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Amen!
Blessing and glory and wisdom and thanksgiving and honor and power and might
be to our God forever and ever!
Amen.

—Revelation 7:12 —



Abstract

Accurate recognition of spontaneous speech is one of the most difficult problems in speech recognition
today. When speech is produced in a carefully planned manner, automatic speech recognition (ASR)
systems are very successful at accurate recognition and transcription. In response to casual speech, ASR
systems produce more than twice as many errors compared to recognition of the same speech read

carefully.

In thisthesis, we have developed a practical agorithm to improve the recognition accuracy of ASR
systems when transcribing spontaneous speech. We have found that normalizing the speech features so
that every sound unit (“phone”) has the same duration allows speech recognition models to characterize

and recognize speech more accurately.

ASR systems use hidden Markov models (HMMs) to model the sound units from which speech signals
are composed. It iswell known that HMM s do not accurately model the average phonetic variation or the
variability introduced into these durations by the casual production of speech. By normalizing the
duration of every speech sound unit, we are eliminating a source of variability in the modeling of speech
that can contribute to increased word recognition errors.

When the boundaries between sound units are known a priori, the duration normalization approach is able
to achieve substantial improvements in recognition accuracy. Automatic identification of unknown
boundary locations, however, has proven to be a difficult problem. When speech is highly spontaneous,
thereis often little or no acoustic evidence in the speech signal to indicate transitions from one sound unit
to the next. Duration normalization depends on accurate boundary locations, and even our most accurate
automatic segmentation technique when applied in isolation is not sufficiently accurate for duration
normalization to perform effectively.

Because our efforts to improve automatic segmentation of spontaneous speech have not been very
fruitful, we have focused on the devel opment of duration normalization approaches that are more robust
to boundary detection errors. We have also explored the use of duration normalization based on
probabilistic identification of phone boundaries. Our most effective system makes use of three simple
variants of duration normalization and an agorithm that can combine multiple recognition hypotheses
into a single best hypothesis. With this multi-pass approach, we have achieved significant improvements
in recognition accuracy by applying duration normalization to a variety of spontaneous speech databases,
including alarge-scal e broadcast news corpus. These techniques achieve arelative reduction in word
error rate of 3.9%—7.7%, depending on the size and complexity of the recognition task.
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1: Introduction:
Normalizing Durationsto I mprove Spontaneous Speech Recognition

Accurate recognition of spontaneous speech is one of the most difficult problems in speech recognition
today. In thisthesis, we have proposed and devel oped a technique to normalize the incoming speech
feature sequence so that every sound unit (“phone’) has the same duration. By normalizing the speech
features in such a manner, speech recognition models are better able to characterize the relevant

information found in speech signals, especially when the speech is highly spontaneous.

In this chapter, we present a brief introduction to the problem of modeling and recognizing spontaneous
speech. We close this chapter with an overview of the thesis document which presents our duration

normalization technique in its entirety.

1.1 Improving the Recognition of Spontaneous Speech: A Challenging Task

When speech is produced in a carefully planned manner (e.g. the speech of a broadcast news anchor),
automatic speech recognition (ASR) systems are very successful at accurate recognition and transcription.
The performance of ASR systems in response to casual speech produces more than twice as many errors
compared to the recognition of the same speech read carefully.

In order for speech recognition technology to be viable and useful in everyday applications (e.g. meeting
transcription, telephone-based systems), we need to devel op methods to improve recognition accuracy on
spontaneous conversational speech. The objective of this thesisis the development of a practical
algorithm to improve the strength and robustness of core speech recognition technology when it is applied
to transcribe spontaneous speech.

There are many factors that contribute to the difficulty of automatically recognizing spontaneous speech.
One of the main difficultiesis caused by the variation in duration of the examples used to train
recognition models for a given sound unit (“ phone”). In spontaneous speech, the duration varies greatly
each time a sound is produced. In contrast, the duration variation in carefully-enunciated speech isnot as
severe. When the training examples for a given sound class vary greatly in duration, it is difficult for an
ASR system to properly model that class. When the underlying sound units are modeled poorly, the
overall ASR system accuracy degrades.

Our strategy in thisthesisisto reduce the duration variability of the tokens used to train an ASR system
in order to improve the accuracy when recognizing spontaneous speech. Our earliest attempts to combat

the duration variability problem included the idea of mapping spontaneous sound durations back to their



carefully-read counterparts prior to recognition. In the end, we found that normalizing the duration of all
sound units to a common duration provided a ssimple and effective method for improving ASR accuracy

when speech is highly spontaneous.

1.2 Thesis Overview

Chapter 2 begins with areview of speech recognition technologies that are relevant to thisresearch. It
also contains areview of related research in explicit phone duration modeling in ASR systems. Chapter 3
contains a brief overview of the SPHINX-I1I recognition system and the speech corpora used in this
research.

The specific detail s of our duration normalization technique are presented in Chapter 4. Results indicate
we can successfully improve recognition accuracy on both spontaneous and carefully enunciated speech if
we know the locations of the boundaries that separate the underlying sound units. In Chapter 5, we
address the difficult problem of blind derivation of consistent and accurate phone boundaries. We
explored and evaluated a variety of automatic segmentation techniques and found that segmentation

errors have a have a strong impact on duration normalized recognition accuracy.

In Chapter 6, we detail modifications and extensions of the duration normalization algorithm designed to
cope with the imperfections in automatically-derived segmentations. In Chapter 7, we present a “ soft” re-
formulation of the duration normalization algorithm that can make use of probabilistic segmentation

information. We close the thesis in Chapter 8 with ideas for future work and conclusions drawn from this

research.



2: An Overview of Speech Recognition and Related Research
This chapter presents basic background information relevant to the thesis. We start with a brief overview

of automatic speech recognition systems, including a discussion of how recognition features are derived
and how hidden Markov models (HMMs) are used to characterize and model speech. We also cover the
use of HMMs in automatic segmentation of speech into sound units, aswell in automatic recognition of
speech. Next isadiscussion of previous attempts at incorporating duration modeling into recognition
systems. We then discuss some automatic techniques to combine the outputs of multiple recognition
systems and choose the best overall hypothesis. We close with adiscussion of missing-feature

reconstruction techniques which are used extensively in our normalization procedures.

2.1 Automatic Speech Recognition Systems

Speech recognition systems follow the standard, two-stage pattern classification paradigm (Rabiner &
Juang, 1993). Stage 1 isto extract relevant features from the observed signal, and Stage 2 is to make some
decision based on the features that are observed. A generic pattern recognition system isillustrated in
Figure 2.1.

observed
features .
obgerved feature s pattgm decision
signal extractor classifier

Figure 2.1 Block diagram of a simple pattern classification system. Speech recognition systems are complex pattern
classification systems.

In automatic speech recognition, the observed signal is a measurement of air pressure fluctuations
recorded by a microphone. The speech is captured as a one-dimensional, time-varying signal. The feature
extractor converts the speech signal into a parameterized sequence of feature vectors prior to
classification. Recognition systems begin by breaking the speech signal into frames. A frame of speechis
ashort, windowed segment on the order of 20-30 msin duration. Each frame of speech isthen typically
converted to a vector of mel-frequency cepstral coefficients (MFCCs) (Davis & Mermelstein, 1980) or
variants of MFCCs (Hermansky, 1990).

For recognition purposes, a speech utterance is modeled as a sequence of sound units. The speech pattern

classification engine attempts to automatically identify the correct sequence of sound units found in the



speech signal based on the observed sequence of feature vectors. Typical recognition systems use the
phonemes in the language as basic sound units, but other units of varying durations are possible (e.g.

phoneme sequences, syllables, words, word compounds).

Let O represent the observed sequence of feature vectors extracted from the speech utterance being

recognized. Speech recognition engines search for the optimal sequence of words W which maximizes
the likelihood of the observation sequence O . The standard Bayesian optimal classification equation for

speech recognition is as follows:

W =arg Vrvnax{P(o|vv)P(w)} (2.1.1)

Theterm P(O[\N) is called the acoustic model; it measures the likelihood that the observed sequence of

feature vectors O corresponds to a given sequence of words W. Theterm P(W) is caled the language

model; it isan a priori measurement of the likelihood that the given sequence of words W occursin the
language.

2.2 Speech Features

As mentioned earlier, recognition systems use mel-frequency cepstral coefficients (MFCCs), a
parametrical representation derived from the speech signal, to model and recognize speech. The process
of converting speech to MFCCsiis an efficient approximation of the transformations that the human
auditory system makes before sending speech information to the brain. The standard MFCC extraction
algorithmisillustrated in Figure 2.2.
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Figure 2.2 Block diagram of the speech feature extraction process. Our work on duration normalization is
performed in the log spectral domain.

Each frame of speech is multiplied by a Hamming window and transformed to the frequency domain by
the Discrete Fourier Transform (DFT). This process of segmenting asignal in time, applying awindow to
each segment, and transforming to the frequency domain is known as the Short-Time Fourier Transform
(STFT) (Nawab & Quatieri, 1988). The magnitude of the resulting STFT coefficientsis computed, and
the resulting coefficients are squared, disregarding the phase information that is not necessary for accurate
speech recognition.

A bank of triangular shaped mel filtersis then applied to the magnitude-square STFT coefficients. The
filter’ striangles are spaced according to the mel frequency scale, which is approximately linear at lower
frequencies and logarithmic at higher frequencies. Adjacent triangles overlap by 50%. The signal energy
contained in each triangle is computed, and the resulting values compose a vector of mel-spectral
coefficients corresponding to the speech frame. The natural logarithm is then applied to the mel-spectral

coefficients, producing a vector of log mel-spectral coefficients.

The sequence of log mel-spectral vectors corresponding to the entire speech signal composes the log mel
spectrum of the speech signal. In thisthesis, we will typically refer to these values as the log spectral
coefficients or log spectrum of the speech signal. Note that our work on duration normalization is

performed in the log spectral domain, prior to the final transformation into MFCC coefficients.



Finally, the Discrete-Cosine Transform (DCT) is applied to each log spectral vector to derive the mel-
frequency cepstral coefficients. The output of the DCT istruncated (typicaly the first 13 coefficients are
kept) to form the vector of MFCCs for each frame.

2.3 Hidden Markov Models (HMMys)

A hidden Markov model (HMM) (Baker, 1975) is a probabilistic state machine that can be used to model
and recognize speech. Consider the speech signal as a sequence of observable events generated by the
mechanica speech production system which transitions from one state to another when producing speech.
Theterm “hidden” refersto the fact the state of the system (i.e. the configuration of the speech
articulators) is not known to the observer of the speech signal. Speech recognition systems use HMMsto
model each sound unit in the language. In this thesis, we have devel oped a method to help overcome

some of the difficulties that occur when HMMs are used to model and recognize spontaneous speech.

In an HMM, each state is associated with a probability distribution that measures the likelihood of events
generated by the state. These distributions are known as output or observation probability distributions.
Each state is also associated with a set of transition probabilities. Given the current state, transition
probabilities model the likelihood that the system will be in a certain state when then the next observation
is produced. Typicaly, Gaussian distributions are used to model the output distribution of each HMM
state. The transition probabilities determine the rate at which the model transitions from one state to the
next, giving the model some flexibility with respect to sound units which may vary in duration. Figure 2.3
shows atypical left-to-right HMM topology used to model speech sounds. The output distributions and

transition probabilities are also illustrated.

Figure 2.3 Diagram of atypical HMM with explicit output distributions and transition probabilities. Transition
probability values are shown on the arrows that transition from one state to the next. Output distributions are shown
as Gaussian pdf curves above each state.



State-of -the-art recognition systems today make use of Continuous Density HMMswhich model the
feature vectors directly. The output distribution of Continuous HMMs s a continuous probability density
function (pdf) which contains a corresponding likelihood score for every possible feature vector without
guanti zation. A mixture Gaussian distribution with a finite number of densities is the most common pdf
used for Continuous HMM modeling because it has a general shape and parameters that can be
automatically re-estimated during training. Large-scale recognition systems trained on large databases
train mixture models on the order of 16 or 32 Gaussians per state.

In cases where there is a limited amount of speech training data available, Semi-Continuous Density
HMMs are used. Semi-Continuous HMMs share a codebook of mean and variance vectors among all
states in the HMM acoustic model. The typical codebook size is 256 vectors that are obtained by k-means
clustering. Once the codebook is formed, the mixture weights corresponding to each of the 256 means and

variances are trained independently for each state in the HMM model.

Given an ensemble of transcribed speech data, the HMM model parameters are automatically learned
using the Baum-Welch or forward backward algorithm (Baum, 1972; Rabiner & Juang, 1993). Baum-
Welch training is an iterative, expectation-maximization procedure which uses the training data to derive
an optimal set of HMM transition probabilities and output distributions. The derived model parameters
are optimal in the maximum-likelihood (ML) sense, i.e. the resulting model parameters maximize the
likelihood that the training data were generated by the HMM.

When speech is spontaneous, thereis a high level of variability in the training examples for each sound
unit. This variability makes it more difficult for the Baum-Welch algorithm to reliably estimate the
corresponding HMM parameters for each sound unit. The inherent variability of spontaneous speech also
makes recognition of spontaneous speech via HMMs problematic. This thesis attempts to address these
weaknesses and improve the effectiveness of HMM-based speech recognition systems.

2.4 Viterbi Alignment of a Transcript to Speech Data for Segmentation

In thisthesis, we must be able to segment the speech signal into sound units prior to normalization. The
following technique alows us to automatically derive the location of phoneme boundaries assuming we
know the correct transcript of the words spoken.

Given the observed feature vectors derived from a speech signal, a set of HMM acoustic model
parameters, and atranscript of the speech, the Viterbi agorithm (Viterbi, 1967) is used to find the most

likely time alignment of the transcript to the speech, and thus the corresponding phoneme segmentation



information. This process is commonly referred to as Viterbi forced alignment, or simply forced

alignment or Viterbi alignment.

Mathematically, the problemis described as follows. Let O be the sequence of feature vectors derived
from the speech signal. Let wc be the word sequence contained in the correct transcript. Let A be the
HMM acoustic modeling parameters. Our goal isto find the state sequence §={§,,5,,...,5;} that

maximizes the probability that the HMM generated the observed speech data, i.e. find S such that:
S=arg max{ZIn(P(si |s,_1,wC,O,/]))} (2.4.1)

The Viterbi algorithm makes afundamental assumption: when computing the probability scores for each
state at time t+1, we need only the probahility score of the most likely state sequence up to timet. The
output of the Viterbi algorithmisthe most likely sequence of HMM states that generated the observed
feature sequence.

To perform Viterbi alignment, we form an HMM model for each word in the sentence by concatenating
the HMMs for the sound units that make up the word. The sentence HMM is then formed by
concatenating the word HMM models with an optional silence HMM between each word. Once the HMM
isbuilt, the Viterbi algorithm aligns the speech features to the sentence HMM and produces a listing of
the most likely state for each frame of speech. This state-by-state information can then be used to derive
alignment information of the transcript to the speech on a phone-by-phone or word-by-word basis.

2.5 “Decoding”: Recognizing and Automatically Transcribing Speech
The heart of automatic speech recognition is the search for the most likely word sequence given the
observed features extracted from the speech signal. Thisis commonly referred to as decoding or

recognizng the speech signal.

When decoding speech, we begin by constructing a search graph which contains every word in the
recognition vocabulary. Each word is then replaced by the HMMs that correspond to the sequence of
sound units which make up the word. As aresult, the search graph is alarge HMM, and recognition is
performed using the Viterbi algorithm to align the search graph to the speech features derived from the
utterance. Because the Viterbi algorithm is used to find the most likely word sequence, the decoding
procedure is said to be done via Viterbi search. For a complete description of the Viterbi search algorithm
used to decode speech, see (Jelinek, 1997).



Note that the search for the most likely word sequence is constrained by the language model being used.
Practical recognition systems use context dependent trigram language models, which assign probabilities
the occurrence of sequences of three words in the language. The search graph derived for trigram
language models is complex. If the recognition vocabulary contains N words, the number of statesin the
search graph is proportional to N The vocabulary size for a practical system is on the order of 10,000
words, which makes a search of the complete trigram search graph intractable. In practice, a beam search
isused to prune away unlikely paths at every step in the search process. The beam width parameter which
controls the pruning is chosen so that the recognition is both practical and accurate.

The figure of merit for automatic speech recognition system is known asthe word error rate (WER). The
hypothesized word sequence generated by the decoder is aigned to the reference transcript for the speech
data using a non-linear string matching algorithm (Pallet et al, 1990). There are three possible types of
errorsthat can be made: Aninsertion error occurs when the ASR system generates aword that does not
correspond to any word in the reference transcript. A deletion error occurs when the reference transcript
contains aword that has no corresponding word in the ASR hypothesis. A substitution error occurs when
the corresponding word in the ASR transcript is different than that of the reference transcript. The word
error rate isthe ratio of the total number of errors made (insertions, deletions, and substitutions) to the
total number of wordsin the reference transcript. WER scores are typically reported as percentages. Note
that given this formulation, WER scores greater than 100% are possible.

2.6 Explicit State Duration M odeling with HMM s
The inherent probability distribution controlling the duration of each state in a standard HMM framework

is exponential in form:
p(d)=(a;)"(t-a) (26.1)

where a; is the probability of transition from statei to itself, and d is the number of consecutive
observations that correspond to state i. For modeling speech signals, this distribution is inappropriate and
has been characterized as aweakness of the speech HMM. In the 1980s, researchers experimented with a
framework that can incorporate explicit state duration models into an HMM framework (Ferguson, 1980;
Russell & Moore, 1985; Levinson, 1986). This framework is known as a Hidden Semi-Markov Model
(HSMM) and isillustrated in Figure 2.4.
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Figure 2.4 Illustration of a Hidden Semi-Markov Model (HSMM) with explicit state duration distributions p(d)
corresponding to each state.

In the HSMM, the sdlf transition probabilities have been replaced by the explicit state duration densities
pi(d), and the model is only allowed to transition to the next state after the duration density specifies that
the appropriate number of observations have taken place. Note that if p;(d) is set to the exponential
density of Eq. 2.6.1, then the HSMM framework is equivalent to the standard HMM.

The advantage of HSMM isthat the quality of the modeling is significantly improved. When
implementing HSMM recognition systems, the state duration distributions are truncated to a maximum
duration value D for practical reasons. Using a parametric framework for the duration densities of the
HSMM, Levinson extended the Baum-Welch algorithm and proved that the training would converge
(Levinson, 1986). Recognition with HSMMsiis performed by an extension of the Viterbi algorithm which
allows for the computation of the probability at a given frame based on the values at D preceding frames
(instead of just 1 preceding frame).

