26 47.85 14.94 47.67 15.27 49.49 12.03
10 20 54.11 42.62 21.23 42.95 20.62 43.84 18.98
10 30 52.94 36.41 31.22 40.48 23.54 38.56 27.16
20 5 48.74 45.42 6.80 47.48 2.59 47.43 2.68
20 10 44.82 41.55 7.29 43.28 3.44 41.64 7.08
20 20 41.69 37.39 10.30 38.89 6.72 38.38 7.95
20 30 40.10 34.69 13.50 34.87 13.04 35.62 11.17
30 5 47.67 46.45 2.55 46.50 2.45 45.33 4.90
30 10 44.07 43.00 2.44 43.28 1.80 41.78 5.19
30 20 41.92 36.55 12.81 38.89 7.24 37.91 9.58
30 30 40.10 33.80 15.72 34.50 13.97 35.06 12.57

In most of the cases tested however, N as above was found to give either the best or close to the best

performance. This is most likely a function of the number of speakers and especially the type and amount

of test data used, and needs to be verified on a larger database with more speakers and more data for each

speaker.



Chapter 6

Median for speaker estimation

6.1 Introduction

In this chapter we continue the thought process of Chapter 3, which looked at speaker identification as

the problem of estimating the correct probability(using voting) from the probabilities of the GMMs when

presented with a test utterance. Since we are looking for a robust estimator invariant to outliers we try

the median. However, the median does not improve performance, perhaps because the data is not actually

very noisy – there are very few outlier frames and most frames are reliable. We then combine the median

classifier with the voting method similar to Chapter 5 and obtain very good performance.

6.2 Looking at Gaussian Probabilities again

Evaluation of GMMs for speaker recognition is done as per equation 6.1.

Ŝ = arg max
1≤k≤M

(p( ~X|λk))
1
N = arg max

1≤k≤M
[

T∏
t=1

((p(~xt|λk))]
1
N (6.1)

Thus, we find the geometric mean of the output probabilities of the GMM and use this as an indicator

of the correct speaker.

To decide what possible alternatives exist to the geometric mean, we explore the properties of the output

probabilities of Gaussian Mixtures. Looking at the Figures 3.3 and 3.3,we can see that though the correct

speaker’s probabilities are higher in most frames, there are some frames where it is lower than all the speakers

and some frames where some other speaker has much higher probability than the correct one. We therefore
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need an estimate of central tendency that is not sensitive to outliers.

The problem with the geometric mean is that it depends on each value in the series. Changing any value

changes the geometric mean at least a little. A measure of central tendency that is less sensitive to outliers,

may perform better.

If confronted with severely corrupted data, the behavior of an estimator can be described by its breakdown

point β. This is the smallest fraction of outliers, i.e. of data not obeying the assumed noise model, which

can cause the estimator to produce arbitrarily bad results.

As a simple example, consider n measurements xi = s + ηi of a signal s corrupted by additive noise ηi.

We further assume the noise to be Gaussian noise, i.e., P (η) ∼ exp(−η2/2σ2). The maximum likelihood

estimate s∗ of the signal is than given by a least-square fit, which in our example yields the mean of the

measurements, s∗ = 1/n,
∑

i xi, as estimation formula.

However, the widely used assumption of signals corrupted by additive Gaussian noise is slightly questionable.

Since extremely low probability values are assigned to large values of noise, these values distort the estimate

if they occur. A single large deviation in one the measurements, say xk, will cause the mean s∗ to deviate

arbitrarily far from the true value. It can be derived that the estimator has a breakdown point of β = 1
n ,

and asymptotically as n←∞ a breakdown point of 0. This is a property common to all least square based

estimators [30].

There exist other classes of estimators, called robust estimators, which can tolerate a non-zero percentage

of outliers. They are typically non-linear estimation schemes. A classical example of a robust estimator is

the median of n data points, which is insensitive to a few large outliers in its set of measurements. In fact,

this estimator has a breakdown point of 0.5, i.e., as much as 50% of the data can be corrupted before this

estimator fails.

The advantages of the median as an estimator are:

• The median is highly resistant to the effect of outliers.

• The median does not depend on the exact value of all numbers in the series, just their relative positions.

Thus, many values can be changed or corrupted without affecting the median value.

