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Abstract 
Accurate recognition of spontaneous speech is one of the most difficult problems in speech recognition 

today. When speech is produced in a carefully planned manner, automatic speech recognition (ASR) 

systems are very successful at accurate recognition and transcription. In response to casual speech, ASR 

systems produce more than twice as many errors compared to recognition of the same speech read 

carefully. 

In this thesis, we have developed a practical algorithm to improve the recognition accuracy of ASR 

systems when transcribing spontaneous speech. We have found that normalizing the speech features so 

that every sound unit (“phone”) has the same duration allows speech recognition models to characterize 

and recognize speech more accurately. 

ASR systems use hidden Markov models (HMMs) to model the sound units from which speech signals 

are composed. It is well known that HMMs do not accurately model the average phonetic variation or the 

variability introduced into these durations by the casual production of speech. By normalizing the 

duration of every speech sound unit, we are eliminating a source of variability in the modeling of speech 

that can contribute to increased word recognition errors. 

When the boundaries between sound units are known a priori, the duration normalization approach is able 

to achieve substantial improvements in recognition accuracy. Automatic identification of unknown 

boundary locations, however, has proven to be a difficult problem. When speech is highly spontaneous, 

there is often little or no acoustic evidence in the speech signal to indicate transitions from one sound unit 

to the next. Duration normalization depends on accurate boundary locations, and even our most accurate 

automatic segmentation technique when applied in isolation is not sufficiently accurate for duration 

normalization to perform effectively.  

Because our efforts to improve automatic segmentation of spontaneous speech have not been very 

fruitful, we have focused on the development of duration normalization approaches that are more robust 

to boundary detection errors. We have also explored the use of duration normalization based on 

probabilistic identification of phone boundaries. Our most effective system makes use of three simple 

variants of duration normalization and an algorithm that can combine multiple recognition hypotheses 

into a single best hypothesis. With this multi-pass approach, we have achieved significant improvements 

in recognition accuracy by applying duration normalization to a variety of spontaneous speech databases, 

including a large-scale broadcast news corpus. These techniques achieve a relative reduction in word 

error rate of 3.9%–7.7%, depending on the size and complexity of the recognition task.  
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1: Introduction:  
Normalizing Durations to Improve Spontaneous Speech Recognition  

Accurate recognition of spontaneous speech is one of the most difficult problems in speech recognition 

today. In this thesis, we have proposed and developed a technique to normalize the incoming speech 

feature sequence so that every sound unit (“phone”) has the same duration. By normalizing the speech 

features in such a manner, speech recognition models are better able to characterize the relevant 

information found in speech signals, especially when the speech is highly spontaneous.  

In this chapter, we present a brief introduction to the problem of modeling and recognizing spontaneous 

speech. We close this chapter with an overview of the thesis document which presents our duration 

normalization technique in its entirety. 

 

1.1 Improving the Recognition of Spontaneous Speech: A Challenging Task 

When speech is produced in a carefully planned manner (e.g. the speech of a broadcast news anchor), 

automatic speech recognition (ASR) systems are very successful at accurate recognition and transcription. 

The performance of ASR systems in response to casual speech produces more than twice as many errors 

compared to the recognition of the same speech read carefully. 

In order for speech recognition technology to be viable and useful in everyday applications (e.g. meeting 

transcription, telephone-based systems), we need to develop methods to improve recognition accuracy on 

spontaneous conversational speech. The objective of this thesis is the development of a practical 

algorithm to improve the strength and robustness of core speech recognition technology when it is applied 

to transcribe spontaneous speech. 

There are many factors that contribute to the difficulty of automatically recognizing spontaneous speech. 

One of the main difficulties is caused by the variation in duration of the examples used to train 

recognition models for a given sound unit (“phone”). In spontaneous speech, the duration varies greatly 

each time a sound is produced. In contrast, the duration variation in carefully-enunciated speech is not as 

severe. When the training examples for a given sound class vary greatly in duration, it is difficult for an 

ASR system to properly model that class. When the underlying sound units are modeled poorly, the 

overall ASR system accuracy degrades. 

Our strategy in this thesis is to reduce the duration variability of the tokens used to train an ASR system 

in order to improve the accuracy when recognizing spontaneous speech. Our earliest attempts to combat 

the duration variability problem included the idea of mapping spontaneous sound durations back to their 
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carefully-read counterparts prior to recognition. In the end, we found that normalizing the duration of all 

sound units to a common duration provided a simple and effective method for improving ASR accuracy 

when speech is highly spontaneous. 

1.2 Thesis Overview 

Chapter 2 begins with a review of speech recognition technologies that are relevant to this research. It 

also contains a review of related research in explicit phone duration modeling in ASR systems. Chapter 3 

contains a brief overview of the SPHINX-III recognition system and the speech corpora used in this 

research.  

The specific details of our duration normalization technique are presented in Chapter 4. Results indicate 

we can successfully improve recognition accuracy on both spontaneous and carefully enunciated speech if 

we know the locations of the boundaries that separate the underlying sound units. In Chapter 5, we 

address the difficult problem of blind derivation of consistent and accurate phone boundaries. We 

explored and evaluated a variety of automatic segmentation techniques and found that segmentation 

errors have a have a strong impact on duration normalized recognition accuracy.  

In Chapter 6, we detail modifications and extensions of the duration normalization algorithm designed to 

cope with the imperfections in automatically-derived segmentations. In Chapter 7, we present a “soft”  re-

formulation of the duration normalization algorithm that can make use of probabilistic segmentation 

information. We close the thesis in Chapter 8 with ideas for future work and conclusions drawn from this 

research. 
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2: An Overview of Speech Recognition and Related Research 
This chapter presents basic background information relevant to the thesis. We start with a brief overview 

of automatic speech recognition systems, including a discussion of how recognition features are derived 

and how hidden Markov models (HMMs) are used to characterize and model speech. We also cover the 

use of  HMMs in automatic segmentation of speech into sound units, as well in automatic recognition of 

speech. Next is a discussion of previous attempts at incorporating duration modeling into recognition 

systems. We then discuss some automatic techniques to combine the outputs of multiple recognition 

systems and choose the best overall hypothesis. We close with a discussion of missing-feature 

reconstruction techniques which are used extensively in our normalization procedures.  

 

2.1 Automatic Speech Recognition Systems 

Speech recognition systems follow the standard, two-stage pattern classification paradigm (Rabiner & 

Juang, 1993). Stage 1 is to extract relevant features from the observed signal, and Stage 2 is to make some 

decision based on the features that are observed. A generic pattern recognition system is illustrated in 

Figure 2.1. 

 

Figure 2.1 Block diagram of a simple pattern classification system. Speech recognition systems are complex pattern 
classification systems. 

 

In automatic speech recognition, the observed signal is a measurement of air pressure fluctuations 

recorded by a microphone. The speech is captured as a one-dimensional, time-varying signal. The feature 

extractor converts the speech signal into a parameterized sequence of feature vectors prior to 

classification. Recognition systems begin by breaking the speech signal into frames. A frame of speech is 

a short, windowed segment on the order of 20–30 ms in duration. Each frame of speech is then typically 

converted to a vector of mel-frequency cepstral coefficients (MFCCs) (Davis & Mermelstein, 1980) or 

variants of MFCCs (Hermansky, 1990). 

For recognition purposes, a speech utterance is modeled as a sequence of sound units. The speech pattern 

classification engine attempts to automatically identify the correct sequence of sound units found in the 

feature 
extractor 

pattern 
classifier 

observed 
signal 

observed 
features 

decision 
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speech signal based on the observed sequence of feature vectors. Typical recognition systems use the 

phonemes in the language as basic sound units, but other units of varying durations are possible (e.g. 

phoneme sequences, syllables, words, word compounds).  

Let O  represent the observed sequence of feature vectors extracted from the speech utterance being 

recognized. Speech recognition engines search for the optimal sequence of words Ŵ  which maximizes 

the likelihood of the observation sequence O . The standard Bayesian optimal classification equation for 

speech recognition is as follows: 

 ( ) ( ){ }WPWPW
W

Omaxargˆ =  (2.1.1) 

The term ( )WP O  is called the acoustic model; it measures the likelihood that the observed sequence of 

feature vectors O corresponds to a given sequence of words W. The term ( )WP  is called the language 

model; it is an a priori measurement of the likelihood that the given sequence of words W occurs in the 

language. 

 

2.2 Speech Features 

As mentioned earlier, recognition systems use mel-frequency cepstral coefficients (MFCCs), a 

parametrical representation derived from the speech signal, to model and recognize speech. The process 

of converting speech to MFCCs is an efficient approximation of the transformations that the human 

auditory system makes before sending speech information to the brain. The standard MFCC extraction 

algorithm is illustrated in Figure 2.2. 
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Figure 2.2 Block diagram of the speech feature extraction process. Our work on duration normalization is 
performed in the log spectral domain. 