However, there are severa drawbacks: Thereis alarger number of parameters (D) associated with each
state which must be estimated from the data. Direct implementation of the algorithm increased
computation by afactor of D?. Parametric formulations are more efficient, with computation increased by
afactor of D. The storage and computation requirements for the extended Viterbi algorithm for HSMM-
based decoding are increased by a factor of D aswell.

Researchers observed that although the duration modeling quality of HSMM-based systems was better at
the state level, the WER improvements observed were small, especially for connected word recognition
tasks. Consequently, this approach has not been widely incorporated in state-of-the-art recognition
systems today.

2.7 A Brief Overview of Other Related Research in Duration Modeling
Duration modeling research focuses on the devel opment of accurate statistical models for capturing and
predicting the phoneme duration information observed in natural speech. It is generally accepted that
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duration information should play an important role for speech when speech is highly spontaneous with

large changes in speaking rate.

While we are not trying to model duration explicitly in our research, prior work on duration modeling is
relevant to proper segmentation and decomposition of the speech waveform prior to applying our
techniques. At the end of this section, we report previous attempts made by duration-modeling researchers

to normalize for the effects of varying phone duration.

Duration modeling research began in the 1970s with a focus predicting the proper duration of each phone
for natural-sounding speech synthesis applications. Umeda and Klatt focused on rule-based approaches to
explain and generate natural segmental duration behavior (Umeda, 1975, 1977; Klatt, 1973, 1976). They
were both able to predict segment durations and explain segmental duration variations with reasonable

accuracy.

In the late 1980s, duration modeling research focused on models that could be applied to recognition. Port
et al. examined words produced by different speakers and at different speech rates and attempted to
capture the relevant syllable timing information (Port et al., 1988). They used manually derived
segmentations of words into primitive units (e.g. stop closures, fricatives, vowels) and discriminant
analysisto extract relevant information for the differentiation of wordsin a small vocabulary recognition
system. They were successful when words varied dramatically in consonant voicing and stress patterns.
They aso observed that uniform scaling to eliminate tempo variation as a duration normalization
approach would be less effective since changesin overall speech rate do not uniformly affect the
underlying segmental durations. In 1988, Crystal and House used Hidden Markov Models (HMMs) with
carefully tailored topologies to derive mathematical fits to the distributions of the durations of different
classes of phones (Crystal & House, 1988). They a so postulated a method for embedding their models
into a speech recognition framework.

In the early 1990s, the focus was on more elaborate duration models for speech synthesis. Campbell
argued that a hierarchical framework is essential to properly capture and model speech timing information
(Campbell & Isard, 1991; Campbell 1992). His models attempted to capture duration information at the
phrase, foot, and syllable level. The final phonetic segment duration information could then be derived
from the resulting interaction of those higher level effects. Campbell observed that while syllable duration
iswell-predictable, prediction of duration at the phone level is more difficult because there is an inherent
relative freedom of phonetic duration variation within a syllable.

More recently, work has again focused on employing duration information to improve speech recognition

accuracy. Sinceit is difficult to incorporate explicit duration information into the HMM itself, most
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duration work to date has focused on post-processing. Pitrelli employed a hierarchical recognition model
based on phoneme duration (Pitrelli, 1990). He showed a 19% reduction in relative WER on alimited
vocabulary, isolated-word recognition system when his models were applied to rescore recognition
hypotheses based on duration information. Osaka et al. created a word recognition system which adapted
to speaking rate (Osaka et al., 1994). Their procedure used phoneme duration as an estimate for speech
rate. They normalized phone duration based on the average vowel duration and the average duration of
each phone classto yield an increase in accuracy for a system with a 212-word vocabulary.

Jones and A nastasakos used duration information as a post-processing step to improve recognition
accuracy (Jones & Woodland, 1993; Anastasakos et al., 1995). They both used duration modelsto re-
score the N-best hypothesis list produced by an HMM-based recognizer. Anastasakos noted that the N-
best paradigm is advantageous because it provides phoneme boundary information and speaking rate
information. In both sets of experiments, duration models were devel oped for automatically-clustered sets
of “dow” and “fast” segments. Jones speech-rate measure was based on average normalized phone
duration, and the rel ative utterance speaking rate was based on the average normalized phone duration in
the utterance. Anastasakos' rate measurement was based on observations from a given phone segment as
well as the context of asmall number of surrounding phone segments. Both researchers attempted to
normalize phone duration with respect to their rate estimations by considering phone duration as a
function of speaking rate. Jones showed a 10% reduction in relative WER on the TIMIT database from a
baseline of 13.6%. Anastasakos showed a 10% reduction in relative WER on the WSJ database from a
baseline of 7.7%. These results indicate that recognition accuracy can be improved when duration
information is properly modeled.

2.8 “Hypothesis Combination”: Automatic Combination of Multiple Hypothesized Speech
Transcripts

Combination of multiple recognition hypothesesis a successful technique for compensating for noisy
speech. Hypothesis combination can be performed on the output of various recognition systems, or on the
output of a single recognition system recognizing multiple feature streams. The success of combining

recognition hypotheses depends on the “ heterogeneity” of the information sources being combined.

The Nationd Institute of Standards and Technology (NIST) developed a system for hypothesis
combination known as Recognizer Output Voting Error Reduction (ROVER) (Fiscus, 1997). The
ROVER system makes use of avoting scheme to combine the final recognition hypotheses of multiple
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recognition systems. ROV ER has been successfully employed in a series of Broadcast News (HUB4) and
Conversational Speech (HUBS) evaluations.

While working with the Speech In Noisy Environments (SPINE) evaluation conduced by the Naval
Research Labs (NRL) in August 2000, Singh et al proposed a parallel hypothesis combination scheme
based on word-graphs in order to compensate for the effects of speech utterances with very low signal-to-
noise ratios (SNRs) (Singh, et al., 2000). In thisthesis, we make use of Singh’s word-graph hypothesis
combination method to combine recognition hypotheses derived from multiple time warpings of a speech

utterance. The details of word graph-based hypothesis combination are presented below.

Initially, the word hypotheses obtained from parallel recognition of multiple feature streams are combined
into aword graph. Each word in the hypothesi s represents a node in the graph, and the acoustic score of
each word is associated with the corresponding graph node. Next, merging is performed on all graph
nodes where the same words are hypothesized at the same time. Since acoustic scores are typicaly given
aslog-likelihoods, the following formulais used to compute the score of a node after merging:

Sor’ = Infe™* +e%2) (2.8.1)

where Scrl is the acoustic score of the word in the first hypothesis and Scr2 is the acoustic score of the

word in the second hypothesis.

Finaly, links are added to the graph between nodes where the word end time of the previous word and the
word begin time of the following node differ by less than 30ms. Figure 2.5 illustrates two parallel
recognition hypothesesin word graph form before combination, and Figure 2.6 illustrates the result of
constructing aword graph from the two parallel hypotheses.

Note that in Figure 2.6, additional transitions have been permitted when both hypotheses have word
transitions at the same instant in time (“t”). The final words in both hypotheses are identical both in label
(*</s>") and time, and therefore they have been merged into a single node. The log-likelihood acoustic
score (“Scr”) of the merged node is calculated by appropriate combination of the original two scores.
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Two Paralld Hypotheses
Scr=-1 Scr=-7 Scr=-9 Scr=-8 Scr=-4
t=0 t=4 =16 =36 - t=55 t=70
<s> hello there > Julia P </s>
<s> » he » where » s » lLea > </s>
t=0 t=6 y t=16 t=36 t=41 t=55 t=70
Scr=-2 Scr=-6 Scr=-8 Scr=-2 Scr=-4 Scr=-5

Figure 2.5 Illustration of two parallel hypotheses in word graph form before combination. Acoustic log-likelihoods
are labeled “ Scr” and placed above or below the corresponding graph nodes. The transition times are labeled “t” and

are placed before or after the corresponding graph nodes.

Hypothesis Combination Word Graph
Scr=-1 Scr=-7 Scr=-9 Scr=-8
t=0 t=4 t=36 .
<s> » hello there Julia
<s> » h wher i » L
t=0 s t=6 &y ere t=36 S t=41 ca
Scr=-2 Scr=-6 Scr=-8 Scr=-2 Scr=-4

Scr=In(e + e5)

t=70 :

Figure 2.6 The two parallel hypotheses shown in Figure 2.5 have been merged into a single word graph.

After the word graph is formed, the language model is applied to score all paths through the graph. The
words along the path with the highest score are chosen as the final, combined recognition hypothesis.

2.9 Missing Feature Compensation for Speech Recognition

Missing feature methods are a series of compensation techniques designed to better recognize speech that
is corrupted by noise (Cooke et al., 2001; Rqj et al., 2000). Missing feature methods begin by locating
components of the observed speech feature vectors that have alow signal-to-noise ratio (SNR). Once the
“missing” low SNR regions are identified, there are two methods to compensate:

1. marginalization — recogni ze the speech using only the reliable or “present” components of higher SNR,

ignoring the “missing” regions of lower SNR
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2. reconstruction —first use statistical methods or other data driven processes to reconstruct the missing
components of the speech feature vectors, and then perform recognition in the usual

manner on the reconstructed vectors

L ocating and reconstructing the missing speech components are typically performed in the log spectra
domain before the speech features are converted to cepstral coefficients. The marginalization-based
missing feature compensation techniques are | ess effective due to the fact that the recognition must also
occur in the log spectral domain. The reconstruction-based missing feature compensation techniques are
favorable because after the complete log spectral vectors are reconstructed, they can then be converted to

the superior MFCC recognition features and recognized with state-of-the-art recognition techniques.

In this thesis, we apply missing-feature reconstruction techniques to reconstruct “missing” portions of
fast, spontaneous speech in an effort to recover information that is lost when speech becomes more casual
or more rapid. The following sub-section describes the covariance-based reconstruction technique that
Raj developed in his Ph.D. research on the reconstruction of incompl ete spectrograms (Rgj, 2000). These
covariance-based reconstruction methods are employed throughout the work of this thesis to compensate
for the rapid and unpredictable nature of spontaneous speech.

2.9.1 Estimation of Parameters Needed for Covariance-based Missing-featur e reconstr uction
A speech spectrogram comprised of the sequence of log spectral vectors extracted from the speech signal

can be modeled as the output of a Gaussian wide-sense stationary (WSS) random process (Papoulis,
1991). If we assume that all possible spectrograms are individual observations of a single random process,
we can use the statistical parameters of the process to estimate the missing components of spectrograms.
In histhesiswork, Rg referred to this method of reconstruction as covariance-based missing-feature
reconstruction (Raj, 2000). The mathematical theory behind this approach is detailed below.

Let S(t, k) be a spectrogram corresponding to a speech utterance. The time index t identifies the frame of
speech, and the frequency index k identifies the component of the log spectral vector, i.e. the index of the
mel triangle that the component was derived from. For computational convenience, we use spectrograms
derived with 20 mel frequency components when performing missing-feature reconstruction. The number
of time framesin a given utterance is on the order of hundreds of frames.

Define u(t, k) to be the mean of the k™ element of the t™ log spectral vector. Also define clt,,t,.k,,k,) to

be the covariance between Sft,,k,) and S[t, .k, ), i.e. the covariance between the k" component of the

t," log spectral vector and the k;" component of the t;" log spectral vector. Using the expectation

operator E[ ], the mean and covariance are given by the following equations:
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wult, k)= E[S(t, k)] (2.9.1)

C(tl’tz Ky kz) = E[(S(tl, kl) - :U(tl’ kl))(s(tZ K, ) - :U(tz K, ))] (29.2)

Because we assume that the process generating the spectrogram is a wide-sense stationary process, we

may assume that of the mean value ,u(t, k) of the K" component of alog spectral vector does not depend

on where it occursin the spectrogram (t). We may also assume that the covariance between two

components c(tl,t2 K, kz) does not depend on their absolute location in the spectrogram (t; and t,), but
rather the covariance depends only on the distance 7 between the two timeindices (7 = |t2 - t1| ). The

wide sense stationary assumption gives us the following two simplified equations for the log spectral
mean and covariance (Papoulis, 1991).

pt k) = pt, k)= (k) (29.3)
olt,t+1,k,,k,)=clt, .t, +7,k ,k,)=c(r, k. k,) (2.9.4)

Using this formulation, the proper mean and covariance parameters of speech log spectral vectors can be
estimated from atraining corpus of clean speech data. Because we assume that the generating processis
Gaussian, the mean and covariance parameters completely specify the process and provide all the
information we need to reconstruct missing spectrogram features.

The expected value of every component in the spectrogram is given by ,u(k) , and the covariance between

any component in the spectrogram with any other component in the spectrogram is given by c(r, k., k2)
E[S(t, k)| = k) (2.9.5)

E[(S(t,, k,) - 2t . k,))(St,. k, ) - t,. k,))] =z, k,. k,) (2.9.6)

2.9.2 Covariance-based Missing-featur e reconstruction
Given these statistical parameters described in Section 2.9.1, we can reconstruct spectrograms containing

missing features asfollows. Let S be a spectrogram with missing components. Arrange the observed,
uncorrupted components of Sinto avector S,. Also arrange the missing components of S into another
vector S,,. We know the mean of every component in the spectrogram and the covariance between any
two components in the spectrogram; therefore, we can construct the following four items necessary for

reconstruction:

1. p° —the mean vector of S, (the present log spectral components)
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2. n° —the mean vector of S, (the missing log spectral components)
3. C_, —the autocovariance matrix of S

4. C_ —the crosscovariance matrix between S, and S,

Using these parameters, we are able to make an MAP estimate ém for the missing components S, as

follows;

A

S, =n%+C,Cl(s, -nS) (29.7)

mo ~ 00

Eq. 2.9.7 reconstructs all missing elements at one time, but this equation is not computationally efficient.
A typical 4 second utterance has 400 frames of speech and 20 frequency components for each frame.

Assuming 50% of the features are missing, the matrices C_, and C,, would have dimension

4000 % 4000 . In this example, the direct computation of the MAP reconstruction estimate ém would
require the inversion of a 4000 x 4000 matrix followed by the multiplication of two 4000 x 4000

matrices. For practical applications, missing elements are reconstructed incrementally, one at atime. For
more details on incremental approaches for missing-feature reconstruction, see Ra’ sthesis (Raj, 2000).

2.10 Conclusions

In this chapter we presented a brief overview of speech recognition technologies that are relevant to the
remainder of the thesis. We started with an overview of automatic speech recognition systems and
continued with the transformation of the speech waveform into standard MFCC feature vectors. We
described the HMM acoustic models used to model and recognize speech, and provided an overview of
the use of HMMsiin practical applications. Viterbi alignment is used to align a known transcript to speech
data, and Viterbi decoding is used to generate alikely transcript for speech data whose transcript is not

known.

We also gave a brief overview of previous attempts to incorporate explicit duration modeling into the
recognition framework. Although methods were developed to incorporate duration modeling into the
HMM framework, and attempts were made to rescore candidate hypotheses based on duration
information, explicit duration modeling is not widely incorporated in state-of-the-art recognition systems
today.
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We closed with some discussion of hypothesis combination techniques and missing-feature
reconstruction, both of which play an instrumental role in the duration normalization research that we
develop in thisthesis. In the next chapter, we present a brief overview of the SPHINX-I11 speech
recognition system and the speech corpora used in this research. In Chapter 4, we detail the duration
normalization algorithm at the heart of thisthesis.
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3: Speech Recognition System Resour ces and Speech Corpora

This chapter provides an overview of the specific speech recognition system and speech databases used
while conducting our research. The focus of our research is on modifying the speech features prior to
training recognition models or recognizing test speech; therefore, the algorithms we develop and the
results we present are independent of the specific recognition engine used. The particular aspects of the
SPHINX-I11 recognition system and speech databases are presented to provide the reader with useful
context information for interpreting our results and to provide other researchers with enough information

to repeat and validate our experiments.

3.1 The SPHINX-I11 Speech Recognition System

SPHINX-III isthe third in a series of state-of-the-art Hidden Markov Model (HMM)-based speech
recognition systems pioneered at Carnegie Mellon University (CMU) beginning in the late 1980s. The
original SPHINX system was devel oped by Kai-Fu Leein 1988 (Lee 1989; Lee et al. 1990). SPHINX
was one of the first systemsto demonstrate speaker-independent, large-vocabulary continuous speech
recognition. In 1993, Xuedong Huang et al. presented SPHINX-I1, one of the first systems to make use of
semi-continuous HMM output distributions (Huang et al., 1993).

SPHINX-I11 was developed and implemented by Ravishankar Mosur and Eric Thayer in the mid
1990s.SPHINX-I11 provides more flexibility in the modeling and feature frameworks for speech
recognition. SPHINX-111 allows the user to choose between (fully-)continuous or semi-continuous HMM
output distributions. SPHINX-I11 also allows the user to divide the datainto a multiple number of streams
and specify how these streams are organized. This feature alows for recognition based on amultiple
number of data sources (e.g. recognition based on a combination of audio and visual features).

A basic block diagram of the SPHINX-I1I recognition system is shown in Figure 3.1. For more detailed
information on the SPHINX-I11 system, see (Placeway et al., 1997). For more information on the
differences between semi-continuous and fully-continuous HMM output distributions, see the latter part

of Section 2.3 in the previous chapter.
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Figure 3.1 Block diagram for the SPHINX-I11 speech recognition system. Training elements are shown on the left
of the figure. Testing elements are shown on the right.

3.2 Speech Database Infor mation

In this section, we describe in brief detail the speech databases used in this thesis: the Telefénica Cellular
Telephone Corpus (TID), the NIST Multiple Register Corpus (MR), and the NIST Broadcast News
Corpus (BN). TID and MR are smaller corporawith ahigh level of spontaneity, and BN isalarge-scale
corpus. Throughout the thesis research, many algorithms were first tested on TID and/or MR. The
algorithms showing the most promise were then further tested on the BN data to validate our results.

3.2.1TID: TheTelefonica Cellular Telephone Cor pus
We conducted experiments on a Spanish database recorded by Telefonica Investigacion y Desarollo in

Madrid, Spain. The database consists of cellular telephone callers repeating a small string of digitsor a
monetary amount. Volunteers were read a prompt and asked to repeat it in acasua manner. The TID
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speech is highly spontaneous. Figure 3.2 shows sample utterances from the TID database, along with

English tranglations.

gui nce euros y veinte centinos
fifteen euros and twenty cents

cuarenta mllones noventay una
forty million ninety one

cien cinco quinientos
one-hundred five five-hundred

ochenta cero quinientos setenta siete ochentay tres
eighty zero five-hundred seventy six eighty three

Figure 3.2 Exampl e utterances from the TID corpus. English trandlations are given in italicized text below each

exampl e utterance.