• As shown before, the correct speaker is

Ŝ = arg max
1≤k≤M

p( ~X|λk) = arg max
1≤k≤M

[
T∏

t=1

(p(~xt|λk)] (6.2)
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Taking log to base e on both sides, we obtain

Ŝ = arg max
1≤k≤M

ln(p( ~X|λk)) = arg max
1≤k≤M

[
T∑

t=1

(ln(p(~xt|λk))] (6.3)

Dividing both sides by N,

Ŝ = arg max
1≤k≤M

1
N

ln(p( ~X|λk)) = arg max
1≤k≤M

[
1
N

T∑
t=1

(ln(p(~xt|λk))] (6.4)

Thus, we are calculating the average of the log probabilities. The median of log probabilities is just

log of the median of the probabilities, since log is a monotonic function which retains ordering of the

terms. The median is a good estimate of mean in noise, so if the probabilities are noisy then median

is a better estimator than the mean.

We can use the median of the probabilities as an indicator of the right speaker. We estimate the true speaker

as:

Ŝ = arg max
1≤k≤M

median(p(~xt|λk)) (6.5)

6.3 Evaluation of Median as an estimator

In spite of the motivation presented above, the median as an estimator does not perform significantly better

than conventional evaluation of GMMs. This maybe because the data is not noisy enough that the median

would be significantly better. However, It was observed that the errors made by the voting scheme described

in Chapter 3, and the voting classifier are quite different. So, maybe similar to the combination scheme

described in Chapter 5, we can perform a first pass using the median estimator, and pick out the top N

speakers, that is the N speakers λj which have highest probability p(~xi|λj) of generating the frame ~xi. The

probabilities of each frame, for each speaker calculated using the speakers corresponding GMM are stored

for later processing. These top N speakers are then compared using the voting mechanism in a second pass.

The probabilities of each frame are the same as those calculated in the first pass and hence the stored values

may be reused.In this second pass instead of finding the median of the probabilities to find the best speaker,

voting is performed as described in Chapter 3. The benefits of both the median and the voting method may

be obtained with negligible increase in computation.
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Table 6.1: Combination II on KING Case 1

Train Test Conv. Median N=15 Impr. Median N=20 Impr. Median N=30 Impr.
(sec) (sec) (%ER) (%ER) (%) (%ER) (%) (%ER) (%)

5 5 56.30 44.58 20.82 43.62 22.53 44.38 21.18
5 10 52.66 39.38 25.23 38.98 25.99 40.62 22.87
5 20 51.34 34.65 32.50 34.89 32.03 37.01 27.90
10 5 30.85 19.93 35.41 21.61 29.96 23.97 22.31
10 10 27.37 14.09 48.54 15.09 44.88 16.93 38.16
10 20 25.65 11.16 56.47 11.48 55.23 13.37 47.89
20 5 13.37 8.08 39.52 7.32 45.21 9.12 31.74
20 10 9.40 4.48 52.34 3.48 62.98 4.80 48.94
20 20 7.60 2.96 61.05 1.20 84.21 2.12 72.11

Table 6.2: Combination II on KING Case 2

Train Test Conv. Median N=15 Impr. Median N=20 Impr. Median N=30 Impr.
(sec) (sec) (%ER) (%ER) (%) (%ER) (%) (%ER) (%)

5 5 77.39 72.75 6.00 73.19 5.43 74.79 3.36
5 10 74.27 67.67 8.89 67.59 9.00 70.15 5.55
5 20 72.71 64.27 11.61 65.43 10.02 67.51 7.15
10 5 58.14 49.98 14.04 51.18 11.98 53.38 8.19
10 10 55.30 44.14 20.19 43.50 21.35 46.42 16.06
10 20 53.98 37.74 30.10 36.53 32.32 40.38 25.20
20 5 42.78 34.29 19.83 34.05 20.39 36.57 14.50
20 10 37.09 26.33 29.02 26.33 29.02 28.65 22.76
20 20 33.65 21.29 36.74 20.85 38.05 23.05 31.51

6.4 Evaluation of Combination method 2

The combination scheme II(Combo2) was evaluated on the KING and SPIDRE databases. The percentage

improvement for different values of N (where N is the the number of best matching speakers remaining after

the first pass with classical GMM) is shown in the tables below.