 

Each frame of speech is multiplied by a Hamming window and transformed to the frequency domain by 

the Discrete Fourier Transform (DFT). This process of segmenting a signal in time, applying a window to 

each segment, and transforming to the frequency domain is known as the Short-Time Fourier Transform 

(STFT) (Nawab & Quatieri, 1988). The magnitude of the resulting STFT coefficients is computed, and 

the resulting coefficients are squared, disregarding the phase information that is not necessary for accurate 

speech recognition.  

A bank of triangular shaped mel filters is then applied to the magnitude-square STFT coefficients. The 

filter’s triangles are spaced according to the mel frequency scale, which is approximately linear at lower 

frequencies and logarithmic at higher frequencies. Adjacent triangles overlap by 50%. The signal energy 

contained in each triangle is computed, and the resulting values compose a vector of mel-spectral 

coefficients corresponding to the speech frame. The natural logarithm is then applied to the mel-spectral 

coefficients, producing a vector of log mel-spectral coefficients.  

The sequence of log mel-spectral vectors corresponding to the entire speech signal composes the log mel 

spectrum of the speech signal. In this thesis, we will typically refer to these values as the log spectral 

coefficients or log spectrum of the speech signal. Note that our work on duration normalization is 

performed in the log spectral domain, prior to the final transformation into MFCC coefficients. 
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Finally, the Discrete-Cosine Transform (DCT) is applied to each log spectral vector to derive the mel-

frequency cepstral coefficients. The output of the DCT is truncated (typically the first 13 coefficients are 

kept) to form the vector of MFCCs for each frame.  

 

2.3 Hidden Markov Models (HMMs) 

A hidden Markov model (HMM) (Baker, 1975) is a probabilistic state machine that can be used to model 

and recognize speech. Consider the speech signal as a sequence of observable events generated by the 

mechanical speech production system which transitions from one state to another when producing speech. 

The term “hidden”  refers to the fact the state of the system (i.e. the configuration of the speech 

articulators) is not known to the observer of the speech signal. Speech recognition systems use HMMs to 

model each sound unit in the language. In this thesis, we have developed a method to help overcome 

some of the difficulties that occur when HMMs are used to model and recognize spontaneous speech.   

In an HMM, each state is associated with a probability distribution that measures the likelihood of events 

generated by the state. These distributions are known as output or observation probability distributions. 

Each state is also associated with a set of transition probabilities. Given the current state, transition 

probabilities model the likelihood that the system will be in a certain state when then the next observation 

is produced. Typically, Gaussian distributions are used to model the output distribution of each HMM 

state. The transition probabilities determine the rate at which the model transitions from one state to the 

next, giving the model some flexibility with respect to sound units which may vary in duration. Figure 2.3 

shows a typical left-to-right HMM topology used to model speech sounds. The output distributions and 

transition probabilities are also illustrated. 

 

Figure 2.3 Diagram of a typical HMM with explicit output distributions and transition probabilities. Transition 
probability values are shown on the arrows that transition from one state to the next. Output distributions are shown 
as Gaussian pdf curves above each state. 
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State-of-the-art recognition systems today make use of Continuous Density HMMs which model the 

feature vectors directly. The output distribution of Continuous HMMs is a continuous probability density 

function (pdf) which contains a corresponding likelihood score for every possible feature vector without 

quantization. A mixture Gaussian distribution with a finite number of densities is the most common pdf 

used for Continuous HMM modeling because it has a general shape and parameters that can be 

automatically re-estimated during training. Large-scale recognition systems trained on large databases 

train mixture models on the order of 16 or 32 Gaussians per state. 

In cases where there is a limited amount of speech training data available, Semi-Continuous Density 

HMMs are used. Semi-Continuous HMMs share a codebook of mean and variance vectors among all 

states in the HMM acoustic model. The typical codebook size is 256 vectors that are obtained by k-means 

clustering. Once the codebook is formed, the mixture weights corresponding to each of the 256 means and 

variances are trained independently for each state in the HMM model.  

Given an ensemble of transcribed speech data, the HMM model parameters are automatically learned 

using the Baum-Welch or forward backward algorithm (Baum, 1972; Rabiner & Juang, 1993). Baum-

Welch training is an iterative, expectation-maximization procedure which uses the training data to derive 

an optimal set of HMM transition probabilities and output distributions. The derived model parameters 

are optimal in the maximum-likelihood (ML) sense, i.e. the resulting model parameters maximize the 

likelihood that the training data were generated by the HMM.  

When speech is spontaneous, there is a high level of variability in the training examples for each sound 

unit. This variability makes it more difficult for the Baum-Welch algorithm to reliably estimate the 

corresponding HMM parameters for each sound unit. The inherent variability of spontaneous speech also 

makes recognition of spontaneous speech via HMMs problematic. This thesis attempts to address these 

weaknesses and improve the effectiveness of HMM-based speech recognition systems.  

 

2.4 Viterbi Alignment of a Transcr ipt to Speech Data for  Segmentation 

In this thesis, we must be able to segment the speech signal into sound units prior to normalization. The 

following technique allows us to automatically derive the location of phoneme boundaries assuming we 

know the correct transcript of the words spoken.  

Given the observed feature vectors derived from a speech signal, a set of HMM acoustic model 

parameters, and a transcript of the speech, the Viterbi algorithm (Viterbi, 1967) is used to find the most 

likely time alignment of the transcript to the speech, and thus the corresponding phoneme segmentation 
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information. This process is commonly referred to as Viterbi forced alignment, or simply forced 

alignment or Viterbi alignment.  

Mathematically, the problem is described as follows. Let O be the sequence of feature vectors derived 

from the speech signal. Let wC be the word sequence contained in the correct transcript. Let λ  be the 

HMM acoustic modeling parameters. Our goal is to find the state sequence { }T21 ˆ,,ˆ,ˆˆ sss �=s  that 

maximizes the probability that the HMM generated the observed speech data, i.e. find ŝ  such that: 

 ( )( )
�
�
�

�
�
�= � −

i
ii wssP λ,,,|lnmaxargˆ

C1 Os
s

 (2.4.1) 

The Viterbi algorithm makes a fundamental assumption: when computing the probability scores for each 

state at time t+1, we need only the probability score of the most likely state sequence up to time t. The 

output of the Viterbi algorithm is the most likely sequence of HMM states that generated the observed 

feature sequence.  

To perform Viterbi alignment, we form an HMM model for each word in the sentence by concatenating 

the HMMs for the sound units that make up the word. The sentence HMM is then formed by 

concatenating the word HMM models with an optional silence HMM between each word. Once the HMM 

is built, the Viterbi algorithm aligns the speech features to the sentence HMM and produces a listing of 

the most likely state for each frame of speech. This state-by-state information can then be used to derive 

alignment information of the transcript to the speech on a phone-by-phone or word-by-word basis.  

 

2.5 “ Decoding” : Recognizing and Automatically Transcr ibing Speech 

The heart of automatic speech recognition is the search for the most likely word sequence given the 

observed features extracted from the speech signal. This is commonly referred to as decoding or 

recognizing the speech signal.  

When decoding speech, we begin by constructing a search graph which contains every word in the 

recognition vocabulary. Each word is then replaced by the HMMs that correspond to the sequence of 

sound units which make up the word. As a result, the search graph is a large HMM, and recognition is 

performed using the Viterbi algorithm to align the search graph to the speech features derived from the 

utterance. Because the Viterbi algorithm is used to find the most likely word sequence, the decoding 

procedure is said to be done via Viterbi search. For a complete description of the Viterbi search algorithm 

used to decode speech, see (Jelinek, 1997).  
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Note that the search for the most likely word sequence is constrained by the language model being used. 

Practical recognition systems use context dependent trigram language models, which assign probabilities 

the occurrence of sequences of three words in the language. The search graph derived for trigram 

language models is complex. If the recognition vocabulary contains N words, the number of states in the 

search graph is proportional to N2. The vocabulary size for a practical system is on the order of 10,000 

words, which makes a search of the complete trigram search graph intractable. In practice, a beam search 

is used to prune away unlikely paths at every step in the search process. The beam width parameter which 

controls the pruning is chosen so that the recognition is both practical and accurate. 

The figure of merit for automatic speech recognition system is known as the word error rate (WER). The 

hypothesized word sequence generated by the decoder is aligned to the reference transcript for the speech 

data using a non-linear string matching algorithm (Pallet et al, 1990). There are three possible types of 

errors that can be made: An insertion error occurs when the ASR system generates a word that does not 

correspond to any word in the reference transcript. A deletion error occurs when the reference transcript 

contains a word that has no corresponding word in the ASR hypothesis. A substitution error occurs when 

the corresponding word in the ASR transcript is different than that of the reference transcript. The word 

error rate is the ratio of the total number of errors made (insertions, deletions, and substitutions) to the 

total number of words in the reference transcript. WER scores are typically reported as percentages. Note 

that given this formulation, WER scores greater than 100% are possible. 