The TID speech is small vocabulary: the entire recognition vocabulary is made up of 59 words. Figure 3.3

contains every entry in the TID recognition dictionary. Note that Spanish orthography and pronunciation

are directly related, and the dictionary contains no alternate pronunciations.
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Figure 3.3 The recognition dictionary for the TID corpus. The listing contains all 59 words and corresponding

pronunciations.
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TheTID training set consists of 3458 utterances (15543 words), and the testing set consists of 1728
utterances (7634 words). Thistrangates to approximately 4 hours of training data and 2 hours of testing

datain the corpus. The average utterance is approximately 4.2 seconds long and contains 4.5 words.

TID speech was collected over European cellular telephone channels, which make use of Global System
for Mobile telecommunication (GSM) lossy speech compression. GSM coding uses Regular Pulse
Excitation — Long Term Prediction (RPE — LTP) algorithms to digitally compress the speech signals. For
our research, the cellular telephone speech has been decompressed and stored as a standard waveform
prior to training and recognition. Research has shown that the effects of GSM coding on recognition

accuracy with the TID database and the SPHINX-I11 recognition system are minimal (Huerta, 2000).

3.2.2 MR: The NIST Multiple-Register Corpus
The NIST Multiple Register Speech Corpus (MR) isaparalel corpus for comparison of spontaneous and

read speech recorded at SRI. The database contains fifteen spontaneous conversations on assigned topics
and re-read versions of the same conversations. For this thesis research, we focus on the examples from

the spontaneous register, but at times we experiment with the read counterpart for comparison.

The MR utterances contain highly spontaneous speech with many conversationd fillers (e.g. ++uh++,
++um++), long pauses, partial words, and repeated words. Also, the grammar is loose and often
“improper” according to standard English grammar rules. Figure 3.4 shows an excerpt from one of the
conversations on sports and exercise.

sl: hi <sil> howre <sil> you doing <sil>

s2: ++nout hnoi se++ hi good t hanks

sl: what kind of exercise you do <sil>

s2: <sil> oh ++uh++ <sil> ny favorite is tennis <sil>

sl: really

s2: <sil> you nuch of a tennis fan <sil>

sl: yeah <sil> what ever happened to chang <sil >

s2: ++uh++ chang he hasn't been in in the running for <sil>
for nunber one <sil> really <sil> seriously he's he's a
great player good conpetitor but it just <sil>

sl: really <sil> well i <sil> ++uh++ ++huh++

s2: just doesn't have it to be nunber one he's <sil>

sl: ohreally i'msurprised that agassi's nunber one i thought
he was kind of a flake <sil> i <sil> didn't think he had
the head for ++uh++ <sil> for chanpionship tennis <sil>

s2: well that's that's what everybo- bo- everyone's been
witing about he he does finally have the head for it
<sil> he's <sil> he's finally got the ++uh++ <sil> the
mental ganme for it <sil>

sl: really going out with barbra streisand really did it for
hi m or sonething <sil>
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s2: i think it <sil> was brooke shields <sil> yeah <sil > that
did it yeah <sil> that put himover the top <sil>

sl: yeah <sil> oh speaking of tennis what about these gals
that are playing tennis nonica seles is in hiding <sil>

s2: right yeah <sil> she's i think she's withdrawn fromfrom
c- formal conpetition <sil> forever yeah <sil>

sl: after she got stabbed <sil>

Figure 3.4 An excerpt from a MR conversation between two speakers. s1 and s2. Notice that the speech is
characterized by many repeated words, false starts, and repetition. “Noise” and “filler” words are marked with
surrounding “++" characters, and long pauses or silence regions are marked as “<sil>".

We divided the MR speech into training and testing sets. Our MR training set consists of 1090 utterances
(12209 words), and the testing set consists of 271 utterances (3114 words). There are approximately 80
minutes of training speech and 20 minutes of testing speech in the corpus. The average utterance in the

MR corpus contains 11.3 words and is 4.4 seconds long. The conversational nature and limited amount of
MR speech available makes this a difficult recognition task for a state-of-the-art recognition system.

3.2.3BN: The NIST Broadcast News Cor pus
In the late 1990s, NIST conducted a series of periodic recognition evaluations on a variety of speech

recognition data. HUB4 was one such evaluation series focused on accurate transcription of broadcast

news speech (Graff, 1997). Example utterances from the BN corpus are shown in Figure 3.5.

we continue our series <sil>

anmerica <sil>in black and white

toni ght <sil> how nuch is <sil> white skin worth

this is a. b. ¢c. news nightline

reporting from <sil> washi ngton

ted <sil > koppel

t he business of skin color <sil> inevitably conmes up again and
again <sil>

often as not <sil> white Americans find thensel ves getting
def ensi ve on the subject <sil>

it is not <sil> we insist sonething we dwell on norning noon
and ni ght

<sil> it is not even the way that nost of us define ourselves

Figure 3.5 A listing of example utterances from the broadcast news (BN) corpus. Long pauses or silence regions are
marked as “<sil>"

Each BN utteranceis classified into one of 7 focus (F) conditions according to dialect, mode, fidelity, and
background noise (Garofolo, 1997). The focus conditions are detailed in Table 3.1.
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Condition Dialect Mode Fidelity | Background

FO: Baseline Broadcast native planned high clean

F1: Spontaneous Speech native | spontaneous | high clean

F2: Reduced Bandwidth native (any) med/low clean

F3: Background Music native (any) high music

F4: Degraded Acoustics native (any) high speech or noise
F5: Non-native Speakers | non-native planned high clean

FX: Other Combinations - - - -

Table 3.1 Detailed description of broadcast news speech focus conditions as defined by NIST.

We selected a 45 hour subset of the 1996 and 1997 broadcast news corporato train our acoustic models.
Examples were taken from all F conditions. For testing, we made use of the standard 1999 Eval 1 data set,
which contains 1 hour of broadcast news speech divided into 347 utterances (11075 words). The average

BN utterance contains 19.7 words and has a duration of 6.7 seconds.

3.3.4 Speech Database Summary
To close, we present atable of statistics derived from the speech databases used in our research. A side-

by-side comparison of training and testing database size and average utterance length isgivenin Table
3.2

Training Database Size Testing Database Size Aver age Utterance L ength
Database | hours utterances words | hours utterances words seconds words
TID 4.0 3458 15543 2.0 1728 7634 4.2 4.5
MR 1.3 1090 12209 0.3 271 3114 4.4 11.3
BN 45.0 24319 475372 1.0 347 11075 6.7 19.7

Table 3.2 Size comparison of al speech databases used in thisthesis (TID, MR, and BN). Size of the training and
testing databases is given in number of hours, number of utterances, and number of words. Also, the average
utterance length is given in number of seconds and number of words.

It isinteresting to note some similarities and differences between each of the corpora. The average
utterance length of TID and MR data are very similar in amount of time (4.2 seconds and 4.4 seconds
respectively), but they are vastly different in number of words spoken in that time (4.5 words for TID and
11.3wordsfor MR). There are several possible factors that contribute to this phenomenon. Oneisa
difference between the Spanish language (T1D) and the English language (MR). Another factor may be
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the “back-and-forth” nature of the conversational dialog that takes place in the MR corpus compared to
the one-sided repetition of digit stringsinto a cellular phonefor TID.

A comparison of BN and MR is a useful English language to English language comparison. Notice that a
typical BN utterance contains almost twice as many words as atypical MR utterance. Thisislargely due
to the influence of planned speech in the FO focus condition, which includes alarge number of longer,

scripted utterances read by a professional newscaster.

The variety of databases used in this research alows for arobust examination of the quality of the
algorithms we develop. It aso allows for fast experimentation of avariety of techniques for improved
segmentation and recognition quality. In our experience, algorithms that have had the greatest success on
the smaller TID and MR databases will also have success on the larger BN database. Conversdly,
experimental procedures that were not helpful in recognizing TID and MR data were also not useful in
recognizing BN data.

3.3 Evaluating Recognition Systems: Accuracy and Statistical Significance

Asdiscussed in Section 2.5, recognition systems are typically evaluated using a metric known as the word
error rate (WER). Throughout this thesis, we will use measurements of WER to compare the effectiveness
of different algorithms for normalizing the speech prior to recognition.

When comparing different algorithms, it isimportant to measure not only differencesin WER, but also
the statistica significance of those differences. In this thesis work, we make use of the Matched-Pairs test
proposed by Gillick and Cox (1989). The Matched-Pairs test is awidely accepted method for calculating
statistical significance which has aso been used by the National Institute of Standards and Technology
(NIST) in standard speech recognition evaluations. The significance score produced by the Matched-Pairs
test depends on avariety of factorsincluding the error rates of the two systems, the number of utterances
in the test set, the vocabulary size, and the range of accuracy within the test set. In particular, the
Matched-Pairs test attempts to give weight to instances where one recognition systemis able to avoid an
error that the other system has made. The output of the Matched-Pairstest isap score which isthe
probability that the two systems are statistically the same. In general, we say that results are statistically
significant if the p score isless than 5%.

Although the Matched-Pairs p score depends on a variety of factors, we can get ageneral idea of
statistical significance based on absolute differencesin WER. Table 3.3 shows examples of p score values
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and corresponding absol ute differencesin WER for the TID corpus. Table 3.4 shows similar examples for

the MR corpus, and Table 3.5 shows examples for the BN corpus.

Table 3.3 Examples of the correspondence between statistical significance p-score and absolute word error rate

difference for the TID corpus.

Table 3.4 Examples of the correspondence between statistical significance p-score and absolute word error rate

difference for the MR corpus.

AWER p score
0.4% 11.7%
3.0% 6.3x10™%

AWER p score
1.5% 7.1%

1.8% 6.4%

2.5% 0.38%
8.6% 2.79x 10%%

AWER p score
3.9% 0.11%
13.8% 9.18x 10 M0p

Table 3.5 Examples of the correspondence between statistical significance p-score and absolute word error rate
difference for the BN corpus.

In the thesis research, the final results presented on MR and BN are statistically significant, while the
results presented on the TID data are not below the 5% limit for significance. The TID information was
useful in devel oping this thesis because the trends observed in TID carried over to similar observations on
the larger vocabulary MR and BN databases.

3.4 Conclusions

In this chapter we presented a very brief overview of the SPHINX-111 automatic speech recognition
system. We then described the spontaneous speech corpora used in thisresearch: TID, MR, and BN.
Although TID and MR data are small, the results derived on these corpora serve as a consistent indication
of the potential for success using large-scale corpora such as BN. We closed this chapter with a descripton
of the Matched-Pairs test used to verify the statistical significance of our results, and we included some
examples of WER differences and corresponding p-scores for each of the corpora used in our research. In

the next chapter, we introduce the duration normalization algorithm that we devel oped for this thesis.
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4. The Duration Nor malization Algorithm

This chapter begins with adiscussion of why it is desirable to normalize the duration of sound units
observed in speech prior to modeling and recognition. We then describe in detail the process by which we
use missing feature reconstruction techniques to normalize the duration of speech phones. We close with
a series of experiments using oracle segmentation information with three databases to investigate the

effectiveness and derive an upper bound for accuracy using our duration normalization technique.

4.1 Motivation for Duration Normalization: HMM s and Spontaneous Speech

The hidden Markov model (HMM) is the most widespread and successful modeling framework for large
vocabulary, speaker independent speech recognition. We began this research with a simple experiment to
see how well standard HMM systems perform on careful speech and how well they perform on
spontaneous speech. Using MR, aparallel corpus of spontaneous and read speech, we trained and tested a
baseline recognition model for each speech register. The sentences used to train and test each system
varied only in the speaking register; everything else remained the same. In the baseline case, a system
trained and tested on read speech had aword error rate (WER) of 15.6%, while the parallel system trained
and tested on spontaneous speech had a WER of 40.3%. These results indicate that our state-of -the-art
ASR system can experience arelative degradation in accuracy of over 150% when the speech being

recognized becomes conversational.

It iswell known that HMMs do a poor job of modeling the phone durations observed in natural speech.
Thetransition probabilities have little impact on the final hypothesis produced by modern HMM-based
recognizers, and some systems have even disregarded them altogether. In 1995, Siegler and Stern
reported that the duration information derived from HMM transition probabilities does not correlate well
with actual duration measurements, especially when speech rate becomes more rapid or more varied
(Siegler & Stern, 1995). In Sections 2.6 and 2.7, we presented an overview of some previous approaches

to incorporate explicit duration modeling information into the recognition framework.

There are two possible ways to alleviate the poor duration modeling problem. Oneisto modify the
underlying modeling structure to capture duration information more accurately, which might necessitate
an entirely different modeling framework. In this thesis work, we focus on the alternative: our goal isto
modify the data so that it is more conducive to the underlying modeling framework of choice, i.e. the

conventional HMM acoustic models.
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Figure 4.1 Illustration of the word “ spoken” before (a), and after (b) duration normalization. Corresponding HMM
states are shown above each phone segment and are mapped to the approximate phone region they model.

Figure 4.1 illustrates this duration normalization idea with durations abstracted from actual speech data.
Continuous speech contains phones of varying duration. Each time a phone is uttered, it is produced with
adifferent duration that depends on many different factors (e.g. phonetic context, speech register,
speaking rate, emphasis). However, the underlying HMM that models all of the various phone renderings
does a poor job of capturing duration information. Essentially, the HMM duration model isthe
convolution of the individual exponential duration distributions of each HMM state. Thisis a poor model
of phone duration even if the number of statesis chosen optimally for each phone. As seenin Figure
4.1(a), some HMM states model arelatively short amount of speech while others are forced to model
many frames of speech datawith a single Gaussian mixture. Figure 4.1(b) is a schematic illustration of
speech that has been normalized so that every phone has the same duration. This makes the overal
duration of a phone determinigtic, retaining only the duration variations of the individual states within the
phone. We hypothesize that duration normalization would result in reduced modeling variations across
phones and improved recognition accuracy, especially for spontaneous speech where there is greater
inherent variation of phone duration. This also ensures that each HMM state can characterize well the
specific portion of the phone it is tasked to model.

4.1 Algorithm for Duration Normalization via Missing Feature Techniques

In our application, we wish to normalize the duration of each phone occurrence in the speech so that
every instance of a phone has the same duration. Specifically, we normalize all instances of all phonesto
have the same duration. As hypothesized earlier, thisrestructuring is expected to result in an improvement
in accuracy with HMM-based modeling. The true duration of a phone can differ from the desired
normalized duration: a phone can have a greater duration than what we desire (a*“long phone”), or it can

have a smaller duration than what we desire (a*“ short phone”).

If a given phone segment has a greater duration than the desired normalized duration, we downsample the

observed frame sequence. Normalizing along phone isillustrated in Figure 4.2(a). Note that missing
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feature methods are not needed to accomplish this. However, if a phone has a duration that is less than the

desired duration, we need a method for expanding its duration to the desired duration.

Missing feature methods, as discussed in Section 2.9, are traditionally used to reduce the impact on
recognition accuracy of unreliable time-frequency locationsin the feature space that represents the speech
component of the signal. In particular, time-frequency locations that are corrupted by low SNR can be
reconstructed based on information contained in other areas of the spectrogram which are assumed to be
more reliable. The same reconstruction techniques can also be used to expand and recover the “missing”

portions of the phones that have a smaller duration than the desired normalized duration.

Our approach is asfollows. For a given short phone, we interleave a sequence of blank frames amid the
observed frames so that the new phone duration is correct. We create a missing feature mask that declares
our newly-inserted blank frames as “missing” and marks them for reconstruction. The missing frames of
the short phones are then filled in using the correlation-based reconstruction method described in Section
2.9. The approach for normalizing short phonesisillustrated in Figure 4.2(b). A detailed look at our
implementation of this algorithm is presented in Section 4.2.

(@ =)

(b) —) —

Figure 4.2 Illustration of the duration normalization process. The long phone shown in (a) is downsampled to the
correct normalized duration. The short phone shown in (b) is expanded with frames of “missing” feature vectors and
then filled in via missing feature reconstruction.

We note that al duration normalization and reconstruction is done in the log spectral domain, in the same
manner that the corresponding operation is performed for traditional missing feature reconstruction. The

resulting log spectral vectors are converted to Mel-frequency cepstral coefficients for usein training and
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testing our standard HMM recognizer. Figure 4.3 shows the log spectrogram for an utterance both before

and after duration normalization. (The figure shows is a Spanish utterance: “ nove cientos eurosy seis

centimos’, which in English is “nine hundred euros and six cents”.)
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Figure 4.3 Log spectrograms of an example utterance before (top) and after (bottom) duration normalization.

Note that we have a so experimented with simpler missing feature reconstruction methods, such as linear

interpolation in time (which is the equivalent of simple time warping), to adjust the short phones to the

correct duration. These methods resulted in no improvement in recognition accuracy. On the basis of

these comparisons we believe that the added information contained in the correlations obtained from

carefully-read speech allows us to regain some of the information that islost when speech is produced

very rapidly, asis often the case when speech is produced spontaneoudly.

4.2 Our Implementation of Missing Feature-Based Duration Normalization in Detail

In this section, we provide a detailed ook at our implementation of time duration normalization using

missing feature reconstruction. A functional overview of our systemisillustrated in Figure 4.4.
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Duration Normalization: Functional Overview
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Figure 4.4 Detailed functional overview of duration normalization via missing feature methods.

The system has the following 3 main functional blocks:

* makewarp control file: Creates a control file detailing which frames from the original log
spectrum are kept and which frames are dropped. The locations of added “missing” frames are

also included in the control file.

* makenew log spectrum & mask: Using the warp control file and the original log spectrum, this
modul e creates a new log spectral file containing only the information from the original log
spectrum marked as “kept” by the contral file. Spaceis also left in the new log spectrum for the

added “missing” frames, and amask is made to designate the newly added frames as missing.
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* missing feature reconstruction: Covariance-based missing feature reconstruction is used to fill
in the missing frames and generate a complete, duration-normalized log spectrum feature file.
These log spectral features are finally converted to standard MFCCs for recognition.

The algorithm that controls the frame warping decisions is described in detail below, and following that is

an illustrated example of the remainder of the process.

4.2.1 Warping: Deciding Which Frames Stay and Which Frames Go
To warp from the natural duration of a phoneme to the desired normalized duration, we designed asimple

algorithm to add or drop the proper number of framesin an “even” spacing throughout a given speech
segment. For example, if the original segment has 6 frames, and we want to compressit to 3 frames, our

algorithm will specify that we keep frames 0, 2, and 4. Frames 1, 3, and 5 will be dropped.