6.5 Conclusions

We see that in almost all cases, Combination method II with N=20 performs much better than conventional

evaluation of GMMs. Since trivially N = Total Number of Speakers is equivalent to just the voting algorithm,

we can always find an N that is as good as the voting algorithm. Thus, the median estimator in combination

with the voting estimator gives performance as good as or slightly better than the Combination I described

in Chapter 5.
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Table 6.3: Combination II on SPIDRE for Case 1

Train Test Conv. Median N=15 Impr. Median N=20 Impr. Median N=30 Impr.
(sec) (sec) (%ER) (%ER) (%) (%ER) (%) (%ER) (%)

5 5 19.70 11.44 41.94 11.58 41.23 11.58 41.23
5 10 16.85 7.33 56.51 7.38 56.23 7.70 54.29
5 20 12.37 3.13 74.72 3.31 73.21 3.59 70.94
5 30 9.71 1.26 87.02 1.49 96.93 1.49 84.65
10 5 7.84 3.83 51.19 4.62 41.07 4.86 38.10
10 10 5.88 1.73 70.63 1.91 67.46 1.87 68.25
10 20 2.94 0.61 79.37 0.70 76.19 0.51 82.54
10 30 1.73 0.00 100.00 0.09 94.59 0.14 91.89
20 5 5.60 3.31 40.83 3.27 41.67 3.17 43.33
20 10 3.45 1.82 47.30 1.54 55.41 2.05 40.54
20 20 2.19 0.98 55.32 0.61 72.34 0.98 55.32
20 30 1.07 0.61 43.48 0.05 95.65 0.84 21.50
30 5 4.62 3.17 31.39 2.94 36.36 3.08 33.33
30 10 2.75 1.77 35.59 1.82 33.90 1.63 40.68
30 20 2.57 0.93 63.64 1.59 38.18 0.79 69.09
30 30 1.07 0.37 65.22 0.75 30.43 0.28 73.91

Table 6.4: Combination I on SPIDRE for Case 2

Train Test Conv. Median N=15 Impr. Median N=20 Impr. Median N=30 Impr.
(sec) (sec) (%ER) (%ER) (%) (%ER) (%) (%ER) (%)

5 5 64.75 57.00 11.97 55.98 13.55 56.72 12.40
5 10 63.12 53.31 15.53 52.85 16.27 53.83 14.72
5 20 60.50 49.30 18.52 48.88 19.21 49.91 17.52
5 30 73.25 VALUE VALUE 43.23 40.98 45.33 38.12
10 5 58.45 51.82 11.34 51.87 11.26 53.17 9.03
10 10 56.26 47.57 15.44 47.67 15.27 49.35 12.28
10 20 54.11 42.30 21.83 42.72 21.05 44.07 18.55
10 30 52.94 36.27 31.48 40.34 23.81 38.61 27.07
20 5 48.74 45.38 6.90 47.48 2.59 47.39 2.78
20 10 44.82 41.55 7.29 43.09 3.85 41.69 6.98
20 20 41.69 37.21 10.75 39.26 5.82 38.42 7.84
20 30 40.10 34.50 13.97 34.83 13.15 34.73 13.39
30 5 47.67 46.22 3.04 46.50 2.45 45.33 4.90
30 10 44.07 43.00 2.44 43.09 2.22 41.88 4.98
30 20 41.92 36.65 12.58 39.03 6.90 37.86 9.69
30 30 40.10 33.80 15.72 34.55 13.85 35.01 12.69



Chapter 7

Conclusions and Future work

7.1 Conclusions

• Frame by frame voting gives a substantial improvement in speaker recognition in almost all cases.

The decrease in error rate is up to 94.8%(a factor of 19 improvement) and 25.72%(a factor of 1.3

improvement) on average across all the test sets.

• The voting scheme for speaker identification can be used to provide a substantial improvement in the

task of two-speaker segmentation.

• If conventional evaluation of GMMs is used to reduce the number of speakers, before applying voting,

a further decrease in error rate is obtained in all cases. The decrease in error rate is by as much as a

factor of 18 and a factor of 1.5 on average.

– For N=15 up to 94.59% and 34.75% on average

– For N=20 up to 94.59%and 33.56% on average.

– For N=30 up to 91.89% and 32.60% on average.

• Using the median instead of mean of log likelihoods does not improve the accuracy

• Using the median followed by a frame by frame voting, performs the best among all the methods

evaluated providing a decrease in error rate by as much as a factor of 20 or a factor of 1.5 on average.

– For N=15 up to 100.00% and 33.67% on average.

41
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– For N=20 up to 94.59% and 32.45%on average.

– For N=30 up to 91.89%and 31.08% on average.

7.2 Future Work

• Training the GMMs using the median may provide improvement when the median is used in the

evaluation stage.

• Robust estimators other than the median may be useful in speaker identification

• Detecting outlier frames more systematically may provide an improvement in accuracy.
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