 

2.6 Explicit State Duration Modeling with HMMs 

The inherent probability distribution controlling the duration of each state in a standard HMM framework 

is exponential in form: 

 ( ) ( ) ( )ii

d

iii aadp −= − 11  (2.6.1) 

where aii is the probability of transition from state i to itself, and d is the number of consecutive 

observations that correspond to state i. For modeling speech signals, this distribution is inappropriate and 

has been characterized as a weakness of the speech HMM. In the 1980s, researchers experimented with a 

framework that can incorporate explicit state duration models into an HMM framework (Ferguson, 1980; 

Russell & Moore, 1985; Levinson, 1986). This framework is known as a Hidden Semi-Markov Model 

(HSMM) and is illustrated in Figure 2.4.  
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pB(d)

· · · B · · · · M · · · E · ·

pM(d) pE(d)pB(d)

· · · B · · · · M · · · E · ·

pM(d) pE(d)
 

Figure 2.4 Illustration of a Hidden Semi-Markov Model (HSMM) with explicit state duration distributions p(d) 
corresponding to each state. 

 

In the HSMM, the self transition probabilities have been replaced by the explicit state duration densities 

pi(d), and the model is only allowed to transition to the next state after the duration density specifies that 

the appropriate number of observations have taken place. Note that if pi(d) is set to the exponential 

density of Eq. 2.6.1, then the HSMM framework is equivalent to the standard HMM.  

The advantage of HSMM is that the quality of the modeling is significantly improved. When 

implementing HSMM recognition systems, the state duration distributions are truncated to a maximum 

duration value D for practical reasons. Using a parametric framework for the duration densities of the 

HSMM, Levinson extended the Baum-Welch algorithm and proved that the training would converge 

(Levinson, 1986). Recognition with HSMMs is performed by an extension of the Viterbi algorithm which 

allows for the computation of the probability at a given frame based on the values at D preceding frames 

(instead of just 1 preceding frame). 

However, there are several drawbacks: There is a larger number of parameters (D) associated with each 

state which must be estimated from the data. Direct implementation of the algorithm increased 

computation by a factor of D2. Parametric formulations are more efficient, with computation increased by 

a factor of D. The storage and computation requirements for the extended Viterbi algorithm for HSMM-

based decoding are increased by a factor of D as well.  

Researchers observed that although the duration modeling quality of HSMM-based systems was better at 

the state level, the WER improvements observed were small, especially for connected word recognition 

tasks. Consequently, this approach has not been widely incorporated in state-of-the-art recognition 

systems today.  

 

2.7 A Br ief Overview of Other  Related Research in Duration Modeling 

Duration modeling research focuses on the development of accurate statistical models for capturing and 

predicting the phoneme duration information observed in natural speech. It is generally accepted that 
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duration information should play an important role for speech when speech is highly spontaneous with 

large changes in speaking rate. 

While we are not trying to model duration explicitly in our research, prior work on duration modeling is 

relevant to proper segmentation and decomposition of the speech waveform prior to applying our 

techniques. At the end of this section, we report previous attempts made by duration-modeling researchers 

to normalize for the effects of varying phone duration.  

Duration modeling research began in the 1970s with a focus predicting the proper duration of each phone 

for natural-sounding speech synthesis applications. Umeda and Klatt focused on rule-based approaches to 

explain and generate natural segmental duration behavior (Umeda, 1975, 1977; Klatt, 1973, 1976). They 

were both able to predict segment durations and explain segmental duration variations with reasonable 

accuracy.  

In the late 1980s, duration modeling research focused on models that could be applied to recognition. Port 

et al. examined words produced by different speakers and at different speech rates and attempted to 

capture the relevant syllable timing information (Port et al., 1988). They used manually derived 

segmentations of words into primitive units (e.g. stop closures, fricatives, vowels) and discriminant 

analysis to extract relevant information for the differentiation of words in a small vocabulary recognition 

system. They were successful when words varied dramatically in consonant voicing and stress patterns. 

They also observed that uniform scaling to eliminate tempo variation as a duration normalization 

approach would be less effective since changes in overall speech rate do not uniformly affect the 

underlying segmental durations. In 1988, Crystal and House used Hidden Markov Models (HMMs) with 

carefully tailored topologies to derive mathematical fits to the distributions of the durations of different 

classes of phones (Crystal & House, 1988). They also postulated a method for embedding their models 

into a speech recognition framework. 

In the early 1990s, the focus was on more elaborate duration models for speech synthesis. Campbell 

argued that a hierarchical framework is essential to properly capture and model speech timing information 

(Campbell & Isard, 1991; Campbell 1992). His models attempted to capture duration information at the 

phrase, foot, and syllable level. The final phonetic segment duration information could then be derived 

from the resulting interaction of those higher level effects. Campbell observed that while syllable duration 

is well-predictable, prediction of duration at the phone level is more difficult because there is an inherent 

relative freedom of phonetic duration variation within a syllable. 

More recently, work has again focused on employing duration information to improve speech recognition 

accuracy. Since it is difficult to incorporate explicit duration information into the HMM itself, most 
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duration work to date has focused on post-processing. Pitrelli employed a hierarchical recognition model 

based on phoneme duration (Pitrelli, 1990). He showed a 19% reduction in relative WER on a limited 

vocabulary, isolated-word recognition system when his models were applied to rescore recognition 

hypotheses based on duration information. Osaka et al. created a word recognition system which adapted 

to speaking rate (Osaka et al., 1994). Their procedure used phoneme duration as an estimate for speech 

rate. They normalized phone duration based on the average vowel duration and the average duration of 

each phone class to yield an increase in accuracy for a system with a 212-word vocabulary.  

Jones and Anastasakos used duration information as a post-processing step to improve recognition 

accuracy (Jones & Woodland, 1993; Anastasakos et al., 1995). They both used duration models to re-

score the N-best hypothesis list produced by an HMM-based recognizer. Anastasakos noted that the N-

best paradigm is advantageous because it provides phoneme boundary information and speaking rate 

information. In both sets of experiments, duration models were developed for automatically-clustered sets 

of “slow”  and “ fast”  segments. Jones’  speech-rate measure was based on average normalized phone 

duration, and the relative utterance speaking rate was based on the average normalized phone duration in 

the utterance. Anastasakos’  rate measurement was based on observations from a given phone segment as 

well as the context of a small number of surrounding phone segments. Both researchers attempted to 

normalize phone duration with respect to their rate estimations by considering phone duration as a 

function of speaking rate. Jones showed a 10% reduction in relative WER on the TIMIT database from a 

baseline of 13.6%. Anastasakos showed a 10% reduction in relative WER on the WSJ database from a 

baseline of 7.7%. These results indicate that recognition accuracy can be improved when duration 

information is properly modeled.  

 

2.8 “ Hypothesis Combination” : Automatic Combination of Multiple Hypothesized Speech 
Transcr ipts 

Combination of multiple recognition hypotheses is a successful technique for compensating for noisy 

speech. Hypothesis combination can be performed on the output of various recognition systems, or on the 

output of a single recognition system recognizing multiple feature streams. The success of combining 

recognition hypotheses depends on the “heterogeneity”  of the information sources being combined.  

The National Institute of Standards and Technology (NIST) developed a system for hypothesis 

combination known as Recognizer Output Voting Error Reduction (ROVER) (Fiscus, 1997). The 

ROVER system makes use of a voting scheme to combine the final recognition hypotheses of multiple 
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recognition systems. ROVER has been successfully employed in a series of Broadcast News (HUB4) and 

Conversational Speech (HUB5) evaluations.  

While working with the Speech In Noisy Environments (SPINE) evaluation conduced by the Naval 

Research Labs (NRL) in August 2000, Singh et al proposed a parallel hypothesis combination scheme 

based on word-graphs in order to compensate for the effects of speech utterances with very low signal-to-

noise ratios (SNRs) (Singh, et al., 2000). In this thesis, we make use of Singh’s word-graph hypothesis 

combination method to combine recognition hypotheses derived from multiple time warpings of a speech 

utterance. The details of word graph-based hypothesis combination are presented below. 

Initially, the word hypotheses obtained from parallel recognition of multiple feature streams are combined 

into a word graph. Each word in the hypothesis represents a node in the graph, and the acoustic score of 

each word is associated with the corresponding graph node. Next, merging is performed on all graph 

nodes where the same words are hypothesized at the same time. Since acoustic scores are typically given 

as log-likelihoods, the following formula is used to compute the score of a node after merging: 

 ( )2Scr1ScrlnrSc ee +=′  (2.8.1) 

where Scr1 is the acoustic score of the word in the first hypothesis and Scr2 is the acoustic score of the 

word in the second hypothesis. 

Finally, links are added to the graph between nodes where the word end time of the previous word and the 

word begin time of the following node differ by less than 30ms. Figure 2.5 illustrates two parallel 

recognition hypotheses in word graph form before combination, and Figure 2.6 illustrates the result of 

constructing a word graph from the two parallel hypotheses.  