For the purposes of this description, we assume our algorithm is performing a contraction in time. In
practice, our algorithm treats all problems as contraction problems and fixes the resulting frame pattern at
the end when expansion is required. (Note that when expanding a speech segment, we also desire an
“even” spacing of frames, but this time we desire an even spacing of inserted frames rather than deleted
frames.)

Our warping agorithm works as follows:

If thereis only one frame to be deleted, the “middie” element of the frame sequence is deleted. If multiple

frames must be deleted, we perform the contraction in two passes, a“keep” passand a“delete” pass.

In the first pass, we choose to keep every k™ frame in the segment, where k is the ratio of the original
duration of the segment to the normalized duration. All other frames are marked for deletion. Note that k
must be an integer number of frames; therefore, there may be too many frames kept after the first pass.
When this happens, a second passis called upon to remove additional frames. In the second pass, we
delete every ™ element from those that were originally kept, where j istheratio of the number of frames
kept in the first pass to the number of frames we still need to delete. Note that the “ delete” pass terminates

once we have achieved the desired number of frames.

Figure 4.5 illustrates an example of contracting from 7 frames to 3 frames. The dual example of
expanding from 3 framesto 7 framesis aso shown. In the figure, “X” represents the location of frames
marked for deletion, and “—" represents the location where blank frames are to be inserted and later
reconstructed by missing-feature techniques.
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Contraction Example: 7 frames—> 3 frames

from_duration
=7 [0]1]2[3[4]5]6]

num_to_delete =4
keep_modulus = floor(7/3) = 2

[4]x]6]

num_deleted = 3
num_still_to_delete = 1
num_kept = 4

keep_i=[024 6]
delete_modulus = floor(4/1) = 4

Lofx]2]x]a[x]X]

| Ny

to durafi m If expanding instead of contracting:
0_duration

=3 [of-a]-]2[-]-]
(from_duration = 3 — to_duration = 7)

Lofx]2]

0| [<

Figure 4.5 Illustration of contraction from 7 frames to 3 frames. (The corresponding pattern for expansion
from 3 framesto 7 framesis also shown.)

4.2.2 Reconstruction: An Illustrated Example
Here we describe the remainder of the reconstruction process and illustrate it with an example chosen

from the TID corpus. The example is the Spanish utterance: “nove cientos euros y seis centimos’, the

same utterance shown previously in Figure 4.2.

Figure 4.6 illustrates the generation of the new log spectral file and reconstruction mask from the original
log spectrd file. The top panel shows the original log spectral file. The middle panel shows the new log
spectral file, and the lower panel shows the corresponding reconstruction mask. This exampleistypical in
that the normalized log spectrum has fewer frames than the original log spectrum. Thisislargely dueto
the fact that the long silence regions at the beginning and ending of each utterance are greatly compressed

by the normalization process.

The corresponding reconstruction “mask” fileis aso shown at the bottom of the Figure 4.6. The
reconstruction mask flags whether a pixel in the spectrogram should be kept (white) or disregarded and
reconstructed (black). In our application, the mask is composed of vertical “stripes’ because dl of the log

spectral values corresponding to a given speech frame are either wholly kept or wholly reconstructed.

33



T TEE T ] T
© g e e b 04 I | =y
.%
3 10+ -~
=
£ 15 =
=

20 | = : : E T jitd b=

50 100 150 200 250 300

=
=l
T 5- -
2
&
5 10 s
L%
#
o L i
= 15
o
o

20= | | -

-50 200 250
T T T T

=
2 el _
g 5
=
=l
B 10 -
2
&
S 15- -
L%
#

200 | 1 | 1 1 ! 4

-50 0 50 100 150 200 250

Figure 4.6 Original log spectral file (top) together with the new log spectral file (middle) and reconstruction mask
(bottom).

Once the new log spectral file and corresponding reconstruction mask are generated, covariance-based
missing feature reconstruction is performed to fill in the “missing” log spectral values, completing the
duration normalization process. Figure 4.7 shows our example log spectral file before (top) and after

(bottom) the missing vectors are reconstructed. The reconstruction mask is shown in the middle of the

figure.

The theory behind covariance-based missing feature reconstruction is described in detail in Section 2.9.
Note that in our experiments, the MAP estimate is computed to replace the missing elements in the
spectrogram viathe procedure termed covariance joint reconstruction (Raj, 2000). For computational
efficiency, al of the missing values in the log spectrogram are not estimated at the same time; rather, the

reconstruction is done on all the missing elements of asingle log spectral vector, one frame at atime.



In our duration normalization application, all 20 log spectral elements of each inserted “missing” frame
are reconstructed simultaneously using a maximum of 16 “neighbor” log spectral elements from the
spectrogram. “Neighbors’ are defined as the e ements present in the log spectrogram with ardative
covariance of at least 0.5 with at |east one of the missing elements. Rgj showed that this type of

reconstruction is computationally efficient and accurate (Rgj, 2000).
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Figure 4.7 Log spectral file before (top) and after (bottom) reconstruction. The reconstruction mask (middle) is also
shown.

4.2 Experiments Using Oracle Phone Boundaries

We gtarted by training baseline models on each of the training sets using the standard approach. In order
to apply missing feature based duration normalization, we needed to know the location of the phone
boundaries in both the training and the testing sets. Using the baseline models and the reference
transcripts, we performed a Viterbi alignment of the transcripts to the data and derived what we deemed

our “oracle’ phone boundaries. Viterbi alignment was performed on both the training and testing sets
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used in the experiments. After alignment, however, the only information retained was the location of the

boundaries that separate one phone from ancther.

The CMU SPHINX-III recognition system was used for al experiments. The data were modeled using
3-state |eft-to-right HMMs with no transitions permitted between non-adjacent states. For the smaller
speech corpora, we used semi-continuous HMMss (codebook size 256) to model the data. For the large

scale broadcast news data, we used fully-continuous HMMs with a mixture of 16 Gaussians per state.

4.2.1 Oracle Boundaries and the Multiple Register Corpus (MR)
For our first set of oracle boundary experiments, we used the NIST Multiple Register Speech Corpus

(MR), aparallel corpus for comparison of spontaneous and read speech recorded at SRI. The database
contains fifteen spontaneous conversations on assigned topics and re-read versions of the same
conversations. For our experiments, we selected data from the read and spontaneous registers. We trained
and tested separate models — one for read speech and the other for spontaneous speech. We used
approximately 2 hours of speech to train each acoustic model, and 0.5 hours of speech to test each model.
For more information on the MR database, see Section 3.2.2.

We first focused on the data taken from the spontaneous register of the corpus. Given the oracle phone
boundaries, we applied the missing feature methods described in Section 4.1 to normalize al phone
occurrences in the spontaneous speech data set to a specified frame duration. We then trained standard
HMM models on the duration-normalized spontaneous training set and tested their accuracy on the
duration-normalized spontaneous test set. For the baseline WER, we & so decoded the test set using the
standard models and natural duration speech features that were used to derive the oracle phone

boundaries.

The normalized duration is afree parameter in this process; we can normalize each phone occurrence to
any frame duration we choose. We empirically sought the optimal choice for the normalized duration by
repeating the spontaneous speech experiment for several different normalized duration values (ranging
from 4 framesto 12 frames). Note that at a normalized duration of 6 frames, the average HMM statein
our 3-state models would be responsible for modeling approximately 2 frames of speech data. For a
normalized duration of 9 frames, each state would be responsible for approximately 3 frames of speech
data, and so forth.

Figure 4.8 plots the resulting accuracy of the duration-normalized models as afunction of the chosen
normalized frame duration. The baseline accuracy is plotted for reference as well. The baseline accuracy
for the spontaneous test set was aword error rate of 40.3%. In the best case, when the speech was
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normalized and reconstructed so that every phone had a duration of 8 frames, the resulting WER was

32.2%. Thisresult showed a 20.1% rel ative improvement over baseline accuracy on spontaneous speech.

Duration Normalization Recognition Performance
on MR(spon) with Oracle Segmentation

40.0 4  CTTTTTTToTToTorTornTmTmmmmmTmmmm T
g ------- baseline
- —o—normalized
X 35.0 -

30.0 T T T T T T T T T 1

3 4 5 6 7 8 9 10 11 12 13

normalized duration (# frames)

Figure 4.8 Results from phone duration normalization on MR spontaneous speech. WER is plotted as a function of
the normalized phone duration. The baseline WER is aso shown for reference.

Figure 4.8 aso shows that a choice of normalized duration in the range of 6-8 framesis best for this
particular data set. When expanding to 10 or 12 frames, it is possible that correlation-based reconstruction
cannot adequately estimate the missing frames. Prior experiments have indicated missing-feature
reconstruction methods are only effective if the sequences of missing frames being reconstructed are no
more than 5 frames long (Rgj, 2000). If we expand a very short phone, say 3 frames, up to a duration of
12 frames, the missing feature methods are required to reconstruct 3 “missing” framesin arow three

timesin arow, with only one frame of information in between.

We then repeated the same experiment on speech taken from the read register of the MR corpus. We used
the oracle phone boundaries to normalize the duration of each phone to 8 frames. We again trained
standard HMMss on the duration-normalized read training set and eval uated our models on the duration-
normalized read testing set. The results are shown in Table 4.1.
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WER | Relative Improvement
Baseline 15.6% -
Normalized duration 14.0% 10.3%
(8 frames)

Table 4.1 Results from phone duration normalization on MR read speech. A 10.3% relative improvement over
baseline accuracy is shown when all phones are normalized to a duration of 8 frames.

We observed that our baseline error rate of 15.6% was reduced to 14.0% when missing feature duration
normalization was applied to read speech. This reflected a relative improvement of 10.3% over baseline
accuracy. These results show that the duration normalization methods are effective with perfect
knowledge of segment boundaries for carefully enunciated speech and for spontaneous speech.

4.2.2 Oracle Boundaries and the Telefénica Corpus(TID)
We also conducted oracle experiments on a Spanish database recorded by Telefonica Investigacién y

Desarollo in Madrid, Spain. The database consists of cdllular telephone callers repeating a small string of
digits or a monetary amount. The speech is small vocabulary, but highly spontaneous. The training set
consists of approximately 4 hours of training speech and 2 hours of testing speech data. For more

information on the TID corpus, see Section 3.2.1.

The process was the same as that for MR: We trained and tested standard HMMs on the raw TID speech.
We then Viterbi aligned the speech as before to derive oracle segmentation information. We then duration
normalized the entire train and test sets, and repeated our training and testing on the Spanish speech. The

results are shown in Table 4.2.

WER | Relative lmprovement
Baseline 5.2% -
Normalized duration 3.4% 34.6%
(6 frames)

Table 4.2 Results from phone duration normalization on spontaneous Spanish TID speech.

Note that for the Spanish TID data, we empirically determined that a normalized duration of 6 framesis
best. We observed in this case that our baseline error rate of 5.2% was reduced to 3.4%, which reflected a
relative improvement of 34.6%. These results confirm the potential effectiveness of the missing feature
duration normalization approach. They also indicate that there is a great potential for improved
recognition accuracy, especialy in the case of smaller vocabulary and limited domains.
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4.2.3 Oracle Boundaries and the Broadcast News Corpus (BN)
We aso conducted oracle experiments on athe NIST HUB4 Broadcast News evaluation data. This

database consists of televised broadcast news collected in the mid to late 1990s. Model training was
performed on 45 hours of speech taken from the 1996 and 1997 corpora. Testing was done on the 1999
Eval 1 data set. For more information on the BN corpus, see Section 3.2.3.

The procedure was identical to the procedure used for the MR and TID data sets. For this English

broadcast news data, a normalized duration of 8 frames was used. The results are shown in Table 4.3.

WER | Relative lmprovement
Baseline 33.4% -
Normalized duration 31.6% 5.4%
(8 frames)

Table 4.3 Results from phone duration normalization on large-scal e broadcast news task.

For the broadcast news task, the baseline error rate of 33.4% was reduced to 31.6% viathe duration
normalization algorithm. Thisis arelative reduction in WER of 5.4%. These results further confirm the
effectiveness of recognizing speech with normalized phone durations. As with most large-scal e tasks, the
potential for improvement is not as great as that achieved for smaller tasks. Thisis most likely due to the

large amount of training data and complexity of the models that can be derived from such a data set.

4.2.4 Result Summary: Duration Normalization with Oracle Segmentation Information
We close this chapter with a summary of the results from applying the duration normalization algorithm

with oracle segmentation information. Table 4.4 contains a summary of recognition accuracy

improvements possible for each of the databases tested.

Corpus Relative | mprovement
MR (spon) 20.1%
MR (read) 10.3%
TID (Spanish) 34.6%
BN 5.4%

Table 4.4 Summary of phone duration normalization results using oracle segmentation on a variety of speech
corpora.
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From these results, we observe that the potential accuracy improvements varies depending on the size of
the task and the nature of the speech. The results from the parallel MR corpus indicate that the potential
improvement is greater when the speech is more spontaneous than when the speech is more carefully

prepared and read.

The broadcast news speech contains alarge amount of speech data with varying levels of spontaneity,
from carefully-prepared and professionally-delivered news reports to ad hoc interviews in the field with
background noise and other issues. With this large amount of training data and more sophisticated
recognition models, the potential for improvement with duration normalization, while till significant, is

not as great as the potential improvement for other tasks.

4.3 Conclusions

In this chapter, we presented a detailed overview of our duration normalization process which uses
missing feature reconstruction techniques to enable the normalization of the duration of all sound units
present in the speech prior to modeling and recognition. This normalization is designed to “factor out” the
phone duration variability and help ensure robust estimation of the HMM acoustic model parameters

despite the high duration variability observed in spontaneous speech data.

Using the correct transcripts, we used Viterbi alignment to generate “oracle” segmentation information
for use with our duration normalization algorithm. Experiments on the spontaneous register of the MR
corpus indicated that a normalized duration of 8 frames led to the best overall recognition system
accuracy, and therefore we fixed our normalized duration to 8 frames for all English language corpora for
the remainder of thisthesisresearch. (Similar experiments on the Spanish language TID corpus indicated
anormalized duration of 6 was better for spontaneous Spanish speech; therefore, we fix the normalized
duration to 6 framesfor TID.)

When the segmentation information is known a priori, we observed that the duration normalization
algorithm yields large improvements in recognition system accuracy, with relative reductions in word
error ratesin the range of 5.4%-34.6%. The potential for improvement varied depending on the size of
the corpus and the size of the vocabulary. Consistent with many speech recognition enhancement
algorithms, the observed accuracy improvements were quite large on smaller datasets and more modest
on larger datasets presumably due to the large amount of varied speech data used to train the HMM
acoustic models.
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In the following chapter, we present different techniques for automatic segmentation of speech into sound
units. We focus our search on finding the most effective speech segmentation technique that yields

significant recognition system accuracy improvements when coupled with our duration normalization

algorithm.
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5: Blind Phone Segmentation Techniques

In this chapter, we discuss automatic techniques to segment the speech waveform into a sequence of
sound units (“phones’) when the transcript is not known a priori. The duration normalization technique
described in the previous chapter depends on the quality of an automatically-derived segmentation of
speech into basic phonetic units. We also discuss and apply some metrics from signal detection theory to

evaluate the quality of the proposed automatic segmentation techniques.

5.1 Decoder -based Segmentation
A simple way to segment the speech waveform into sound units makes use of the speech recognition

engine and HMM acoustic models for the phonetic units. This processisillustrated in Figure 5.1.

3
baseline
HMM
she left my hypothesized
speech where were you phone
- segmentation

‘ hypothesized transcript

Figure 5.1 Block diagram for the decoder-based segmentation system.

We dtart by training baseline recognition models on the training speech corpus using standard Baum-
WEelch training. We then attempt to recognize the speech using the baseline models. The decoder
produces a hypothesized transcript of each utterance in the corpus. We then use the Viterbi algorithm and
the baseline acoustic models to align the hypothesi zed transcripts to the speech. Boundary locations are
hypothesized every time the aligner records a transition out of the last state of one phon€’ s acoustic model

and into the first state of the next phone’ s acoustic model.

5.2 Experimental Results Using Decoder -based Segmentation
We performed duration normalization experiments on the Telefénica (TID), Multiple Register (MR), and
Broadcast News (BN) corpora using decoder-based segmentation. In each case, we trained baseline
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models for the particular corpus. We then decoded and Viterbi-aligned both the training and testing sets to
generate hypothesized phone segmentations for each complete corpus. We performed duration
normalization on the training set of each corpus using the hypothesized segmentation information. We
then trained HMM acoustic models on the test corpora. Finaly, we performed duration normalization on

the testing sets and decoded the speech. The results are summarized in Table 5.1.

TID | MR BN
baseline 5.2% | 40.3% | 33.4%
duration normalization using decoder-based segmentation | 5.4% | 39.8% | 36.0%
duration normalization using oracle segmentation 3.2% | 32.2% | 31.6%

Table 5.1 Duration normalization results on three corpora using decoder-based segmentation. Baseline and oracle
segmentation results are presented for reference.

It is clear from these results that decoder-based segmentation is insufficient for use with the duration
normalization algorithm. In 2 of the 3 databases tested, accuracy actually degrades with respect to
baseline when duration normalization is applied using the decoder-based segmentation.

5.3 Signal Detection Theory: ROCs and the d’ Sensitivity Metric

In order to properly evaluate and compare different segmentation techniques, we make a short digression
to discuss some fundamental notions of signal detection theory (Engen, 1971). We consider the speech
segmentation problem as a detection problem where we are trying to detect phone boundary locations
within a speech signal. Thisis atwo-class pattern recognition problem: the detector must decide whether
aframe of speech data corresponds to a true boundary location (“ T") or afalse, non-boundary location

“F").

When attempting to automatically detect boundaries, there are four possible situations that can arise.

These situations are defined and described using standard signal detection theory terminology as follows:

1. “hit” = atrue boundary location (T) is correctly identified as a boundary (“T")
2.“miss’ = atrue boundary location (T) isincorrectly identified as a non-boundary (“F”)
3. “fasedarm” = anon-boundary location (F) isincorrectly identified as a boundary (“ T")

4. “correct rgjection” = anon-boundary location (F) is correctly identified as a non-boundary (“ F”)

A good detector will maximize the number of “hits” and “ correct rejections’ while minimizing the

number of “misses’ and “falsealarms’.



Many of our segmentation systems make use of a decision threshold (8) when hypothesizing speech
segmentations. We eval uate our detection systems by purposefully varying the decision threshold and
recording the resulting probability of correct detection and probability of false alarm for each value of 6.
Given thisinformation, we plot the Receiver Operating Characteristic (ROC), with the probability of false
alarm on the x-axis and the probability of correct detection on the y-axis. In evaluating different
segmentation algorithms, we will report results together with ROC graphs and estimated sensitivity
parameters where appropriate.