Note that in Figure 2.6, additional transitions have been permitted when both hypotheses have word 

transitions at the same instant in time (“ t” ). The final words in both hypotheses are identical both in label 

(“</s>”) and time, and therefore they have been merged into a single node. The log-likelihood acoustic 

score (“Scr” ) of the merged node is calculated by appropriate combination of the original two scores.  
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<s> hello there Julia </s>

<s> hey where Lea </s>is

t=0 t=4 t=16 t=36 t=55

t=0 t=6 t=16 t=36 t=55t=41

Scr=-1 Scr=-7 Scr=-9 Scr=-8 Scr=-4

Scr=-2 Scr=-6 Scr=-8 Scr=-2 Scr=-5Scr=-4
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t=70
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t=0 t=4 t=16 t=36 t=55
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Scr=-1 Scr=-7 Scr=-9 Scr=-8 Scr=-4

Scr=-2 Scr=-6 Scr=-8 Scr=-2 Scr=-5Scr=-4

Two Parallel Hypotheses

t=70

t=70

 

Figure 2.5 Illustration of two parallel hypotheses in word graph form before combination. Acoustic log-likelihoods 
are labeled “Scr”  and placed above or below the corresponding graph nodes. The transition times are labeled “ t”  and 
are placed before or after the corresponding graph nodes. 
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Figure 2.6 The two parallel hypotheses shown in Figure 2.5 have been merged into a single word graph. 

 

After the word graph is formed, the language model is applied to score all paths through the graph. The 

words along the path with the highest score  are chosen as the final, combined recognition hypothesis. 

 

2.9 Missing Feature Compensation for  Speech Recognition 

Missing feature methods are a series of compensation techniques designed to better recognize speech that 

is corrupted by noise (Cooke et al., 2001; Raj et al., 2000). Missing feature methods begin by locating 

components of the observed speech feature vectors that have a low signal-to-noise ratio (SNR). Once the 

“missing”  low SNR regions are identified, there are two methods to compensate: 

1. marginalization – recognize the speech using only the reliable or “present”  components of higher SNR, 

ignoring the “missing”  regions of lower SNR  
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2. reconstruction – first use statistical methods or other data driven processes to reconstruct the missing 

components of the speech feature vectors, and then perform recognition in the usual 

manner on the reconstructed vectors 

Locating and reconstructing the missing speech components are typically performed in the log spectral 

domain before the speech features are converted to cepstral coefficients. The marginalization-based 

missing feature compensation techniques are less effective due to the fact that the recognition must also 

occur in the log spectral domain. The reconstruction-based missing feature compensation techniques are 

favorable because after the complete log spectral vectors are reconstructed, they can then be converted to 

the superior MFCC recognition features and recognized with state-of-the-art recognition techniques. 

In this thesis, we apply missing-feature reconstruction techniques to reconstruct “missing”  portions of 

fast, spontaneous speech in an effort to recover information that is lost when speech becomes more casual 

or more rapid. The following sub-section describes the covariance-based reconstruction technique that 

Raj developed in his Ph.D. research on the reconstruction of incomplete spectrograms (Raj, 2000). These 

covariance-based reconstruction methods are employed throughout the work of this thesis to compensate 

for the rapid and unpredictable nature of spontaneous speech. 

2.9.1 Estimation of Parameters Needed for  Covar iance-based Missing-feature reconstruction 
A speech spectrogram comprised of the sequence of log spectral vectors extracted from the speech signal 

can be modeled as the output of a Gaussian wide-sense stationary (WSS) random process (Papoulis, 

1991). If we assume that all possible spectrograms are individual observations of a single random process, 

we can use the statistical parameters of the process to estimate the missing components of spectrograms. 

In his thesis work, Raj referred to this method of reconstruction as covariance-based missing-feature 

reconstruction (Raj, 2000). The mathematical theory behind this approach is detailed below. 

Let ( )ktS ,  be a spectrogram corresponding to a speech utterance. The time index t identifies the frame of 

speech, and the frequency index k identifies the component of the log spectral vector, i.e. the index of the 

mel triangle that the component was derived from. For computational convenience, we use spectrograms 

derived with 20 mel frequency components when performing missing-feature reconstruction. The number 

of time frames in a given utterance is on the order of hundreds of frames.  

Define ( )kt,µ  to be the mean of the kth element of the tth log spectral vector. Also define ( )2121 ,,, kkttc  to 

be the covariance between ( )11,ktS  and ( )22 ,ktS , i.e. the covariance between the th
1k  component of the 

th
1t  log spectral vector and the th

2k  component of the th
2t  log spectral vector. Using the expectation 

operator E[  ], the mean and covariance are given by the following equations: 
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 ( ) ( )[ ]ktSEkt ,, =µ  (2.9.1) 

 ( ) ( ) ( )( ) ( ) ( )( )[ ]222211112121 ,,,,,,, ktktSktktSEkkttc µµ −−=  (2.9.2) 

Because we assume that the process generating the spectrogram is a wide-sense stationary process, we 

may assume that of the mean value ( )kt,µ  of the kth component of a log spectral vector does not depend 

on where it occurs in the spectrogram (t). We may also assume that the covariance between two 

components ( )2121 ,,, kkttc  does not depend on their absolute location in the spectrogram (t1 and t2), but 

rather the covariance depends only on the distance τ  between the two time indices ( 12 tt −=τ ). The 

wide sense stationary assumption gives us the following two simplified equations for the log spectral 

mean and covariance (Papoulis, 1991). 

 ( ) ( ) ( )kktkt µµµ == ,, 1  (2.9.3) 

 ( ) ( ) ( )21211121 ,,,,,,,, kkckkttckkttc τττ =+=+  (2.9.4) 

Using this formulation, the proper mean and covariance parameters of speech log spectral vectors can be 

estimated from a training corpus of clean speech data. Because we assume that the generating process is 

Gaussian, the mean and covariance parameters completely specify the process and provide all the 

information we need to reconstruct missing spectrogram features.  

The expected value of every component in the spectrogram is given by ( )kµ , and the covariance between 

any component in the spectrogram with any other component in the spectrogram is given by ( )21,, kkc τ  

 ( )[ ] ( )kktSE µ=,  (2.9.5) 

 ( ) ( )( ) ( ) ( )( )[ ] ( )2122221111 ,,,,,, kkcktktSktktSE τµµ =−−  (2.9.6) 

2.9.2 Covar iance-based Missing-feature reconstruction 
Given these statistical parameters described in Section 2.9.1, we can reconstruct spectrograms containing 

missing features as follows. Let S be a spectrogram with missing components. Arrange the observed, 

uncorrupted components of S into a vector So. Also arrange the missing components of S into another 

vector Sm. We know the mean of every component in the spectrogram and the covariance between any 

two components in the spectrogram; therefore, we can construct the following four items necessary for 

reconstruction: 

1. S
o  – the mean vector of So (the present log spectral components) 
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2. S
m  – the mean vector of Sm (the missing log spectral components) 

3. ooC  – the autocovariance matrix of So 

4. moC  – the crosscovariance matrix between Sm and So 

Using these parameters, we are able to make an MAP estimate mŜ  for the missing components Sm as 

follows: 

 ( )S
ooomo

S
m CC −+= −

om SS 1ˆ  (2.9.7) 

Eq. 2.9.7 reconstructs all missing elements at one time, but this equation is not computationally efficient. 

A typical 4 second utterance has 400 frames of speech and 20 frequency components for each frame. 

Assuming 50% of the features are missing, the matrices ooC  and moC  would have dimension 

40004000× . In this example, the direct computation of the MAP reconstruction estimate mŜ  would 

require the inversion of a 40004000×  matrix followed by the multiplication of two 40004000×  

matrices. For practical applications, missing elements are reconstructed incrementally, one at a time. For 

more details on incremental approaches for missing-feature reconstruction, see Raj’s thesis (Raj, 2000).  

 

2.10 Conclusions 

In this chapter we presented a brief overview of speech recognition technologies that are relevant to the 

remainder of the thesis. We started with an overview of automatic speech recognition systems and 

continued with the transformation of the speech waveform into standard MFCC feature vectors. We 

described the HMM acoustic models used to model and recognize speech, and provided an overview of 

the use of HMMs in practical applications. Viterbi alignment is used to align a known transcript to speech 

data, and Viterbi decoding is used to generate a likely transcript for speech data whose transcript is not 

known.  

We also gave a brief overview of previous attempts to incorporate explicit duration modeling into the 

recognition framework. Although methods were developed to incorporate duration modeling into the 

HMM framework, and attempts were made to rescore candidate hypotheses based on duration 

information, explicit duration modeling is not widely incorporated in state-of-the-art recognition systems 

today. 
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We closed with some discussion of hypothesis combination techniques and missing-feature 

reconstruction, both of which play an instrumental role in the duration normalization research that we 

develop in this thesis. In the next chapter, we present a brief overview of the SPHINX-III speech 

recognition system and the speech corpora used in this research. In Chapter 4, we detail the duration 

normalization algorithm at the heart of this thesis.  
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3: Speech Recognition System Resources and Speech Corpora 
This chapter provides an overview of the specific speech recognition system and speech databases used 

while conducting our research. The focus of our research is on modifying the speech features prior to 

training recognition models or recognizing test speech; therefore, the algorithms we develop and the 

results we present are independent of the specific recognition engine used. The particular aspects of the 

SPHINX-III recognition system and speech databases are presented to provide the reader with useful 

context information for interpreting our results and to provide other researchers with enough information 

to repeat and validate our experiments. 

3.1 The SPHINX-I I I  Speech Recognition System 

SPHINX-III is the third in a series of state-of-the-art Hidden Markov Model (HMM)-based speech 

recognition systems pioneered at Carnegie Mellon University (CMU) beginning in the late 1980s. The 

original SPHINX system was developed by Kai-Fu Lee in 1988 (Lee 1989; Lee et al. 1990). SPHINX 

was one of the first systems to demonstrate speaker-independent, large-vocabulary continuous speech 

recognition. In 1993, Xuedong Huang et al. presented SPHINX-II, one of the first systems to make use of 

semi-continuous HMM output distributions (Huang et al., 1993).  

SPHINX-III was developed and implemented by Ravishankar Mosur and Eric Thayer in the mid 

1990s.SPHINX-III provides more flexibility in the modeling and feature frameworks for speech 

recognition. SPHINX-III allows the user to choose between (fully-)continuous or semi-continuous HMM 

output distributions. SPHINX-III also allows the user to divide the data into a multiple number of streams 

and specify how these streams are organized. This feature allows for recognition based on a multiple 

number of data sources (e.g. recognition based on a combination of audio and visual features).  

A basic block diagram of the SPHINX-III recognition system is shown in Figure 3.1. For more detailed 

information on the SPHINX-III system, see (Placeway et al., 1997). For more information on the 

differences between semi-continuous and fully-continuous HMM output distributions, see the latter part 

of Section 2.3 in the previous chapter. 
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Figure 3.1 Block diagram for the SPHINX-III speech recognition system. Training elements are shown on the left 
of the figure. Testing elements are shown on the right. 

 

3.2 Speech Database Information 

In this section, we describe in brief detail the speech databases used in this thesis: the Telefónica Cellular 

Telephone Corpus (TID), the NIST Multiple Register Corpus (MR), and the NIST Broadcast News 

Corpus (BN). TID and MR are smaller corpora with a high level of spontaneity, and BN is a large-scale 

corpus. Throughout the thesis research, many algorithms were first tested on TID and/or MR. The 

algorithms showing the most promise were then further tested on the BN data to validate our results. 

3.2.1 TID: The Telefónica Cellular  Telephone Corpus 
We conducted experiments on a Spanish database recorded by Telefónica Investigación y Desarollo in 

Madrid, Spain. The database consists of cellular telephone callers repeating a small string of digits or a 

monetary amount. Volunteers were read a prompt and asked to repeat it in a casual manner. The TID 
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speech is highly spontaneous. Figure 3.2 shows sample utterances from the TID database, along with 

English translations. 

qui nce eur os y vei nt e cent i mos 
 fifteen euros and twenty cents 
 

cuar ent a mi l l ones novent ay una 
 forty million ninety one 
 

ochent a cer o qui ni ent os set ent a si et e ochent ay t r es 
 eighty zero five-hundred seventy six eighty three 
 

ci en ci nco qui ni ent os 
 one-hundred five five-hundred 
 

Figure 3.2 Example utterances from the TID corpus. English translations are given in italicized text below each 
example utterance. 

 

The TID speech is small vocabulary: the entire recognition vocabulary is made up of 59 words. Figure 3.3 

contains every entry in the TID recognition dictionary. Note that Spanish orthography and pronunciation 

are directly related, and the dictionary contains no alternate pronunciations.  

CATORCE K A T O R Z E   NOVECI ENTOS N O V E Z I  E N T O S   
CENTI MO Z E N T I  M O   NOVENTA N O V E N T A   
CENTI MOS Z E N T I  M O S   NOVENTAY N O V E N T AY   
CERO Z E R O   NUEVE N WE V E   
CI EN Z I  E N   OCHENTA O CH E N T A   
CI ENTAS Z I  E N T A S   OCHENTAY O CH E N T AY   
CI ENTO Z I  E N T O   OCHO O CH O   
CI ENTOS Z I  E N T O S   ONCE O N Z E   
CI NCO Z I  N K O   QUI NCE K I  N Z E   
CI NCUENTA Z I  N K WE N T A   QUI NI ENTAS K I  N I E N T A S   
CI NCUENTAY Z I  N K WE N T AY   QUI NI ENTOS K I  N I E N T O S 
CON K O N   SEI S S EI  S   
CUARENTA K WA R E N T A   SESENTA S E S E N T A   
CUARENTAY K WA R E N T AY   SESENTAY S E S E N T AY   
CUATRO K WA T R O   SETE S E T E   
DE D E   SETENTA S E T E N T A   
DECI MAS D E Z I  M A S   SETENTAY S E T E N T AY   
DI ECI  D I E Z I    SI ETE S I E T E   
DI EZ D I E Z   TRECE T R E Z E   
DOCE D O Z E   TREI NTA T R EI  N T A   
DOS D O S   TREI NTAY T R EI  N T AY   
EL E L   TRES T R E S 
EURO EW R O   UN U N 
EUROS EW R O S   UNA U N A 
MEDI A M E D I A   UNO U N O 
MEDI O M E D I O   VEI NTE V EI  N T E 
MI L M I  L   VEI NTI  V EI  N T I  
MI LLON M I  LL O N   VENTI SI ETE V E N T I  S I E T E   
MI LLONES M I  LL O N E S   Y I  
NOVE N O V E    

Figure 3.3 The recognition dictionary for the TID corpus. The listing contains all 59 words and corresponding 
pronunciations. 
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The TID training set consists of 3458 utterances (15543 words), and the testing set consists of 1728 

utterances (7634 words). This translates to approximately 4 hours of training data and 2 hours of testing 

data in the corpus. The average utterance is approximately 4.2 seconds long and contains 4.5 words.  

TID speech was collected over European cellular telephone channels, which make use of Global System 

for Mobile telecommunication (GSM) lossy speech compression. GSM coding uses Regular Pulse 

Excitation – Long Term Prediction (RPE – LTP) algorithms to digitally compress the speech signals. For 

our research, the cellular telephone speech has been decompressed and stored as a standard waveform 

prior to training and recognition. Research has shown that the effects of GSM coding on recognition 

accuracy with the TID database and the SPHINX-III recognition system are minimal (Huerta, 2000).  

3.2.2 MR: The NIST Multiple-Register  Corpus 
The NIST Multiple Register Speech Corpus (MR) is a parallel corpus for comparison of spontaneous and 

read speech recorded at SRI. The database contains fifteen spontaneous conversations on assigned topics 

and re-read versions of the same conversations. For this thesis research, we focus on the examples from 

the spontaneous register, but at times we experiment with the read counterpart for comparison. 

The MR utterances contain highly spontaneous speech with many conversational fillers (e.g. ++uh++, 

++um++), long pauses, partial words, and repeated words. Also, the grammar is loose and often 

“ improper”  according to standard English grammar rules. Figure 3.4 shows an excerpt from one of the 

conversations on sports and exercise. 

s1:  hi  <si l > how' r e <si l > you doi ng <si l >  
s2:  ++mout hnoi se++ hi  good t hanks  
s1:  what  k i nd of  exer ci se you do <si l >  
s2:  <si l > oh ++uh++ <si l > my f avor i t e i s t enni s <si l >  
s1:  r eal l y  
s2:  <si l > you much of  a t enni s f an <si l >  
s1:  yeah <si l > what  ever  happened t o chang <si l >  
s2:  ++uh++ chang he hasn' t  been i n i n t he r unni ng f or  <si l > 

f or  number  one <si l > r eal l y <si l > ser i ousl y he' s he' s a 
gr eat  pl ayer  good compet i t or  but  i t  j ust  <si l >  

s1:  r eal l y <si l > wel l  i  <si l > ++uh++ ++huh++  
s2:  j ust  doesn' t  have i t  t o be number  one he' s <si l >  
s1:  oh r eal l y i ' m sur pr i sed t hat  agassi ' s number  one i  t hought  

he was ki nd of  a f l ake <si l > i  <si l > di dn' t  t hi nk he had 
t he head f or  ++uh++ <si l > f or  champi onshi p t enni s <si l >  

s2:  wel l  t hat ' s t hat ' s what  ever ybo-  bo-  ever yone' s been 
wr i t i ng about  he he does f i nal l y have t he head f or  i t  
<si l > he' s <si l > he' s f i nal l y got  t he ++uh++ <si l > t he 
ment al  game f or  i t  <si l >  

s1:  r eal l y goi ng out  wi t h bar br a st r ei sand r eal l y di d i t  f or  
hi m or  somet hi ng <si l >  
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s2:  i  t hi nk i t  <si l > was br ooke shi el ds <si l > yeah <si l > t hat  
di d i t  yeah <si l > t hat  put  hi m over  t he t op <si l >  

s1:  yeah <si l > oh speaki ng of  t enni s what  about  t hese gal s 
t hat  ar e pl ayi ng t enni s moni ca sel es i s i n hi di ng <si l >  

s2:  r i ght  yeah <si l > she' s i  t hi nk she' s wi t hdr awn f r om f r om 
c-  f or mal  compet i t i on <si l > f or ever  yeah <si l >  

s1:  af t er  she got  st abbed <si l > 

Figure 3.4 An excerpt from a MR conversation between two speakers: s1 and s2. Notice that the speech is 
characterized by many repeated words, false starts, and repetition. “Noise”  and “ filler”  words are marked with 
surrounding “++”  characters, and long pauses or silence regions are marked as “<sil>” . 