To evaluate the accuracy of a detector, it isimportant to separate the sensitivity (d’) of the detector from
itsbias (B). These measures are derived by assuming that the T and F detection classes are governed by
underlying normal distributions with respective means my and mg, and equal standard deviations

ot = or = o. Thisisillustrated in Figure 5.2.

)

AN

I {SS I,

il

Figure 5.2 Illustration of detector sensitivity (d') and bias (B) for a two-class problem with underlying normal
probability distributions. The d’ shown in the figure assumes that the standard deviation (o) of both classesis 1.

The sensitivity measure d’, which isindependent of the decision threshold 8, is given by the difference

between the means of the two classes divided by the standard deviation:

gr=" T M (5.3.1)
g



The bias B isthe difference between the decision threshold € and the midpoint between the two means:

p=g-Tr t M (5.3.2)
2
In practice, the decision threshold @ is adjusted according to the a priori statistics of the two classes and
the costs associated with each type of detection error (missesv. false darms). This adjustment isa
purposeful bias of the detector.

To evaluate the accuracy of aclassifier on a given test set, we must first estimate the detector’s
probability of correct detection (Pp) and probability of false alarm (Pg). We estimate Pp by computing the
ratio of the number of hitsto the total number of boundary locations in the corpus, and we estimate Pr by
computing the ratio of the number of false alarms to the total number of non-boundary locationsin the
corpus. For ease of computation, we then convert the estimated Py and Pr values to z scores using the

following coordinate transforms:

V4
_1 7 -x¥/2
P, = [e dx (5.3.3)
— 00
ze
p=L [e X2 (5.3.4)
277_oo

Finally, the sensitivity parameter d’ and detector bias  are calculated using the following formulas:
d'=z, -z (5.3.5)

z, +z
2

p= (5.3.6)

The graph in Figure 5.3 shows different ROC curves that correspond to particular values of the sensitivity
parameter d'. These curves are known as isosensitivity ROC curves because the value of d'isthe same for
every point on the curve. A sensitivity value of d’ = 0 corresponds to chance accuracy. The greater the
value of d’, the more accurate the system is. Note that the accuracy of an unbiased detector would lie on
the “kne€’ of each curve. The more biased a detector is, the further away the operating point lies from the

knee of its corresponding isosensitivity curve.
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Isosensitivity ROC Curves
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Figure 5.3 Example isosensitivity ROC curves for different values of the sensitivity measure d'.

The graphsin Figure 5.4 show the relationship between the probability of correct detection Pp and the
sensitivity parameter d'. To generate these curves, we assume that the detector is unbiased, i.e. that Pris

aways equal to 1 — Pp Note that d’ approaches infinity as Pp approaches 1.0.

Relationship Between the Sensitivity Parameter (d') Relationship Between the Sensitivity Parameter (d')
& Probability of Correct Detection (linear scale) & Probability of Correct Detection (logarithmic scale)
7.0 4 7.0
B0 — — —— — —mm
5.0
40 —— —— — —mm e m ~
) )
3.0
20 ——mm e e e
10— —m o mm e
0.0 - : : : ,
05 0.6 0.7 0.8 0.9 1.0
Prob[Correct Detection] -In(1-Prob[Correct Detection])

Figure 5.4 Relationship between the sensitivity measure d’ and the probability of correct detection, assuming that
the classifier is perfectly unbiased. The plot on the left uses a linear scale, and the plot on the right uses a semi-log
scale.
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5.4 Resultsand Analysis. Decoder-based Segmentation
In this section, we report segmentation results for decoder-based segmentation performed on the test set
of each of the three evaluation corpora (TID, MR, BN).

The decoder-based segmentation results for the TID test corpus are shownin Table 5.2. Thefirst chart
shows the raw count in number of frames processed and detected. The second chart showsthe results as a

percentage. The sensitivity index d'isalso given.

“ TH “ FH " TH “ F”
43126 | 883 T |98.0%| 2.0% d’'=50
F | 1308 | 675876 F | 0.2% |99.8%

Table 5.2 Decoder-based segmentation detection results for the TID corpus.

It is clear from these results that the decoder-based segmentation performs very well on the TID test data,
with a 98% probability of correct detection and only a0.2% probability of false darm. The sensitivity
index d’is 5.0 for this detector.

Decoder-based segmentation on the spontaneous MR test set performs as follows (Table 5.3):

“ TH “ F” " TH “ F”
9489 | 1452 T |[86.7% | 13.3% d'=35
F 985 | 104143 F | 0.9% |99.1%

Table 5.3 Decoder-based segmentation detection results for the MR corpus.

While the classification is not as accurate on MR asit ison TID, the classifier still performswith ahigh
sensitivity index of 3.5. Decoder-based segmentation achieves an 86.7% hit rate with a 0.9% rate of false
alarm on the conversational MR data. It is clear from these results that decoder-based segmentation
accuracy isrelated to the WER of the standard baseline models when decoding the test set. For TID,
baseline WER is 5.2%, while for MR, the baseline WER is 40.3%. Consequently, the decoder-based
segmentation is less accurate on the MR data.
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Decoder-based segmentation and the BN corpus yields the following results (Table 5.4):

13 TH 13 FH “ TH “ F”
T |41112| 3139 T [929%| 7.1% d'=39
F | 2320 | 305653 F | 0.7% | 99.3%

Table 5.4 Decoder-based segmentation detection results for the BN corpus.

Again, the decoder-based segmentation performs quite well on BN data. The sensitivity index is 3.9 with
ahit rate of 92.9% and afase darm rate of 0.7%. We a so note that the accuracy of decoder-based
segmentation again relates to the baseline word error rate of the recognition system. The BN baseline
WER of 33.4% is better than the baseline WER for MR but worse that the baseline for TID. Accordingly,
the decoder-based segmentation accuracy is better than that of the MR system but worse than that of the
TID system. In all cases, the decoder-based segmentation yields strong sensitivity indices ranging from
3.5t05.0.

5.4.1 Decoder-Based Segmentation—Detector Bias
The decoder-based segmentation results presented above indicate that the detection system is biased, i.e.

the probability of missing a boundary is much greater than the probability of false alarm. For TID, we
estimate a detection bias § of 0.412. For MR the detection bias  is 0.626, and for BN the detection bias 8
is0.494. We therefore investigated the possibility of adjusting the speech recognizer so that the resulting
segmentation results would be less biased.

The SPHINX-I11 speech recognition system offers two adjustable parameters to optimize accuracy: the
word insertion penalty and the phone insertion penalty. These penalties are incurred during the search
every time the recognizer hypothesizes atransition into a new word or phoneme. The word insertion
penalty is designed to favor hypotheses with a“reasonable” number of words given the overall duration

of the utterance, and most state-of-the-art HMM -based systems make use of such a parameter.

We experimented with avariety of word and phone insertion penalty values on the MR corpus and found
that we were able to move the operating point of the detector only dlightly towards the desired unbiased

operating point. The observed change was too small to have a significant impact on our recognition



results. After exhausting the practical means to reduce the bias of the decoder-based segmentation system,

we concluded that the effects of the bias were unavoidable.

5.5 Phonetic Decoder-based Segmentation

At the end of this chapter, we discuss in detail afundamental problem that results when decoder-based
segmentation is used together with duration normalization (see Section 5.7 “ The Decoder-based
Segmentation Dilemma’”). It would be advantageous to develop a high quality segmentation algorithm
which does not depend on the sequence of word strings hypothesized by the baseline recognition system.

We experimented with using the acoustic recognition models to search for the most likely sequence of
phones present in the speech signal. Thisis known as phonetic or “all phone” decoding. The phonetic
decoding search is not constrained by the dictionary of words and their corresponding “valid” sequences
of phonesin the language. Unlike word decoding, when SPHINX-II1 isused in “al phone” mode, the
system outputs the hypothesized sequence of phonemes and the corresponding start and end frames for
each hypothesized phone. Using the baseline recognition modelstrained for each corpus, we performed
phonetic decoding of the TID corpus.

Phonetic decoder-based segmentation on the TID test set performs as follows (Table 5.5):

113 TH 113 FH " TH “ F”
40856 | 3153 T |928%| 7.2% '=38
F | 7479 | 669705 F | 1.1% | 98.9%

Table 5.5 Phonetic decoder-based segmentation detection results for the TID corpus.

In thisinstance, the segmentation derived by the phonetic recognition system performs worse than the

segmentation derived by the word recognition system. Similar results were observed on MR data. Thisis
due to the fact that the phonetic decoding is often error prone, and unconstrained phone error rates of the
systems are significantly worse than corresponding word error rate values for constrained word decoding.

We attempted to use al phone decoding to segment speech for duration normalization, but the technique
was not successful. The accuracy of all phone decoder-based segmentation duration normalization was
always worse than baseline accuracy due to the large number of phone and boundary errors introduced by

the lower quality phonetic decoding.
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5.6 Signal Processing-based Segmentation Techniques

We also investigated and evaluated a series of segmentation techniques that work directly on the speech
signal, independent of the recognition engine. We experimented first with an “edge detection” technique
where we assigned boundary locationsto placesin the signal where the spectrum changed dramatically
using avariety of distortion metrics. We then moved to a more elaborate “ split-and-merge” algorithm to
find regions of spectral stability within the speech signal.

5.6.1 Edge Detection Segmentation
In edge detection segmentation, we analyze the speech signal and look for locations in the speech where

the signal is changing rapidly. We first convert the speech signal to the 20-dimensional log Mel spectral
domain. This gives atime sequence of 20-dimensional vectors we call x[n]. We then calculate arunning
distortion metric (A) across the time sequence of speech log-spectral vectors and compare to a decision
threshold 6. If A is greater than 6, we hypothesize a boundary location at that point in the signal;

otherwise, we assign that frame of speech to the non-boundary class.

We experiment with the following three distortion metrics for edge detection segmentation. Note that
d( x,y) represents the standard Euclidian distance between vectors x and y.

1. Backward Difference:
A[n] =d(x{n],x[n-1]) (5.6.1)

2. Forward + Backward Difference:

Fonenal N = d(X[N], XN - 2]) (5.6.2)
OumalN] = d(X{n], X[n + 2]) (5.6.3)
A[ n] = 5forward[n] + Jbackward[n] (564)

3. Dendrogram-based Distortion Metric

a[ n] = Jforward [ n] - Jbackward [n] (565)

AfN] ={|0a[n] -a[n-1]| , if a[n]anda[n -1] differinsign (566)

, otherwise
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The backward distortion (Eg. 5.6.1) isthe simplest distortion metric which looks for immediate spectra
change within arange of one frame of speech. The forward + backward distortion metric (Eg. 5.6.4) looks
for locations in the speech signal which are vastly different than those that come 2 frames earlier and
those that come 2 frames later. Theideaisthat at boundary locations, the speech frame should look

different fromits neighborsin either direction.

The dendrogram-based distortion metric is similar to the metric used by segmental modeling/recognition
systems when they build a“ dendrogram” or hierarchical segmentation network for the speech signal
(Glass & Zue, 1988). When building a dendrogram, each frame of speech is“associated” either with the
frames preceding the given frame or the frames following the given frame depending on the association
direction with the smaller distortion. In Eg. 5.6.5, we define a[n] as an “association” metric corresponding
to the speech signal. If a[n] is positive, then the forward distortion is greater than the backward distortion,
which means that frame n is associated with the preceding frames. If a[n] is negative, then the backward
distortion is the greater distortion, implying an association with the following frames. Since boundaries
are hypothesized in the base level of a dendrogram network whenever the association direction changes,
we define the final dendrogram-based distortion metric in Eq. 5.6.6 as follows: A[n] is the magnitude of
the association change when there is an association change (i.e. when a[n] and a[n-1] differ in sign), and
A[n] is 0 when there is no association change.

The ROC results for the backward distortion metric are presented in Figure 5.5 for TID and MR data.
Note that the accuracy for decoder-based segmentation is presented with symbol x for comparison. The
sensitivity index for backward difference edge detection is approximately 1.9 for TID and 2.0 for MR
data. It isclear that the decoder-based segmentation outperforms backward difference edge detection.
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Figure 5.5 ROC results for edge detection using the backward distortion metric on TID (l€ft)
and MR (right). Decoder-based segmentation is shown asan “X” for reference.

Forward + backward difference edge detection ROC for TID and MR data are shown in Figure 5.6.

Again, the decoder-based segmentation accuracy is presented for reference.
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Figure 5.6 ROC results for edge detection using the forward and backward distortion metric on TID (left)
and MR (right). Decoder-based segmentation is shown asan “X” for reference.
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Sensitivity index d’ values of approximately 2.1 and 1.9 are observed on TID and MR data respectively.
Again, decoder-based segmentation outperforms forward+backward difference edge detection on both
data sets.

The results for the dendrogram-based edge detection are shown in the following ROCs (Figure 5.7):

TID Edge Detection Results MR Edge Detection Results
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Figure 5.7 ROC results for edge detection using the dendrogram-based distortion metric on TID (Ieft)
and MR (right). Decoder-based segmentation is shown asan “X” for reference.

For dendrogram-based edge detection, the d’ values are approximately 2.3 for both TID and MR.
Although we see a slight improvement over the other two metrics, we still observe that the decoder-based
segmentation greatly outperforms our edge detection techniques.

In summary, we present overlapping ROC curves for direct comparison of the different edge-detection
distortion metrics (Figures 5.8 and 5.9). We also present a chart of sensitivity index (d’) values for each
edge-detection technique as well as for the decoder-based segmentation (Table 5.6).
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Figure 5.8 Summary ROC results for edge detection using the different distortion metrics on the TID corpus.
Decoder-based segmentation is shown asan “X” for reference.
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Figure 5.9 Summary ROC results for edge detection using the different distortion metrics on the MR corpus.
Decoder-based segmentation is shown asan “X” for reference.

Sensitivity Index Values (d") TID | MR

decoder-based segmentation 5.0 35
backward difference edge detection 19 2.0
forward+backward difference edge detection 21 19
dendrogram-based edge detection 2.3 2.3

Table 5.6 Summary sensitivity index values for edge detection using the different distortion metrics on the TID
and MR corpora. Decoder-based segmentation is shown for reference.



For both TID and MR data, the dendrogram-based edge detection is the best of the edge detection
methods. However, in both cases, the decoder-based segmentation approach presented in Section 5.1 is
clearly superior. For TID, the edge detection methods would incur a probability of false alarm greater
than 0.5 to achieve the probability of correct detection that decoder-based segmentation achieves. For
MR, the edge detection methods would have a false alarm probability of 0.1 when the decoder-based
segmentation hit probability is achieved.

5.6.2 “ Split-and-Merge” Segmentation
Image processing researchers often use a technique known as “ split-and-merge” segmentation to

automatically locate distinct regions or “objects’” within a given image (Horowitz & Pavlidis, 1974). With
afew modifications, we can apply split-and-merge to the phonetic segmentation problem in speech.

We start with a spectrogram representation of the speech signal, which for our experimentsisatime
sequence of 20-dimensional log Mel spectral vectors (x[n]). An example log spectrogram from TID data
isshown in Figure 4.2.

We constrain our search for regions within the speech image to blocks that span the entire vertical axisin
order to look for time sequences with similar spectral characteristics. We then proceed to break the image
up into distinct regions with asmall variability in spectral features. We define the mean vector and

variability corresponding to a speech region as follows:

endn
mean vector: x| :% > (] (5.6.7)

i=startn

= Searxenf 669

i=startn

variability (scalar):

Uz‘endn 1
startn N _1
In the above equations, N isthe number of framesintheregion (N =endn—-startn+1), andd(x,y ) is

the Euclidian distance between the vectors x and y.

For split-and-merge segmentation, we have the freedom to vary two threshold parameters: g and Grerge
Any region with variability greater than O, Will be split during the split phase of the processing, and any
two regions whose mean vectors differ (Euclidian distance) by less than Gpege Will be merged during the

merge phase of the processing.
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Split-and-merge segmentation works as follows:

1. Initialize: Assign the entire image to asingle starting “region”. Calcul ate the mean vector X and

variability o corresponding to the base region.

2. Split phase:  Examine al regionsin theimage. If the variability of aregion is greater than O,

bisect the region into two distinct regions. Continue splitting until every region has a

variability less than Ogyit.

3. Mergephase: Examine al regionsin the image pairwise from left to right. If the Euclidian distance

between a pair of mean vectors is|ess than Greqe, Merge the regions. Continue

merging until the difference between all neighboring mean vectors is greater than

gmerge-

4. |terate: Repeat the split and merge phases until the final iteration makes no further changes to

the hypothesized region list.

We performed split-and-merge segmentation on the TID and MR testing data sets. The results are given

in the following ROC plots (Figure 5.10). We experimented with different threshold values for 6, and

Omerge- The ROCs below are the best detection accuracies we achieved, which are aresult of holding Gyerge

constant at 1.125 and varying 6sy,i: from 10-40. As in previous sections, the decoder-based segmentation

accuracy is shown for reference.
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Figure 5.10 ROC results for split-and-merge segmentation on TID (left) and MR (right).

Decoder-based segmentation is shown as an “ X" for reference.
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As with edge detection, split-and-merge segmentation is an effective speech segmentation method, but it

isalso inferior to decoder-based segmentation. We overlay the ROCs for edge detection and split-and-
merge below in Figures 5.11 and 5.12. For both TID and MR data, split-and-merge performs sightly

better than our best edge detection method (dendrogram-based distortion).

TID Boundary Detection Results
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Figure 5. 11 Summary ROC results for split-and-merge segmentation and edge detection segmentation

onthe TID corpus. Decoder-based segmentation is shown as an “X” for reference.
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Figure 5.12 Summary ROC results for split-and-merge segmentation and edge detection segmentation

on the MR corpus. Decoder-based segmentation is shown as an “ X” for reference.

57



From the ROC graphs, it is clear that although split-and-merge segmentation shows a slight improvement
over edge detection segmentation, it is still not able to compete with the original decoder-based

segmentation approaches. Table 5.7 quantifies the results in terms of sensitivity index:

Sensitivity Index Values (d’) TID | MR

decoder-based segmentation 5.0 35
phonetic decoder-based segmentation 38| -~30
split & merge segmentation 2.6 24
dendrogram-based edge detection 2.3 2.3

Table 5.7 Summary sensitivity index values for split-and-merge segmentation and edge detection segmentation on
the TID and MR corpora. Decoder-based segmentation results are shown for reference.

Split-and merge segmentation hasad’ value of 2.6 for TID data and 2.4 for MR data. While the classifiers
are good, they are far from the decoder-based segmentation d’ of 5.0 for TID dataand 3.5 for MR data.