 

We divided the MR speech into training and testing sets. Our MR training set consists of 1090 utterances 

(12209 words), and the testing set consists of 271 utterances (3114 words). There are approximately 80 

minutes of training speech and 20 minutes of testing speech in the corpus. The average utterance in the 

MR corpus contains 11.3 words and is 4.4 seconds long. The conversational nature and limited amount of 

MR speech available makes this a difficult recognition task for a state-of-the-art recognition system. 

 

3.2.3 BN: The NIST Broadcast News Corpus 
In the late 1990s, NIST conducted a series of periodic recognition evaluations on a variety of speech 

recognition data. HUB4 was one such evaluation series focused on accurate transcription of broadcast 

news speech (Graff, 1997). Example utterances from the BN corpus are shown in Figure 3.5. 

we cont i nue our  ser i es <si l > 
amer i ca <si l > i n bl ack and whi t e 
t oni ght  <si l > how much i s <si l > whi t e ski n wor t h 
t hi s i s a.  b.  c.  news ni ght l i ne 
r epor t i ng f r om <si l > washi ngt on 
t ed <si l > koppel  
t he busi ness of  ski n col or  <si l > i nevi t abl y comes up agai n and 

agai n <si l > 
of t en as not  <si l > whi t e Amer i cans f i nd t hemsel ves get t i ng 

def ensi ve on t he subj ect  <si l > 
i t  i s not  <si l > we i nsi st  somet hi ng we dwel l  on mor ni ng noon 

and ni ght  
<si l > i t  i s not  even t he way t hat  most  of  us def i ne our sel ves 

Figure 3.5 A listing of example utterances from the broadcast news (BN) corpus. Long pauses or silence regions are 
marked as “<sil>”  

 

Each BN utterance is classified into one of 7 focus (F) conditions according to dialect, mode, fidelity, and 

background noise (Garofolo, 1997). The focus conditions are detailed in Table 3.1. 
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Condition Dialect Mode Fidelity Background 

F0: Baseline Broadcast native planned high clean 

F1: Spontaneous Speech native spontaneous high clean 

F2: Reduced Bandwidth native (any) med/low clean 

F3: Background Music native (any) high music 

F4: Degraded Acoustics native (any) high speech or noise 

F5: Non-native Speakers non-native planned high clean 

FX: Other Combinations – – – – 

Table 3.1 Detailed description of broadcast news speech focus conditions as defined by NIST. 

 

We selected a 45 hour subset of the 1996 and 1997 broadcast news corpora to train our acoustic models. 

Examples were taken from all F conditions. For testing, we made use of the standard 1999 Eval 1 data set, 

which contains 1 hour of broadcast news speech divided into 347 utterances (11075 words). The average 

BN utterance contains 19.7 words and has a duration of 6.7 seconds.  

3.3.4 Speech Database Summary 
To close, we present a table of statistics derived from the speech databases used in our research. A side-

by-side comparison of training and testing database size and average utterance length is given in Table 

3.2.  

 Training Database Size Testing Database Size Average Utterance Length 
Database hours utterances words hours utterances words seconds words 
TID 4.0 3458 15543 2.0 1728 7634 4.2 4.5 
MR 1.3 1090 12209 0.3 271 3114 4.4 11.3 
BN 45.0 24319 475372 1.0 347 11075 6.7 19.7 

Table 3.2 Size comparison of all speech databases used in this thesis (TID, MR, and BN). Size of the training and 
testing databases is given in number of hours, number of utterances, and number of words. Also, the average 
utterance length is given in number of seconds and number of words. 

 

It is interesting to note some similarities and differences between each of the corpora. The average 

utterance length of TID and MR data are very similar in amount of time (4.2 seconds and 4.4 seconds 

respectively), but they are vastly different in number of words spoken in that time (4.5 words for TID and 

11.3 words for MR). There are several possible factors that contribute to this phenomenon. One is a 

difference between the Spanish language (TID) and the English language (MR). Another factor may be 
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the “back-and-forth”  nature of the conversational dialog that takes place in the MR corpus compared to 

the one-sided repetition of digit strings into a cellular phone for TID.  

A comparison of BN and MR is a useful English language to English language comparison. Notice that a 

typical BN utterance contains almost twice as many words as a typical MR utterance. This is largely due 

to the influence of planned speech in the F0 focus condition, which includes a large number of longer, 

scripted utterances read by a professional newscaster. 

The variety of databases used in this research allows for a robust examination of the quality of the 

algorithms we develop. It also allows for fast experimentation of a variety of techniques for improved 

segmentation and recognition quality. In our experience, algorithms that have had the greatest success on 

the smaller TID and MR databases will also have success on the larger BN database. Conversely, 

experimental procedures that were not helpful in recognizing TID and MR data were also not useful in 

recognizing BN data. 

 

3.3 Evaluating Recognition Systems: Accuracy and Statistical Significance 

As discussed in Section 2.5, recognition systems are typically evaluated using a metric known as the word 

error rate (WER). Throughout this thesis, we will use measurements of WER to compare the effectiveness 

of different algorithms for normalizing the speech prior to recognition.  

When comparing different algorithms, it is important to measure not only differences in WER, but also 

the statistical significance of those differences. In this thesis work, we make use of the Matched-Pairs test 

proposed by Gillick and Cox (1989). The Matched-Pairs test is a widely accepted method for calculating 

statistical significance which has also been used by the National Institute of Standards and Technology 

(NIST) in standard speech recognition evaluations. The significance score produced by the Matched-Pairs 

test depends on a variety of factors including the error rates of the two systems, the number of utterances 

in the test set, the vocabulary size, and the range of accuracy within the test set. In particular, the 

Matched-Pairs test attempts to give weight to instances where one recognition system is able to avoid an 

error that the other system has made. The output of the Matched-Pairs test is a p score which is the 

probability that the two systems are statistically the same. In general, we say that results are statistically 

significant if the p score is less than 5%.  

Although the Matched-Pairs p score depends on a variety of factors, we can get a general idea of 

statistical significance based on absolute differences in WER. Table 3.3 shows examples of p score values 
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and corresponding absolute differences in WER for the TID corpus. Table 3.4 shows similar examples for 

the MR corpus, and Table 3.5 shows examples for the BN corpus.  

WER p score 
0.4% 11.7% 
3.0% 6.3× 10-5% 

Table 3.3 Examples of the correspondence between statistical significance p-score and absolute word error rate 
difference for the TID corpus. 

 

WER p score 
1.5% 7.1% 
1.8% 6.4% 
2.5% 0.38% 
8.6% 2.79× 10-8% 

Table 3.4 Examples of the correspondence between statistical significance p-score and absolute word error rate 
difference for the MR corpus. 

 

WER p score 
3.9% 0.11% 
13.8% 9.18× 10-11% 

Table 3.5 Examples of the correspondence between statistical significance p-score and absolute word error rate 
difference for the BN corpus. 

 

In the thesis research, the final results presented on MR and BN are statistically significant, while the 

results presented on the TID data are not below the 5% limit for significance. The TID information was 

useful in developing this thesis because the trends observed in TID carried over to similar observations on 

the larger vocabulary MR and BN databases.  

 

3.4 Conclusions 

In this chapter we presented a very brief overview of the SPHINX-III automatic speech recognition 

system. We then described the spontaneous speech corpora used in this research: TID, MR, and BN. 

Although TID and MR data are small, the results derived on these corpora serve as a consistent indication 

of the potential for success using large-scale corpora such as BN. We closed this chapter with a descripton 

of the Matched-Pairs test used to verify the statistical significance of our results, and we included some 

examples of WER differences and corresponding p-scores for each of the corpora used in our research. In 

the next chapter, we introduce the duration normalization algorithm that we developed for this thesis.
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4: The Duration Normalization Algor ithm 
This chapter begins with a discussion of why it is desirable to normalize the duration of sound units 

observed in speech prior to modeling and recognition. We then describe in detail the process by which we 

use missing feature reconstruction techniques to normalize the duration of speech phones. We close with 

a series of experiments using oracle segmentation information with three databases to investigate the 

effectiveness and derive an upper bound for accuracy using our duration normalization technique. 

 

4.1 Motivation for  Duration Normalization: HMMs and Spontaneous Speech 

The hidden Markov model (HMM) is the most widespread and successful modeling framework for large 

vocabulary, speaker independent speech recognition. We began this research with a simple experiment to 

see how well standard HMM systems perform on careful speech and how well they perform on 

spontaneous speech. Using MR, a parallel corpus of spontaneous and read speech, we trained and tested a 

baseline recognition model for each speech register. The sentences used to train and test each system 

varied only in the speaking register; everything else remained the same. In the baseline case, a system 

trained and tested on read speech had a word error rate (WER) of 15.6%, while the parallel system trained 

and tested on spontaneous speech had a WER of 40.3%. These results indicate that our state-of-the-art 

ASR system can experience a relative degradation in accuracy of over 150% when the speech being 

recognized becomes conversational.  

It is well known that HMMs do a poor job of modeling the phone durations observed in natural speech. 

The transition probabilities have little impact on the final hypothesis produced by modern HMM-based 

recognizers, and some systems have even disregarded them altogether. In 1995, Siegler and Stern 

reported that the duration information derived from HMM transition probabilities does not correlate well 

with actual duration measurements, especially when speech rate becomes more rapid or more varied 

(Siegler & Stern, 1995). In Sections 2.6 and 2.7, we presented an overview of some previous approaches 

to incorporate explicit duration modeling information into the recognition framework. 

There are two possible ways to alleviate the poor duration modeling problem. One is to modify the 

underlying modeling structure to capture duration information more accurately, which might necessitate 

an entirely different modeling framework. In this thesis work, we focus on the alternative: our goal is to 

modify the data so that it is more conducive to the underlying modeling framework of choice, i.e. the 

conventional HMM acoustic models. 



 28 

S P O K E N
(a)

(b)
S P O K E N

 

Figure 4.1 Illustration of the word “spoken”  before (a), and after (b) duration normalization. Corresponding HMM 
states are shown above each phone segment and are mapped to the approximate phone region they model. 

 

Figure 4.1 illustrates this duration normalization idea with durations abstracted from actual speech data. 

Continuous speech contains phones of varying duration. Each time a phone is uttered, it is produced with 

a different duration that depends on many different factors (e.g. phonetic context, speech register, 

speaking rate, emphasis). However, the underlying HMM that models all of the various phone renderings 

does a poor job of capturing duration information. Essentially, the HMM duration model is the 

convolution of the individual exponential duration distributions of each HMM state. This is a poor model 

of phone duration even if the number of states is chosen optimally for each phone. As seen in Figure 

4.1(a), some HMM states model a relatively short amount of speech while others are forced to model 

many frames of speech data with a single Gaussian mixture. Figure 4.1(b) is a schematic illustration of 

speech that has been normalized so that every phone has the same duration. This makes the overall 

duration of a phone deterministic, retaining only the duration variations of the individual states within the 

phone. We hypothesize that duration normalization would result in reduced modeling variations across 

phones and improved recognition accuracy, especially for spontaneous speech where there is greater 

inherent variation of phone duration. This also ensures that each HMM state can characterize well the 

specific portion of the phone it is tasked to model.  

 

4.1 Algor ithm for  Duration Normalization via Missing Feature Techniques 

In our application, we wish to normalize the duration of each phone occurrence in the speech so that 

every instance of a phone has the same duration. Specifically, we normalize all instances of all phones to 

have the same duration. As hypothesized earlier, this restructuring is expected to result in an improvement 

in accuracy with HMM-based modeling. The true duration of a phone can differ from the desired 

normalized duration: a phone can have a greater duration than what we desire (a “ long phone”), or it can 

have a smaller duration than what we desire (a “short phone”).  

If a given phone segment has a greater duration than the desired normalized duration, we downsample the 

observed frame sequence. Normalizing a long phone is illustrated in Figure 4.2(a). Note that missing 
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feature methods are not needed to accomplish this. However, if a phone has a duration that is less than the 

desired duration, we need a method for expanding its duration to the desired duration. 

Missing feature methods, as discussed in Section 2.9, are traditionally used to reduce the impact on 

recognition accuracy of unreliable time-frequency locations in the feature space that represents the speech 

component of the signal. In particular, time-frequency locations that are corrupted by low SNR can be 

reconstructed based on information contained in other areas of the spectrogram which are assumed to be 

more reliable. The same reconstruction techniques can also be used to expand and recover the “missing”  

portions of the phones that have a smaller duration than the desired normalized duration. 

Our approach is as follows: For a given short phone, we interleave a sequence of blank frames amid the 

observed frames so that the new phone duration is correct. We create a missing feature mask that declares 

our newly-inserted blank frames as “missing”  and marks them for reconstruction. The missing frames of 

the short phones are then filled in using the correlation-based reconstruction method described in Section 

2.9. The approach for normalizing short phones is illustrated in Figure 4.2(b). A detailed look at our 

implementation of this algorithm is presented in Section 4.2. 

t t

ttt

f f

fff

(a)

(b)

 
Figure 4.2 Illustration of the duration normalization process. The long phone shown in (a) is downsampled to the 
correct normalized duration. The short phone shown in (b) is expanded with frames of “missing”  feature vectors and 
then filled in via missing feature reconstruction. 

 

We note that all duration normalization and reconstruction is done in the log spectral domain, in the same 

manner that the corresponding operation is performed for traditional missing feature reconstruction. The 

resulting log spectral vectors are converted to Mel-frequency cepstral coefficients for use in training and 
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testing our standard HMM recognizer. Figure 4.3 shows the log spectrogram for an utterance both before 

and after duration normalization. (The figure shows is a Spanish utterance: “nove cientos euros y seis 

centimos” , which in English is “nine hundred euros and six cents” .) 

 
Figure 4.3 Log spectrograms of an example utterance before (top) and after (bottom) duration normalization. 

 

Note that we have also experimented with simpler missing feature reconstruction methods, such as linear 

interpolation in time (which is the equivalent of simple time warping), to adjust the short phones to the 

correct duration. These methods resulted in no improvement in recognition accuracy. On the basis of 

these comparisons we believe that the added information contained in the correlations obtained from 

carefully-read speech allows us to regain some of the information that is lost when speech is produced 

very rapidly, as is often the case when speech is produced spontaneously. 

 

4.2 Our Implementation of Missing Feature-Based Duration Normalization in Detail 

In this section, we provide a detailed look at our implementation of time duration normalization using 

missing feature reconstruction. A functional overview of our system is illustrated in Figure 4.4. 
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Figure 4.4 Detailed functional overview of duration normalization via missing feature methods. 

 

The system has the following 3 main functional blocks: 

• make warp control file: Creates a control file detailing which frames from the original log 

spectrum are kept and which frames are dropped. The locations of added “missing”  frames are 

also included in the control file. 

• make new log spectrum &  mask: Using the warp control file and the original log spectrum, this 

module creates a new log spectral file containing only the information from the original log 

spectrum marked as “kept”  by the control file. Space is also left in the new log spectrum for the 

added “missing”  frames, and a mask is made to designate the newly added frames as missing. 
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• missing feature reconstruction: Covariance-based missing feature reconstruction is used to fill 

in the missing frames and generate a complete, duration-normalized log spectrum feature file. 

These log spectral features are finally converted to standard MFCCs for recognition.  

The algorithm that controls the frame warping decisions is described in detail below, and following that is 

an illustrated example of the remainder of the process. 

4.2.1 Warping: Deciding Which Frames Stay and Which Frames Go 
To warp from the natural duration of a phoneme to the desired normalized duration, we designed a simple 

algorithm to add or drop the proper number of frames in an “even”  spacing throughout a given speech 

segment. For example, if the original segment has 6 frames, and we want to compress it to 3 frames, our 

algorithm will specify that we keep frames 0, 2, and 4. Frames 1, 3, and 5 will be dropped. 

For the purposes of this description, we assume our algorithm is performing a contraction in time. In 

practice, our algorithm treats all problems as contraction problems and fixes the resulting frame pattern at 

the end when expansion is required. (Note that when expanding a speech segment, we also desire an 

“even”  spacing of frames, but this time we desire an even spacing of inserted frames rather than deleted 

frames.) 

Our warping algorithm works as follows:  

If there is only one frame to be deleted, the “middle”  element of the frame sequence is deleted. If multiple 

frames must be deleted, we perform the contraction in two passes, a “keep”  pass and a “delete”  pass.  

In the first pass, we choose to keep every kth frame in the segment, where k is the ratio of the original 

duration of the segment to the normalized duration. All other frames are marked for deletion. Note that k 

must be an integer number of frames; therefore, there may be too many frames kept after the first pass. 

When this happens, a second pass is called upon to remove additional frames. In the second pass, we 

delete every j th element from those that were originally kept, where j is the ratio of the number of frames 

kept in the first pass to the number of frames we still need to delete. Note that the “delete”  pass terminates 

once we have achieved the desired number of frames.  