5.7 Analysis: The* Decoder-based Segmentation Dilemma”

The sequence of automatic segmentation experiments presented in this chapter led usto the conclusion
that the simplest method of decoding the speech and Viterbi-aligning the hypothesized transcript to the
speech data produces segmentations with a high level of quality that our other methods are unable to
achieve. However, making use of decoder-based segmentation together with duration normalization is
problematic: What typically happens is that words found in the speech signal that are highly spontaneous
or under articulated are misrecognized by the baseline recognition system. The incorrect word is then
aligned to the speech signal to produce a corresponding errorful boundary hypothesis. When these
incorrect boundaries are applied to normalize the speech signal so that every phone has the same duration,
the mistake is then reinforced by our approach. The duration normalization recognition models then tend
to make the same mistake that the baseline decoder made in the first place. We term this phenomenon the

“decoder-based segmentation dilemma’.

The underlying problem is as follows. good segmentation requires the use of a good statistical model for
the fundamental speech units we are looking for in the speech. State-of-the-art HMM acoustic models
provide a compact and effective way to model the spectral characteristics of the fundamental speech units
together with the time series nature of observed speech features. When the HMM acoustic models are
constrained by |language models containing information concerning the likelihood of the sequence of
wordsin a given language, adequate speech recognition and segmentation is possible. When these

constraints are removed and the HMMs are used to recognize sequences of phonemes rather than
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sequences of words, the resulting recognition and segmentation quality is substantially degraded.
Segmentation techniques like edge-detection and split-and-merge segmentation which do not make use of

an underlying statistical model of speech are even less accurate.

We also investigated combining the different segmentation techniques presented in this chapter to build
upon the accuracy of decoder-based segmentation. Thiswas not successful for several reasons: First, in
many of the cases when boundaries are missed by decoder-based segmentation, thereislittle or no
evidence in the speech signal that would indicate that a boundary should be hypothesized at that location.
Attempts to use distortion metrics or other methods to recover such lost boundaries are too prone to errors
and are therefore ineffective. Also, automatic, minimum-error techniques to combine the classifiers place
the largest weight on the most accurate classifiers. Because the decoder-based segmentation is far
superior to the other classifiers, the supporting information provided by the other classifiersis virtually

ignored when combined decisions were made.

Our conclusion isthat the “ decoder-based segmentation dilemma’” will not be overcome by further work
to improve the segmentation quality. In the following chapters, we investigate reformul ation of the
duration normalization algorithm in order to cope with imperfect segmentation information that will be

present in real world recognition tasks.

5.8 Conclusions

In this chapter, we presented a variety of techniques for estimating the segmentation of the speech
waveform into its constituent sound units. We found that the decoder-based segmentation approach to be
by far the best approach for automatically segmenting speech into sound units. Decoder-based
segmentation outperforms traditional signal processing-based approaches to detect edges or coherent
regionsin the speech spectrogram.

While decoder-based segmentation is the best approach from a boundary detection perspective, itis
problematic when used in conjunction with duration normalization to improve overall recognition
accuracy on spontaneous speech. The recognition errors made by the baseline system are reinforced by
the use of the corresponding boundaries, and the duration normalization system is often led to repeat the

Same errors.

Segmentation approaches that do not rely on a recognition system are attractive because they avoid the
problem of reinforced recognition errors; however, the quality of their segmentation information is

inadequate for use with the duration normalization system.
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We conclude that further improvements of segmentation quality would be very difficult to achieve. In the
next chapter, we investigate the possibility of modifying the duration normalization algorithm so it can

better cope with segmentation errors.
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6: The Modified Duration Normalization Algorithm

In the previous chapter, we showed that despite the high quality of automatic segmentation techniques,
the basic duration normalization process does not yield significant improvements in recognition accuracy.
This chapter begins with an examination of the effect of phone segmentation errors on the duration
normalization process. We then detail ssmple variants of duration normalization which are designed to
help cope with boundary insertions and deletions in automatically-derived phone segmentations. Finally,
we close with experiments that show meaningful improvements in speech recognition accuracy via

duration normalization and automatically-derived phone boundaries.

6.1 Motivation: Impact of Segmentation Errors

While duration normalization has the potential for large improvements in recognition accuracy, the
problem of blindly estimating accurate phone segmentations has continued to thwart our effortsto achieve
real recognition improvements via duration normalization. Magjor problems occur when phone boundaries
areinserted or deleted.

Figure 6.1 illustrates an example abstracted from our test speech data. In this example, there are two
phone boundaries relatively close together in an utterance. Asis often the case in spontaneous speech,
thereislittle evidence for these boundaries in the data (probably due to phone elision), and the automatic
segmentation algorithm misses these boundaries entirdly. If both boundaries had been detected, the
“short” darkened segment between the boundaries would have been expanded by the duration
normalization algorithm, asillustrated in the lower left of Figure 6.1. Because the boundaries are not
detected, the little evidence for the “short” phone present in the original speech isamost completely
discarded when the length of the improperly-detected “long” segment is reduced for duration
normalization. Thistype of boundary detection error leads to aword deletion or substitution error in the
final recognition hypothesis. Similarly, when the boundary detection algorithm makes boundary insertion
errors, the resulting recognition hypothesis often contains a word insertion or substitution error.

| I |
boundaries detected boundaries missed
propetly y %

Figure 6.1 Illustration of resulting normalized segments when boundary detection isin issue.
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Figure 6.2 shows mel-frequency |og spectrograms for an utterance from the TID Spanish database. In this
example, the boundaries for the short /z/ and /i/ phones in the middle of the word “setecientas’ (/setezi
entag/) are missed by our best automatic segmentation technique. The segmentation shown above the
spectrogram in the uppermost pand is the correct segmentation. The segmentation shown below the
spectrogram in the uppermost pand is derived automatically using decoder-based segmentation, and it
contains boundary deletions. When the speech is normalized using the oracle boundaries, we can see an
expansion of the short /z/ phone which makes it more “visible” to the recognizer. When the speech is
reconstructed and recognized using the automatically-derived, errorful phone boundaries, the evidence for
the short /z/ phoneislost, and the recognizer misrecognizes “ setecientas’ as “setenta”’ (/setent &).
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Figure 6.2 Log spectrograms illustrating the result of normalizing with correct and incorrect segmentation
information. The segmentation above the spectrogram in the uppermost panel is correct. The segmentation below the
same spectrogram contains several deleted boundaries. The result of normalizing using the correct segmentation is
shown in the middle panel. The result of normalizing using the errorful segmentation is shown in the bottom panel.
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These observations lead us to investigate variants of the duration normalization algorithm that will incur
less devastating consegquences when boundaries are missed or inserted by automatic boundary detection

techniques.

6.2 Partial Contraction Duration Normalization

Asillugtrated in the previous section, hypothesized phone segmentations with deleted boundaries gravely
impact the recognition system by throwing away useful information when incorrectly labeled long
segments are contracted. We therefore investigated a partial contraction of the long segments to help
ensure that useful information is not discarded. The partial contraction is controlled by areduction
parameter r which can be any real number between 0 and 1.

Partial contraction is performed as follows: Let |5 be the original length of a given long segment. Let Lyom
be the desired normalized duration prescribed for each segment. Since the segment under consideration is
along segment, we know that |, > Lo . Define g to be the difference between the original length of the

segment | and the desired normalized duration Lo

Idiff = IO - Lnorm (621)

The normalized length of the long segment is given by the following equation:

I"'=L,., +r

norm diff

(6.2.2)

If the reduction parameter r is set to 0, we have compl ete contraction as performed in standard duration
normalization. If r isset to 1, the long segments are not contracted and are remain at their origina
durations. For values of r between 0 and 1, a partial contraction is performed as a percentage of the
difference between the origina length of the hypothesized segment and the desired normalized length of
the segment. The partial contraction processisillustrated in the following Figure 6.3.
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Figure 6.3 Illustration of partial contraction duration normalization using different values
of the reduction parameter r.

Figure 6.4 shows the same TID utterance from Figure 6.2 normalized using partial contraction duration

normalization and a variety of reduction parameter (r) values.

Note that in partial contraction duration normalization, expansion operation is not changed. Typicaly, we
are using normalized durations of 6 or 8 frames. Because the HMM acoustic model for each phone
contains 3 states, the hypothesized short segments will range in duration from 3—7 frames. Since the
resulting normalized duration must be specified as an integer number of frames, we hypothesi ze that
interpolating between the original length of a short segment and a normalized duration of 8 frames would

not make a significant impact on the accuracy of the system.
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Figure 6.4 Log spectrograms illustrating the result of partial contraction duration normalization using a variety of
reduction parameters. Note that the time scale is not the same from panel to panel.

6.3 Partial Contraction Duration Normalization: Experimental Results

We performed partial contraction duration normalization experiments on the Telefonica (TID) and
Multiple Register (MR) corpuses. In both cases, we segmented the databases blindly using the decoder-
based approach described in Section 5.1. We varied the reduction parameter r between 0 and 1 and
normalized the training and testing data sets using partial contraction duration normalization. We then
trained models to correspond to each r value and tested under matched conditions.

Theresultsfor TID are given in Figure 6.5.
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TID Partial Contraction Duration Normalization Results
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Figure 6.5 Recognition results using partial contraction duration normalization on the TID corpus.
Results are presented as a function of the reduction parameter r.

Onthe TID data, partia contraction achieves a 3.8% relative improvement over baseline accuracy. The
WER is 5.0% when the reduction parameter r is 0.5. We observe accuracy sightly better than baseline for
r values of 0.3, 0.4, 0.5, and 0.7.

Partial contraction duration normalization on the MR corpus yields the following results (Figure 6.6):

MR Partial Contraction Duration Normalization Results

Oinsertions
m deletions

% WER

@ substitutions

Figure 6.6 Recognition results using partial contraction duration normalization on the MR corpus.
Results are presented as a function of the reduction parameter r.
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Partial contraction duration normalization performs slightly better than baseline for all values of r tested.
The best accuracy is seen when r = 0.4: the WER of 38.5% reflects a 4.5% rel ative improvement over

baseline accuracy on MR data.

6.4 Variants of Duration Nor malization: Standard, Expand-Only, Contract-Only

For a given phone segment, the duration normalization algorithm will do one of two things: If the phone
islonger than the desired duration, the sequence of 1og spectral vectors corresponding to the phone are
downsampled in time to achieve the normalized duration. If the phone is shorter than the desired duration,
the log spectral vectors are expanded in time, and the “missing” vectors are replaced by missing feature
methods.

As described in the Section 6.1, boundary detection errors often lead to recognition errors, especialy in
cases when short phones are not detected. To alleviate this problem, we experimented with the following
variants of duration normalization:

. standar d: expand short phones, contract long phones
. expand-only: expand short phones, leave long phones at their natural durations
. contract-only: contract long phones, leave short phones at their natural durations

Figure 6.7 illustrates the results of normalizing a given segment of speech using each of the three variants

of duration normalization:

L T
&I standard
<

[ ] | [0

N

contract only

expand only

Figure 6.7 Illustration of the different variants of duration normalization: standard, contract-only, and expand-only.
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The expand-only variant hel psto compensate for examples like the illustration shown in Figure 6.1 and
the example shown in Figure 6.2. If the boundaries of a“short” phone were missed, the surrounding
segment would be incorrectly considered along phone and contracted by the standard duration
normalization approach. In expand-only duration normalization, the incorrect long phone would not be
contracted in time, giving us a better chance to properly recognize the missed short phone during
decoding. Similarly, contract-only duration normalization helps to compensate for spurious boundaries
inserted by automatic boundary estimation algorithms.

Each variant of duration normalization gives rise to adifferent set of acoustic models during training and
adifferent recognition hypothesis during decoding. Decoding with expand-only duration normalization
should produce fewer word deletion errors but more word insertion errors. Conversely, decoding with
contract-only duration normalization should result in more word deletion errors and fewer word insertion
errors. These systematic variations should make the hypotheses good candidates for merging viathe
parallel hypothesis combination method reported by Singh in (Singh et al., 2001).

In Singh’s method, the hypotheses are combined into a graph with nodes representing each word.
Crossovers are introduced between the hypotheses at time instants when both hypotheses have a transition
from one word to the next. (Note that if the same word is seen in both hypotheses at the same time, the
two words are merged into asingle node in the graph.) The graph is then searched for the best scoring
hypothesis with respect to the language model. For more details on hypothesis combination, see the

complete description in Section 2.8.

6.5 Experiments Using Automatically-Derived Phone Boundaries and Hypothesis
Combination

We started by training baseline models on each of the training sets using standard Baum-Welch training.
In our “oracle” experiments, we used decoder-based segmentation and the reference transcripts to derive
“oracle’ phone boundaries. In our “blind” experiments, we used decoder-based segmentation to derive the
locations of our estimated phone boundaries.

Using these phone boundaries, we then normalized our training and testing sets using each of the three
variants of duration normalization (standard, expand-only, contract-only). For each corpus, we trained
three separate acoustic models on the training set, one model for each variant of duration normalization.

We then decoded the testing sets using each variant of duration normalization, which produced three
recognition hypotheses for a given utterance. Finally, we employed hypothesis combination to select the
final recognition hypothesis and scored our results. Table 6.1 reports results for TID data. Table 6.2
contains results for MR data. BN results are reported in Table 6.3.
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TID results WER | Relativelmprovement
baseline 5.2% —
“oracle’ experiment 3.2% 38.5%
“blind” experiment 4.8% 7.7%

Table 6.1 Results for duration normalization and hypothesis combination on the TID Spanish connected digits data.
Thistechnique achieves a 7.7% relative reductionin WER on TID.

MR results WER | Relative I mprovement
baseline 40.3% —
“oracle’ experiment 31.7% 21.3%
“blind” experiment 37.8% 6.2%

Table 6.2 Duration normalization and hypothesis combination results for the spontaneous register of the MR corpus.
A relative reduction in WER of 6.2% is seen on MR data.

BN results WER | Relativelmprovement
baseline 33.4% —
“oracle’ experiment 28.8% 13.8%
“blind” experiment 32.1% 3.9%

Table 6.3 Broadcast News 1999 Eval 1 recognition results with duration normalization and hypothesis combination.
A 3.9% relative reduction in WER is achieved on BN data.

Our experimental results show a reduction in WER over baseline for each of the databases tested.
Consistent with experiments using various speech compensation a gorithms for robust recognition, the
accuracy improvement achieved using smaller databases is greater than the accuracy improvement
achieved using larger databases such as broadcast news. In large tasks, the extensive amount of training
data and detailed modeling framework lead to a system that is presumably more robust. It isinteresting to
note that the duration normalization and hypothesis combination algorithm yields an accuracy

improvement even in the large-scale test.

We note that when using standard duration normalization a one with oracle segmentations, the best
possible relative reduction in WER is 34.6% for TID, 20.1% for MR, and 5.4% for BN. Standard duration
normalization alone with estimated segmentations does not yield significant improvements over baseline
accuracy on any of the databases tested. When duration normalization is combined with hypothesis

combination, significant improvements are achieved in all of our tests.

Our results show that duration normalization is a practical technique for improving speech recognition
accuracy for HMM-based systems when the recognition hypotheses produced by its variants are
combined with hypothesis combination.
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6.5.1 Detailed accuracy analysisfor variants of duration normalization

Tables 6.4, 6.5, and 6.6 show the breakdown of errors made by each variant of duration normalization
using estimated segmentation information on our test corpora. The word recognition errors are broken

down into substitution (sub.), deletion (del.), and insertion (ins.) errors. The baseline error breakdown and

post-hypothesis combination error breakdowns are also given for reference.

TID Sub. Del. Ins.
WER breakdown errors | errors | errors
Baseline 37% | 0.7% | 0.8%
Standard dur. norm. 41% | 0.7% | 0.6%
Expand-only dur. norm. 38% | 06% | 0.8%
Contract-only dur. norm. | 40% | 0.7% | 0.5%
Dur.norm. + hyp. comb. 3.6% | 0.6% | 0.6%

Table 6.4 Types of recognition errors made by each variant of duration normalization with estimated segmentation

information on TID data. Word recognition errors are broken down into substitution (sub.), deletion (del.), and

insertion (ins.) errors.

MR Sub. Dedl. Ins.
WER breakdown errors | errors | errors
Baseline 23.2% | 11.9% | 5.2%
Standard dur. norm. 22.2% | 13.7% | 3.9%
Expand-only dur. norm. | 23.0% | 12.8% | 4.5%
Contract-only dur. norm. | 22.1% | 13.9% | 3.6%
Dur.norm. + hyp. comb. | 20.7% | 13.6% | 3.5%

Table 6.5 Types of recognition errors made by each variant of duration normalization with estimated segmentation

information on MR data. Word recognition errors are broken down into substitution (sub.), deletion (del.), and

insertion (ins.) errors.

BN Sub. Ddl. Ins.
WER breakdown errors | errors | errors
Baseline 228% | 6.8% | 3.8%
Standard dur. norm. 245% | 7.0% | 4.5%
Expand-only dur. norm. | 25.2% | 6.2% | 5.2%
Contract-only dur. norm. | 22.9% | 7.7% | 3.3%
Dur.norm. + hyp. comb. | 21.8% | 7.0% | 3.3%

Table 6.6 Types of recognition errors made by each variant of duration normalization with estimated segmentation

information on BN data. Word recognition errors are broken down into substitution (sub.), deletion (del.), and

insertion (ins.) errors.
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As expected, expand-only duration normalization produces fewer word deletion errors and more word
insertion errors than standard and contract-only duration normalization. Also, contract-only duration
normalization produces fewer word insertion errors and more word insertion errors than standard and
expand-only duration normalization. In all casestested, hypothesis combination is able to take advantage
of these variationsto produce recognition hypotheses with alower word subgtitution rate than any of the

single duration normalization variants alone.

Tables 6.7, 6.8, and 6.9 show a complete result summary for each variant of duration normalization

applied to each of our data sets. Again, baseline and post-hypothesis combination results are also given.

TID Relative
result summary WER | Improvement
Baseline 5.2% —
Standard dur. norm. 5.4% -3.8%
Expand-only dur. norm. | 5.2% 0%
Contract-only dur. norm. | 5.2% 0%

Dur. norm. + hyp. comb. | 4.8% 7.7%

Table 6.7 Summary of errors made using duration normalization and estimated segmentation information on the
TID corpus. Hypothesis combination of the individual recognition hypotheses produces a 7.7% relative reduction in
WER when compared with the baseline.

MR Relative
result summary WER | Improvement
Baseline 40.3% —
Standard dur. norm. 39.8% 1.2%
Expand-only dur. norm. | 40.3% 0%
Contract-only dur. norm. | 39.6% 1.7%
Dur. norm. + hyp. comb. | 37.8% 6.2%

Table 6.8 Summary of errors made using duration normalization and estimated segmentation information on the
MR corpus. Hypothesis combination of the individual recognition hypotheses produces a 6.2% relative reduction in
WER when compared with the baseline.

BN Relative
result summary WER | Improvement
Baseline 33.4% —
Standard dur. norm. 36.0% -7.8%
Expand-only dur. norm. | 36.6% -9.6%
Contract-only dur. norm. | 33.9% -1.5%
Dur. norm. + hyp. comb. | 32.1% 3.9%

Table 6.9 Summary of errors made using duration normalization and estimated segmentation information on the BN
corpus. Hypothesis combination of the individual recognition hypotheses produces a 3.9% relative reduction in
WER when compared with the baseline.
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Using blindly-estimated segmentation information, the contract-only variant of duration normalization
outperforms the other two variantsin all casestested. On TID data, no improvements are seen using any
variant of duration normalization alone, and the standard variant actually causes a degradation in
accuracy. On the MR data, slight improvements are made by the standard and contract-only variants of
duration normalization alone. On BN data, all of the variants by themselves cause a significant
degradation in accuracy compared to baseline. In spite of this, hypothesis combination is a successful
method to combine these individual hypotheses and choose a good overall hypothesis that consistently

performs better than baseline.

6.6 Discussion: Duration Nor malization Variants and Hypothesis Combination

When duration normalization is combined with hypothesis combination, there is a greater improvement in
recognition accuracy than with duration normalization alone. With oracle segmentations, we see a greater
potential for improvement than that of standard duration normalization alone. With estimated
segmentations and standard duration normalization, we are unable to achieve actual improvementsin
recognition accuracy. With estimated segmentations, duration normalization, and hypothesis combination,
we achieve significant improvements in recognition accuracy on all databases tested, including a more

rigorous experiment on alarge vocabulary Broadcast News recognition task.

The important thing to note is that each variant of duration normalization makes different types of errors
at different times, even though by itself it does may not reduce the overall word error rate. Hypothesis
combination of the recognition output produced by the duration normalization variants outperforms the
individual hypotheses produced by each variant alone, and it also outperforms the baseline accuracy on
each data set tested. As stated earlier, when duration normalization and hypothesis combination are used
in conjunction on the TID corpus, a 7.7% relative reduction in WER over baselineis achieved. The MR
corpus gives a 6.2% relative reduction in WER and the BN corpus gives a 3.9% relative reduction in
WER. Using matched pairs analysis, the BN result is statistically significant with 99% confidence.

6.7 Conclusions

In this chapter we examined the impact of segmentation errors on the effectiveness of duration
normalization for improved speech recognition accuracy. We found that boundary insertions and
deletions have a strong impact on the effectiveness of our algorithm. In the previous chapter, we observed
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that it is extremely difficult to further improve the segmentation quality produced by our automatic
segmentation algorithms. We therefore searched for ways to make our approach more robust to boundary

detection errors.

We observed that the most damaging boundary recognition errors were multiple consecutive boundary
deletions because they Iead the duration normalization algorithm to incorrectly discard alarge number of
frames, throwing away what little evidence there may have been in the signal for certain spontaneous
speech sound units. We experimented with partial -contraction duration normalization to help combat this
problem by reducing the amount by which long phones are reduced in time. This approach yielded some

improvementsin accuracy on TID and MR.

We then experimented with multiple variants of duration normalization: expand-only, contract-only, and
standard. Together with hypothesis combination, we found significant improvements in recognition
accuracy, even on the large scale BN test. The different variants made different types of recognition
errors, and hypothesis combination was successful at choosing the correct words from the candidate
hypotheses. At the cost of multiple recognition passes for each utterance, significant improvementsin

recognition accuracy can be achieved through duration normalization and hypothesis combination.

In the next chapter, we explore the idea of using probabilistic segmentation information in normalizing

sound unit durations.
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7: The Soft Segmentation Duration Normalization Algorithm

The dependence of the duration normalization algorithm on exact segmentation information has made it
difficult to achieve large reductions in WER when boundaries are inserted or deleted. Previously, we
assumed that we only had access to the final output of our segmentation agorithms, i.e. the strict binary
classification of every frame of speech into one of two categories. boundary or non-boundary. In this
chapter, we present a“soft” formulation of the duration normalization approach that can make use of the

underlying likelihood scores associated with each potential boundary location.

7.1 Using Probabilistic Segmentation to Nor malize Phone Durations

Assume that a given utterance of speech iscomprised of aseriesof N segments: S, ...S,_,. Let I, ...l

represent the natura length of each segment in number of frames. Also define ¢, .., to be the probability

i+l

that a boundary is present between segments S, and S,,. Thisisillustrated in Figure 7.1.

— | ———>e| >
I0 I1

S Sy S Ss

P01 P12 923

Figure 7.1 lllustration of probability scores assigned to boundaries between segments of different lengths.

Our duration normalization approach assigns anew duration |, ..., to each speech segment. The

standard duration normalization algorithm defined in Chapter 4 assumes that the likelihood of each

boundary ¢. .., is1.0for every i and assigns anew duration of L___ to each segment, asshownin

i,i+1 norm

Equation 7.1.1.

b=l ==l =L (7.1.1)

norm

In soft segmentation duration-normalization, we assumethat ¢. .., can be any real number in the closed

i,i+1
interval [0.0,1.0] for a given boundary location. Given this additional information, we derived aformula
to compute for the new duration of each segment in an utterance. To illustrate the approach, we present a
simple example containing 1 boundary. We then comment on the general case of N boundariesin an

utterance, and we close with a note on the computational complexity of our agorithm.
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7.1.1 The Single Boundary Case

The simplest possible caseis shown in Figure 7.2. Assume that the speech is composed of two

hypothesized segments, S,and S, with respective segment lengths |, and |,. The probability that a

boundary exists between the two segmentsis ¢, . (And the probability that the boundary does not exist is

therefore 1- ¢, .)

— | ————>e]
lo Fag

®o1

Figure 7.2 Illustration of the single-boundary case.

There are only two possibilities for this example: either the boundary is present or it is not. If the

boundary is present, standard duration normalization would assign a new segment length of L to each

norm

of the two segments. Thisisillustrated in Figure 7.3 and quantified in Equations 7.1.2 and 7.1.3.

— | — e
lo I,

S St

90,1

Lnorm Lnorm
I 0=Lnorm I 1=Lnorm

Figure 7.3 Illustration of normalizing the single boundary case when the boundary is assumed to be present.

I, | boundary = L

|; |boundary = L

norm

norm

(7.1.2)

(7.1.3)

If the boundary is not present, standard duration normalization would consider the entire utterance as one

segment and assign a new segment length of L

Figure 7.4.

norm

to the combined segment S, + S, . Thisisillustrated in
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Figure 7.4 lllustration of normalizing the single boundary case when the boundary is assumed to be absent.

In the non-boundary case, the normalized segment lengths |, and |, should therefore be a fraction of

L., proportiona to the original lengths of the two segments. Thisis quantified in Equations 7.1.4 and
7.15.

I
l; |non = boundary =L, EII%I (7.1.4)
0 1
I
I, |non —boundary =L, G—— (7.1.5)

o +1,

Combining Equations 7.1.2 and 7.1.4, and incorporating the boundary probability information, we derive
the appropriate value for |, asfollows:

Iy = P(boundary) [ | boundary + P(non — boundary) I, | non — boundary (7.1.6)
I(,) = ¢O,l |:Lnorm + (l_ ¢0,1) [Lnorm Goli_ll (717)

1y = Lo |#ox + (- 80,) G'—|J (7.1.8)

A similar combination of Equations7.1.3 and 7.1.5, followed by simplification, yields the following
equation for 1, :

Ii = Lnorm |_¢0,1 + (1_ ¢0,1) Qoli_llj (719)

Equation 7.1.7 shows clearly that the normalized length assigned to S, is an interpolation between the

boundary and non-boundary lengths controlled by the probability that the boundary exists between the
given segments.
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7.1.2 The General Case
In general, the speech utterance is composed of N hypothesized segments, S, ... S,_,, with respective

segment lengths |,,... 1, where N isless than or equal to the number of frames in the utterance. We also

have N-1 probabilities @, ... @,,_, -, corresponding to each hypothesized boundary location.

These N hypothesized segments give rise to 2V possible boundary configurations that must be
considered. For each configuration, we compute P(C), the probability that the configuration occurs, as a

product of the probability that each boundary is present (¢, ;.,) or absent (1-¢, ,,,), depending on the

specific configuration under consideration. We then compute | | C, the individual normalized segment
lengths given the current boundary configuration. In a particular boundary configuration C, the segment §
will be part of a combined segment containing itself and zero or more neighbor segments (depending on
the assumed boundary configuration). Thevalue of || |C isafraction of the global normalized duration
(Lnorm) that is proportional to the original segment lengths of the segments that make up the corresponding
combined segment.

The final value for the normalized duration || of each segment is computed with the following sum over

all possible boundary configurations (Eg. 7.1.10). Each summand is the probability that a configuration
occurs times the individual normalized segment length given the assumed boundary configuration:

I'= S PO |C (7.1.10)

al possible C

7.1.3 Computational Complexity
While the presented formulation of probabilistic or soft segmentation-based duration normalization is

theoretically sound, there are some practical considerations which affect the way it must be implemented
in practice. We first note that for a given number N of hypothesized segments, the algorithm considers all
possible boundary configurations when computing the new length of each segment. The agorithm

therefore has a running time O(2").

Ideally, we would like to be able to estimate a continuous likelihood function describing the probability

that each given frame is a boundary and then use those estimated probabilities together with the softseg

formulation to determine the proper duration normalization warping. Typical utterances presented to the
recognizer have alength of 500-1000 frames, which makes consideration of all possible boundary

77



configurations computationally intractable. In practice, we have found it is possible to compute

normalized durations for utterances with 30 or fewer hypothesized segment boundaries.

In Section 7.3, we present an experiment where, for practical reasons, decoder-based segmentation isfirst
used to locate “anchor” segments within the speech signal. The softseg approaches are then used to warp
the speech in each anchor segment using a manageable number of estimated boundary probabilities

occurring within each anchor segment.

7.2 Simulation Using Or acle Segmentation Degraded by Decoder Segmentation

Given the proposed soft segmentation duration normalization algorithm, we performed the following
experiment on the Telefénica (TID) database as a “proof of concept” to investigate and evaluate the
effectiveness and soundness of the softseg algorithm.

We gtart with the TID database together with the oracle segmentation information derived from Viterbi-
alignment of the reference transcripts to the speech using baseline HMM acoustic models. We also
generate decoder-based segmentation information by recognizing the speech using the baseline TID

recognition system and Viterbi-aligning the recognition hypotheses to the speech.

Using the decoder-based segmentation, we purposefully degrade the oracle segmentation information in

the following controlled manner:

1. Correct Boundaries: For each boundary in the oracle segmentation that is correctly located by the
decoder-based segmentation, we assign a probability of 1.0 to the boundary location.

2. Deleted Boundaries: For each boundary in the oracle segmentation that is not located by the decoder-
based segmentation, we assign a probability of ¢, to the boundary location.

3. Inserted Boundaries: For each boundary hypothesized in the decoder-based segmentation with no

corresponding boundary in the oracle segmentation, we assign a probability of ¢. _ to the boundary

ins

|ocation.

We chose valuesfor ¢,, and ¢, from the following set of possible values: {0.0, 0.3, 0.5, 0.7, 1.0}

When ¢, is0.0, thereis no penalty incurred for inserted boundaries, and when ¢, . is 1.0, incorrectly

inserted boundaries have the same weight as correct boundaries in the segmentation. Conversely, when
@.4 1S 1.0, thereisno penalty for deleting a boundary, and when ¢, is 0.0, deleted boundaries are

considered completely absent by the soft segmentation duration normalization algorithm. If our soft
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segmentation formulation is correct, we expect to observe accuracy similar to duration normalization

using oracle segmentation information when ¢, issetto1.0and ¢, issetto 0.0. When ¢, issetto 0.0
and ¢, issetto 1.0, we expect to observe accuracy similar to duration normalization using decoder-

based segmentation information. Asthe weight given to boundary errorsis varied between these lower

and upper bounds, we expect to see recognition word error rates varying between the bound accuracy
values.

For TID, baseline recognition accuracy is aWER of 5.2%. Duration normalization using oracle
segmentations yields a WER of 3.4%, and duration normalization using decoder-based segmentation has
aWER of 5.4%. In our simulation, we trained a separate recognition model for each possible combination
of ¢, and ¢, . values and tested under matched conditions. The resulting WER values are shown in the
Figure 7.5 with a corresponding table in Table 7.1.

The simulation shows that the soft segmentation duration normalization is a sound formulation of the
duration normalization problem. The system behaves as expected, with WERSs ranging between the oracle
segmentation performance (3.4%) and the decoder-based segmentation performance (5.4%) on the TID
database. The less severe the probabilities assigned to errorful boundary locations, the better the resulting
recognition accuracies.

Softseg Duration Normalization Simulation

5.5%
5.3%
5.0%
4.8%
4.5%
WER 4.3%
4.0%
3.8%

3.5%
0
33’%0//0 0.3 probability
J70 assigned to
0.0 o3 ‘ 1.0 deleted
0.5 0.7 1.0 boundaries

probability assigned to
inserted boundaries

Figure 7.5 WER surface as afunction of the probabilities assigned to inserted and deleted boundariesin the
decoder-based segmentation of the TID corpus.
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¢ins
0.0 0.3 05 0.7 1.0

0.0 4.8% 4.7% 5.1% 5.0% 5.1%
0.3 4.3% 4.5% 4.5% 4.9% 4.8%
D 05 4.2% 4.4% 4.6% 4.7% 4.9%

0.7 3.9% 4.0% 4.3% 4.4% 4.6%
1.0 3.5% 3.6% 4.0% 4.1% 4.5%

Table 7.1 WER scores as a function of probabilities assigned to the inserted and deleted boundaries in the decoder-
based segmentation of the TID corpus.

7.3 Experiment Using Decoder and Edge Detection Segmentations

The formal soft segmentation duration normalization algorithm has a running time of O(2"), where N is
the number of hypothesized boundaries in a given speech utterance. While ideally we would like to
estimate and use the probability that a boundary exists at each frame in the speech signal, thisis not
computationally feasible. As a practical aternative, we performed the following experiment on the TID
data set.

Using baseline models, we perform decoder-based segmentation on the TID corpus. Thisis doneto locate
“anchor” segments within the speech signal. We also estimate ¢[n], i.e. the probability of a boundary

occurring at each frame in the speech signal, using a simple running Euclidian distortion metric on the log
spectral vectors. Using the training set of the TID corpus, we divide the datainto two classes: “boundary”
and “non-boundary”. We then estimate the mean and variance of the distortion metric for each class.

Assuming that the classes are normally distributed, we then estimate ¢[n] using these ssmple

distributions.

We then apply the soft segmentation duration normalization algorithm to warp each anchor segment to

the proper normalized duration as follows: Wefirst find al peaksin ¢[n] that occur within the given

segment. The peak |ocations are the estimated boundary locations and probability values input to the soft
segmentation duration normalization algorithm. (Note that if more than 20 peaks are detected within a
given segment, we take only the top 20 peak locations to ensure that the number of segments being
normalized is computationally feasible.) In this manner, we normalize al of the anchor segmentsin the

utterance.

In our experiment, we apply the combined decoder-based segmentation and soft segmentation duration
normalization to the training and testing sets of the TID corpus. We train models using standard Baum-
Welch training and test under matched normalization conditions. The results are shown in Table 7.2,

along with baseline and standard duration normalization results for comparison.
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TID Sub. Ddl. Ins.
Softseg Results WER | errors | errors | errors
Baseline 52% | 3.7% | 0.7% | 0.8%
Standard dur. norm. | 5.4% | 41% | 0.7% | 0.6%
Softseg dur. norm. 51% | 3.8% | 0.7% | 0.6%

Table 7.2 Recognition accuracy using duration normalization with decoder-based segmentation
and “soft” (probabilistic) segmentation information.

We see that soft segmentation duration normalization performs better than standard duration
normalization using the same decoder-based segmentation on the TID database. This accuracy, however,
isonly dlightly better than the baseline recognition accuracy.

Finally, we make use of this softseg hypothesis along with the hypotheses from the other variants of
duration normalization (standard, expand-only, contract-only) and use hypothesis combination to see if
we can do better than we have done previously. The hypothesis combination results are shown at the
bottom of Table 7.3, together with detailed results for each variant of duration normalization tested.

TID Sub. Del. Ins.
Softseg + Hyp. Comb. Results | WER | errors | errors | errors
Baseline 52% | 3.7% | 0.7% | 0.8%
1. Standard dur. norm. 54% | 41% | 0.7% | 0.6%
2. Expand-only dur. norm. 52% | 3.8% | 06% | 0.8%
3. Contract-only dur. norm. 52% | 4.0% | 0.7% | 0.5%
4. Softseg dur. norm. 51% | 3.8% | 0.7% | 0.6%
Dur.norm. + hyp. comb. (1,2,3) | 48% | 3.6% | 0.6% | 0.6%
Dur. norm. + hyp. comb (1,24) | 47% | 35% | 06% | 0.6%

Table 7.3 Comparison of recognition accuracy using duration normalization and hypothesis combination. In the last
row, recognition accuracy is shown when the soft segmentation decoder transcripts are passed to hypothesis
combination instead of the contract-only decoder transcripts.

We find our best accuracy when hypothesis combination is used to combine standard, expand-only, and
the soft segmentation duration normalization variants for the TID test set. We achieve afinal WER of
4.7%, which reflects a 9.6% relative reduction in WER over baseline.

7.4 Discussion

In general, the soft segmentation formulation presented at the beginning of this chapter is a sound
probabilistic formulation of the duration normalization algorithm. Our simulations confirm that as the
probabilistic segmentation information approaches the oracle segmentation, the soft segmentation
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algorithm produces recognition results that approach the accuracy of standard duration normalization

using oracle segmentation information.

Itis clear that the soft segmentation approach requires a sound technique for estimating the probability of
aboundary location occurs at several locations throughout the speech signal. As shown in Chapter 5, this
is an extremely difficult problem. Decoder-based segmentation techniques are reliable, but imperfect.
Distortion metrics can be applied to ook for evidence of boundary |ocations that are missed by decoder-

based segmentation.

By design, this combined decoder and soft segmentation-based approach presented in Section 7.3 should
compensate for missed boundaries in the decoder-based segmentation stream, assuming that there will be
some amount of distortion in the speech signal around missed boundary locations. In spontaneous speech,
there are many instances where we see little or no distortion at the missed boundary locations due to the
rapid, under-articulated nature of conversational speech. This may account for the fact that only slight
accuracy improvements are achieved using this approach.

7.5 Conclusions

In this chapter we presented a reformulation of the duration normalization a gorithm to make use of
confidence scores associated with each boundary location. We showed that the “ soft” formulation of the
duration normalization algorithm is consistent but computationally expensive, with a running time on the
order of two to the number of segments to be normalized. Soft duration normalization islimited by this
large computational complexity. The approach also depends on quality of the algorithm used to generate
segmentation probability scores. In order for soft duration normalization to be effective, the segmentation
algorithm must be able to properly estimate boundary probabilities in areas where the decoder finds little
evidence for aboundary in the speech signal. As stated previoudly, segmentation based on little or no
evidenceis adifficult problem.

In a practical experiment, we used soft duration normalization to normalize the speech between decoder-
derived segment boundaries. This allowed us to make use of boundary probabilities estimated for every
frame and apply soft duration normalization in a computationally manageable fashion. We achieved a
small improvement over duration normalization + hypothesis combination alone on the TID database.
Unfortunately, the small improvement in recognition accuracy is outweighed by the extra computation
required to generate these results.
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In the fina chapter, we present our thoughts on future work and summarize the major findings of this

thesis.
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8: Summary and Conclusions

In this chapter, we present a summary of the research and the relevant observations that we have drawn
from our investigation of duration normalization and the modeling and recognition of spontaneous
speech. We continue with some comments on future research directions and unresolved questions. We

close the chapter with our final summary and conclusions.

8.1 Major Findings

8.1.1 Duration Variability of Speech Sound Unitsisa Problem when Modeling Spontaneous Speech
It is known that HMMs do not effectively model the actual phone durations observed in speech data. A

large variability in the durations of tokens for a given phone class make it difficult for HMMsto
characterize this class adequately. We have shown that the increased variability of phone durationsin
spontaneous speech is a considerabl e factor that |eads to degraded recognition accuracy of spontaneous
speech in HMM-based systems (when compared with recognition of carefully-read speech). Using an
identical HM M -based recognition system on a parallel corpus of read and spontaneous speech, we
observed basdline recognition word error rates of 15.6% for carefully-read speech and 40.3% for
spontaneous speech. Techniques that attempt to bridge the gap in recognition accuracy between read and
spontaneous speech are therefore important avenues of research. The duration normalization technique
that we devel oped is one of many possible techniques to improve modeling and recognition of

spontaneous speech.

8.1.2 Duration Normalization Can Help Bridgethe Gap
Given a priori knowledge of phone boundary locations, normalizing the duration of each phone example

in the speech database prior to training is an effective method to overcome the duration modeling
weakness of the HMM acoustic speech models. Statistical models of speech such as HMMs attempt to
derive agenera model to best explain the given training data. These models generalize well to test data
that are similar to training data, but fail to generalize as the dissimilarities between the two data sets
increase. Duration normalization reduces the duration mismatch between training and test data, which
means that HMM s trained and tested on speech data with normalized durations are expected to perform
better than HMM s trained and tested on speech data with natural durations.

In a controlled experiment using the parallel Multiple Register database, we have shown that the potential
for improvement via phone duration normalization is greater for spontaneous conversational speech than
itisfor carefully read speech. The potential relative reduction in WER for carefully-read speech was
10.3%, while the potential relative reduction in WER for the spontaneous version of the same speech was
20.1%. Again, thisis because the dissimilarities between training and test data are expected to be higher

in the case of spontaneous speech. Duration normalization reduces one aspect of these dissimilarities.



8.1.3 Phone Segmentation has a Strong Impact on Duration Nor malization Results
Phone segmentation is adifficult problem. The more spontaneous speech data are, the more difficult it

becomes to segment automatically these speech datainto sound units. Spectrographic signatures of
spontaneous speech show small transition regions between phones and numerous regions whereit is quite
unclear where one phone ends and the next begins. Also, we observe many instances where thereislittle
or no evidence in the speech signal for a sound unit that appears in the recognition dictionary of standard

pronunciations.

In the oracle case where perfect transcripts are used to derive “correct” boundary locations, the duration-
normalized recognition system benefits from the placement of boundaries and subsequent expansion and
reconstruction despite the lack of acoustic evidence for a given phone. We observed potentia relative

reductionsin WER in the range of 5.4%—34.6% when correct boundary information is known a priori.

Although phone duration normalization has the potential to increase recognition accuracy by large
amounts, the approach is limited in practice due to the difficulties in automatically segmenting the speech
into phone units. Automatic detection of boundaries for which thereislittle or no evidence is a difficult
problem. Our duration normalization approach is adversely affected by boundary detection errors,
especially when multiple consecutive boundaries are missed. However, one of the key contributions of

this thesis is the development of methods that work reasonably despite this factor.

8.1.4 Compensation Techniques Can Copewith “Imperfect” Segmentation
Methods to compensate for boundary detection errors have seen limited success when compared with the

large potential recognition improvements observed in “oracl€” experiments. We have observed that
partial -contraction and soft-normalization techniques are effective in reducing the impact of multiple
consecutive boundary detection errors. Partial-contraction achieves relative reductions in WER of 3.8%—
4.5%. Soft-normalization reduces the WER on the TID corpus by 0.1% absolute.

The most effective compensation techniques we have devel oped result from the recognition of multiple
“views’ of each utterance using different time-normalization schemes (expand-only, contract-only,
expand and contract). These multiple perspectives into the speech signal result from the expansion and/or
contraction of different regions of the speech signal identified by automatic segmentation techniques.
Hypothesis combination techniques are successful in combining the recognition hypotheses from the
individual recognition systems based on different time-normalization schemes. We observe relative
reductionsin WER of 3.9% on BN, 6.2% on MR, and 7.7% on TID data using this technique.

The duration normalization + hypothesis combination approach achieves recognition improvements on 3
separate speech databases, including tests in two languages and tests on alarge-scal e broadcast news
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system. Although the achieved improvements are not as substantial as we would like them to be, the

results should generdize to awide variety of speech recognition systems.

8.2 Some Future Directions

8.2.1 Improving Segmentation Quality
Although from our experience, improving the segmentation quality for spontaneous speech has proven to

be quite difficult, afew ideas for future research in this area are possible. If the speech segmentation
problemis ever “solved” some day, then the duration normalization approach presented in thisthesis

becomes more valuable for robust and accurate ASR systems.

The use of speech features that can provide accurate views on multiple time scalesis one possible venue
for research. Wavel et-based features may allow for better detection of very rapid spontaneous speech
events for which there is little evidence in the speech signal. Based on our experience, missing the
boundaries that delimit short speech events has a grave impact on duration-normalized recognition
accuracy. Features that provide a better chance at |ocating these regions may have a positive impact on
overall recognition accuracy. Note that multiple time scale-based features differ from the dendrogram
segmentation networks proposed by Glass and Zue who attempt to generate a hierarchical segmentation
network based on asingle set of fixed time scale features (Glass and Zue, 1988).

Different basic speech units may also alow for better boundary detection and normalization. The use of
fundamental units that have longer durations (e.g. syllable-based or word-based units) may allow for more
accurate boundary detection. In spontaneous speech, much of the evidence for individual phoneme units
is blurred into the neighboring units. There is an increased chance that the evidence for longer

fundamental units will remain in the signal even when the speech becomes highly spontaneous.

Further investigation of the human speech production process may result in better segmentation and
normalization techniques. The process by which canonical “word representations’ in the brain are
converted to sounds is a complicated one, and there are many factors that contribute to how a particular
instance of a phone is rendered by a speaker. The more we understand about speech production, the better
we may be able to adequately capture the necessary salient speech events for robust boundary detection
and speech recognition.

8.2.2 Improving Robustness of Duration Normalization to Segmentation Errors
Although thereis still room for improvement in speech segmentation, even the most accurate

segmentation system will still make errors, especially when the level of spontaneity in the speech
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increases. We believe that it would be fruitful to pursue methods of normalization that can cope with the

fact that segmentations are errorful.

Historically, speech recognition accuracy is enhanced by algorithms that allow for probabilistic decisions
rather than hard decisions. We therefore recommend further investigation of techniques such as the soft
duration normalization presented in Chapter 7 of thisthesis. Our soft agorithm has a running time on the
order of 2, which greatly limits the practical experiments that we can perform using this technique. It
should be possible, however, to develop methods for normalizing the speech signal using segmentation
probabilities that are computationally tractable. Once an efficient means for soft normalization has been
developed, it should be possible to generate further real improvementsin recognition accuracy via

duration normalization techniques.

One possible agorithm for computational ly-tractabl e soft segmentation is as follows: Begin by estimating
the probability that a boundary exists at each frame in the speech signal. Then using the estimated
boundary probability for each frame, toss a*“biased coin” to decide if whether a boundary location should
be assigned to the frame or not. Finally, normalize using the standard duration normalization procedures
and the resulting segmentation. Note that this type of soft segmentation approach can be implemented
using a simple random number generator and has a running time on the order of N rather than 2".

Preliminary experiments have shown that this technique has potential.

8.3 Summary and Conclusions

In thisthesis, we present a technique for improving automatic recognition of spontaneous speech by
normalizing the duration of the sound units that make up the speech signal. We conclude that normalizing
the speech in such a manner makes it more conducive to the HMM acoustic modeling framework upon
which most state-of-the-art ASR systems are built. By reducing the duration variability in the speech
tokens presented to the recognition system, we help to ensure that the acoustic models are more
accurately trained and better equipped to distinguish between speech sound units.

The duration normali zation approach depends on accurate segmentation information. Despite the
difficulties in automatic segmentation of spontaneous speech, we were able to develop a duration
normalization-based system that provides significant recognition improvements on a variety of
spontaneous speech databases, including broadcast news. While the accuracy improvements are not as
large as we would like them to be, we have presented a process which helpsto bridge thegap in
recognition accuracy created when ASR systems are presented with natural, conversational speech.

87



References

Anastasakos, A., Schwartz, R., Suh, H. (1995). “Duration Modeling in Large V ocabulary Speech
Recognition”, 1995 |EEE International Conference on Acoustics Speech and Sgnal Processing
Conference Proceedings, pp. 628-631.

Baker, J. (1975). Stochastic Modeling as a Means of Automatic Speech Recognition, Ph.D. Dissertation,
Carnegie Mellon University.

Baum, L. (1972). “An Inequality and Associated Maximization Techniquein Statistical Estimation of
Probabilistic Functions of Markov Processes’, Inequalities, Val. 3, pp. 1-8.

Campbell, W.N., Isard, S.D. (1991). “ Segment Durationsin a Syllable Frame”, Journal of Phonetics, Vol.
19, 1991, pp. 37-47.

Campbell, W.N. (1992). “ Syllable-based Segmental Duration” in G. Bailly, C. Benoit, and T. R. Sawallis
eds. Talking Machines: Theories, Models, and Designs, Elsevier Science Publishers B. V., 1992, pp.
211-224.

Cooke, M., Green, P., Josifovski, L., Vizinho, A. (2001). “ Robust automatic speech recognition with
missing and unreliable acoustic data’, Speech Communication, Vol. 34(3), pp. 267-285.

Crystal, T.H., House, A. S. (1988). “ Segmental Durations in Connected Speech Signals: Preliminary
Results’, Journal of the Acoustical Society of America, Vol. 83, No. 4, April 1988, pp. 1553-1573.

Davis, S., Mermelstein, P. (1980). “Comparison of parametric representation for monosyllable word
recognition in continuously spoken sentences’, |EEE Transactions on Acoustics, Speech, and Sgnal
Processing, Vol. 28(4), pp. 357-366.

Engen, T. (1971). “Psychophysics: I. Discrimination and Detection” in Woodworth & Schlosberg's
Experimental Psychology, 3 Edition, Kling, JW. and Riggs, L.A. primary contributors, Holt,
Rinehard, and Winston, Inc., New Y ork.

Fiscus, J.G. (1997). “A post-processing system to yield reduced word error rates: Recognizer output
voting error reduction (ROVER)”, 1997 | EEE Workshop on Automatic Speech Recognition and
Under standing Workshop Proceedings, pp. 347-354.

Ferguson, J.D. (1980). “Hidden Markov Analysis: An Introduction” in Hidden Markov Model s for
Foeech, Institute for Defense Analyses, Princeton, New Jersey.

Garofolo, J., Fiscus, J., Fisher, W. “Design and Preparation of the 1996 Hub-4 Broadcast News
Benchmark Test Corpora’, Proceedings DARPA Speech Recognition Workshop, pp. 15-21.

Gillick, L., Cox, S.J. (1989). “Some statistical issues in the comparison of speech recognition
algorithms’, 1989 | EEE International Conference on Acoustics, Speech, and Sgnal Processing
Conference Proceedings, pp. 532-535.

Glass, JR., Zue, V.W. (1988). “Multi-Level Acoustic Segmentation of Continuous Speech”, 1988 |EEE
International Conference on Acoustics, Speech, and Sgnal Processing Conference Proceedings, pp.
215-218.

Graff, D. (1997). “The 1996 Broadcast News Speech and Language-Model Corpus’, Proceedings DARPA
Speech Recognition Workshop, pp. 11-14.

88



Hermansky, H. (1990). “Perceptual linear predictive (PLP) analysis of speech”, Journal of the Acoustic
Society of America, Vol. 87, pp. 1738-1752.

Horowitz, S.L., Pavlidis, T. (1974). “Picture Segmentation by a Directed Split-and-Merge Procedure”,
Proceedings 2™ International Joint Conference on Pattern Recognition, pp. 424-433.

Huang, X., Alleva, F., Hon, H., Hwang, M., Lee, K., Rosenfeld, R. (1993). “The SPHINX-II Speech
Recognition System: An Overview”, Computer Speech and Language, voal. 2, pp. 137-148.

Huerta, J.M. (2000). “Robust Speech Recognition in GSM Codec Environments’, Ph.D. Thesis, Carnegie
Mellon University, April 2000.

Jelinek, F. (1997). “The Viterbi Search” in Statistical Methods for Speech Recognition, pp. 79-91, The
MIT Press, Massachusetts.

Jones, M., Woodland, P.C., (1993). “Using Relative Duration in Large V ocabulary Speech Recognition”,
1993 Eurospeech Conference Proceedings, pp. 311-314.

Klatt, D.H. (1973). “Interaction between Two Factors that Influence Vowel Duration”, Journal of the
Acoustical Society of America, Vol. 54, No. 4, 1973, pp. 1102-1104.

Klatt, D.H. (1976). “Linguistic Uses of Segmental Duration in English: Acoustic and Perceptual
Evidence”, Journal of the Acoustical Society of America, Vol. 59, No. 5, May 1976, pp. 1208-1221.

Lee, K. (1989). Automatic Speech Recognition: The Development of the Sphinx System, Kluwer
Academic Publishers, Boston.

Lee, K., Hon, H., Reddy, R. (1990). “An Overview of the SPHINX Speech Recognition System”, |EEE
Transactions on Acoustics, Speech, and Sgnal Processing, vol. 38 (1), pp. 35-45.

Levinson, S.E. (1986). “Continuously variable duration hidden Markov models for automatic speech
recognition”, Computer Speech and Language, Val. 1(1), pp. 29-45.

Nawab, S.H., Quatieri, T.F. (1988). “ Short-Time Fourier Transform” in Advanced topicsin signal
processing, pp. 289-337, Prentice Hall, New Jersey.

Osaka, Y., Makino, S., Sone, T. (1994). “ Spoken Word Recognition Using Phoneme Duration
Information Estimated from Speaking Rate of Input Speech”, 1994 International Conference on Spoken
Language Processing Conference Proceedings, pp. 191-194.

Pallet, D.S., Fisher W.M., Fiscus, J.G. (1990). “Tools for the Analysis of Benchmark Speech Recognition
Tests’, 1990 | EEE International Conference on Acoustics, Soeech, and Signal Processing Conference
Proceedings, Vol. 1, pp. 97-100.

Papoulis, A. (1991). Probability, Random Variables, and Sochastic Processes, 3" Edition, McGraw Hill,
New Y ork.

Pitrelli, J.F. (1990). “Hierarchical Modding of Phoneme Duration: Application to Speech Recognition”,
Ph.D. Thesis, Massachusetts Institute of Technology, May 1990.

Placeway, P., Chen, S., Eskenazi, M., Jain, U., Parikh, V., Raj, B., Ravishankar, M., Rosenfeld, R.,
Seymore, K., Siegler, M., Stern, R., Thayer, E. (1997). “ The 1996 Hub-4 Sphinx-3 System”,
Proceedings DARPA Speech Recognition Workshop, pp. 85-89.

Port, R.F., Reilly, W.T., Maki, D.P. (1988). “Use of Syllable-Scale Timing to Discriminate Words”,
Journal of the Acoustical Society of America, Vol. 83, No. 1, January 1988, pp. 265-273.

89



Rabiner, L.R., Juang, B-H. (1993). Fundamental s of Soeech Recognition, Prentice-Hall, New Jersey.

Raj, B., Singh, R., Stern, R.M. (1998). “Inference of Missing Spectrographic Features for Robust Speech
Recognition”, 1998 |EEE International Conference on Acoustics, Speech, and Sgnal Processing
Conference Proceedings.

Raj, B. (2000). “ Reconstruction of Incomplete Spectrograms for Robust Speech Recognition”, Ph.D.
Thesis, Carnegie Mellon University, April 2000.

Russdll, M.J., Moore, R.K. (1985). “Explicit modeling of state occupancy in hidden Markov models for
automatic speech recognition,” 1985 | EEE I nternational Conference on Acoustics, Soeech, and Sgnal
Processing Conference Proceedings, Vol. 1, pp. 5-8.

Siegler, M.A., Stern, R.M. (1995). “On the Effects of Speech Ratein Large Vocabulary Speech
Recognition Systems’, 1995 | EEE International Conference on Acoustics, Speech, and Signal
Processing Conference Proceedings, Vol. 1, pp. 612—615.

Singh, R., Seltzer, M., Rgj, B., Stern, R.M. (2001). “ Speech in Noisy Environments: Robust Automatic
Segmentation, Feature Extraction, and Hypothesis Combination” 2001 |EEE International Conference
on Acoustics, Speech, and Sgnal Processing Conference Proceedings.

Umeda, N. (1975). “Vowel Duration in American English”, Journal of the Acoustical Society of America,
Vol. 58, No.2, August 1975, pp. 434-445.

Umeda, N. (1977) “Consonant Duration in American English”, Journal of the Acoustical Society of
America, Vol. 61, No. 3, March 1977, pp. 513-546

Viterbi, A.J. (1967). “Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding
Algorithm”, IEEE Transactions on Information Theory, Vol. IT-13, pp. 260—269.

90