Figure 4.5 illustrates an example of contracting from 7 frames to 3 frames. The dual example of 

expanding from 3 frames to 7 frames is also shown. In the figure, “X”  represents the location of frames 

marked for deletion, and “–”  represents the location where blank frames are to be inserted and later 

reconstructed by missing-feature techniques.  
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Contraction Example: 7 frames     3 frames

0 1 2 3 4 5 6

0 X 2 X 4 X 6

0 X 2 X 4 X X

num_to_delete = 4
keep_modulus = floor(7/3) = 2

to_duration
= 3

num_deleted = 3
num_still_to_delete = 1

keep_i = [0 2 4 6]
num_kept = 4

delete_modulus = floor(4/1) = 4

0 2 4
0 - 1 - 2 - -

from_duration
= 7

(from_duration = 3      to_duration = 7)

I f expanding instead of contracting:

Contraction Example: 7 frames     3 frames

0 1 2 3 4 5 6

0 X 2 X 4 X 6

0 X 2 X 4 X X

num_to_delete = 4
keep_modulus = floor(7/3) = 2

to_duration
= 3

num_deleted = 3
num_still_to_delete = 1

keep_i = [0 2 4 6]
num_kept = 4

delete_modulus = floor(4/1) = 4

0 2 4
0 - 1 - 2 - -

from_duration
= 7

(from_duration = 3      to_duration = 7)

I f expanding instead of contracting:

Contraction Example: 7 frames     3 frames

0 1 2 3 4 5 60 1 2 3 4 5 6

0 X 2 X 4 X 60 X 2 X 4 X 6

0 X 2 X 4 X X0 X 2 X 4 X X

num_to_delete = 4
keep_modulus = floor(7/3) = 2
num_to_delete = 4
keep_modulus = floor(7/3) = 2

to_duration
= 3

num_deleted = 3
num_still_to_delete = 1

keep_i = [0 2 4 6]
num_kept = 4

delete_modulus = floor(4/1) = 4

num_deleted = 3
num_still_to_delete = 1

keep_i = [0 2 4 6]
num_kept = 4

delete_modulus = floor(4/1) = 4

0 2 40 2 4
0 - 1 - 2 - -0 - 1 - 2 - -

from_duration
= 7

(from_duration = 3      to_duration = 7)

I f expanding instead of contracting:

 
Figure 4.5 Illustration of contraction from 7 frames to 3 frames. (The corresponding pattern for expansion  
from 3 frames to 7 frames is also shown.) 

 

4.2.2 Reconstruction: An I llustrated Example 
Here we describe the remainder of the reconstruction process and illustrate it with an example chosen 

from the TID corpus. The example is the Spanish utterance: “nove cientos euros y seis centimos” , the 

same utterance shown previously in Figure 4.2.   

Figure 4.6 illustrates the generation of the new log spectral file and reconstruction mask from the original 

log spectral file. The top panel shows the original log spectral file. The middle panel shows the new log 

spectral file, and the lower panel shows the corresponding reconstruction mask. This example is typical in 

that the normalized log spectrum has fewer frames than the original log spectrum. This is largely due to 

the fact that the long silence regions at the beginning and ending of each utterance are greatly compressed 

by the normalization process.  

The corresponding reconstruction “mask”  file is also shown at the bottom of the Figure 4.6. The 

reconstruction mask flags whether a pixel in the spectrogram should be kept (white) or disregarded and 

reconstructed (black). In our application, the mask is composed of vertical “stripes”  because all of the log 

spectral values corresponding to a given speech frame are either wholly kept or wholly reconstructed.  
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Figure 4.6 Original log spectral file (top) together with the new log spectral file (middle) and reconstruction mask 
(bottom). 

 

Once the new log spectral file and corresponding reconstruction mask are generated, covariance-based 

missing feature reconstruction is performed to fill in the “missing”  log spectral values, completing the 

duration normalization process. Figure 4.7 shows our example log spectral file before (top) and after 

(bottom) the missing vectors are reconstructed. The reconstruction mask is shown in the middle of the 

figure. 

The theory behind covariance-based missing feature reconstruction is described in detail in Section 2.9. 

Note that in our experiments, the MAP estimate is computed to replace the missing elements in the 

spectrogram via the procedure termed covariance joint reconstruction (Raj, 2000).  For computational 

efficiency, all of the missing values in the log spectrogram are not estimated at the same time; rather, the 

reconstruction is done on all the missing elements of a single log spectral vector, one frame at a time.  
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In our duration normalization application, all 20 log spectral elements of each inserted “missing”  frame 

are reconstructed simultaneously using a maximum of 16 “neighbor”  log spectral elements from the 

spectrogram. “Neighbors”  are defined as the elements present in the log spectrogram with a relative 

covariance of at least 0.5 with at least one of the missing elements. Raj showed that this type of 

reconstruction is computationally efficient and accurate (Raj, 2000).  

 
Figure 4.7 Log spectral file before (top) and after (bottom) reconstruction. The reconstruction mask (middle) is also 
shown. 

 

4.2 Exper iments Using Oracle Phone Boundar ies 

We started by training baseline models on each of the training sets using the standard approach. In order 

to apply missing feature based duration normalization, we needed to know the location of the phone 

boundaries in both the training and the testing sets. Using the baseline models and the reference 

transcripts, we performed a Viterbi alignment of the transcripts to the data and derived what we deemed 

our “oracle”  phone boundaries. Viterbi alignment was performed on both the training and testing sets 



 36 

used in the experiments. After alignment, however, the only information retained was the location of the 

boundaries that separate one phone from another. 

The CMU SPHINX-III recognition system was used for all experiments. The data were modeled using 

3-state left-to-right HMMs with no transitions permitted between non-adjacent states. For the smaller 

speech corpora, we used semi-continuous HMMs (codebook size 256) to model the data. For the large 

scale broadcast news data, we used fully-continuous HMMs with a mixture of 16 Gaussians per state. 

4.2.1 Oracle Boundar ies and the Multiple Register  Corpus (MR) 
For our first set of oracle boundary experiments, we used the NIST Multiple Register Speech Corpus 

(MR), a parallel corpus for comparison of spontaneous and read speech recorded at SRI. The database 

contains fifteen spontaneous conversations on assigned topics and re-read versions of the same 

conversations. For our experiments, we selected data from the read and spontaneous registers. We trained 

and tested separate models — one for read speech and the other for spontaneous speech. We used 

approximately 2 hours of speech to train each acoustic model, and 0.5 hours of speech to test each model. 

For more information on the MR database, see Section 3.2.2. 

We first focused on the data taken from the spontaneous register of the corpus. Given the oracle phone 

boundaries, we applied the missing feature methods described in Section 4.1 to normalize all phone 

occurrences in the spontaneous speech data set to a specified frame duration. We then trained standard 

HMM models on the duration-normalized spontaneous training set and tested their accuracy on the 

duration-normalized spontaneous test set. For the baseline WER, we also decoded the test set using the 

standard models and natural duration speech features that were used to derive the oracle phone 

boundaries.  

The normalized duration is a free parameter in this process; we can normalize each phone occurrence to 

any frame duration we choose. We empirically sought the optimal choice for the normalized duration by 

repeating the spontaneous speech experiment for several different normalized duration values (ranging 

from 4 frames to 12 frames). Note that at a normalized duration of 6 frames, the average HMM state in 

our 3-state models would be responsible for modeling approximately 2 frames of speech data. For a 

normalized duration of 9 frames, each state would be responsible for approximately 3 frames of speech 

data, and so forth. 

Figure 4.8 plots the resulting accuracy of the duration-normalized models as a function of the chosen 

normalized frame duration. The baseline accuracy is plotted for reference as well. The baseline accuracy 

for the spontaneous test set was a word error rate of 40.3%. In the best case, when the speech was 
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normalized and reconstructed so that every phone had a duration of 8 frames, the resulting WER was 

32.2%. This result showed a 20.1% relative improvement over baseline accuracy on spontaneous speech. 

Duration Normalization Recognition Performance
on MR(spon) w ith Oracle Segmentation
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Figure 4.8 Results from phone duration normalization on MR spontaneous speech. WER is plotted as a function of 
the normalized phone duration. The baseline WER is also shown for reference. 

 

Figure 4.8 also shows that a choice of normalized duration in the range of 6–8 frames is best for this 

particular data set. When expanding to 10 or 12 frames, it is possible that correlation-based reconstruction 

cannot adequately estimate the missing frames. Prior experiments have indicated missing-feature 

reconstruction methods are only effective if the sequences of missing frames being reconstructed are no 

more than 5 frames long (Raj, 2000). If we expand a very short phone, say 3 frames, up to a duration of 

12 frames, the missing feature methods are required to reconstruct 3 “missing”  frames in a row three 

times in a row, with only one frame of information in between. 

We then repeated the same experiment on speech taken from the read register of the MR corpus. We used 

the oracle phone boundaries to normalize the duration of each phone to 8 frames. We again trained 

standard HMMs on the duration-normalized read training set and evaluated our models on the duration-

normalized read testing set. The results are shown in Table 4.1. 
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 WER Relative Improvement 
Baseline 15.6% - 
Normalized duration  
   (8 frames) 

14.0% 10.3% 

Table 4.1 Results from phone duration normalization on MR read speech. A 10.3% relative improvement over 
baseline accuracy is shown when all phones are normalized to a duration of 8 frames. 

 

We observed that our baseline error rate of 15.6% was reduced to 14.0% when missing feature duration 

normalization was applied to read speech. This reflected a relative improvement of 10.3% over baseline 

accuracy. These results show that the duration normalization methods are effective with perfect 

knowledge of segment boundaries for carefully enunciated speech and for spontaneous speech. 

 

4.2.2 Oracle Boundar ies and the Telefónica Corpus (TID) 
We also conducted oracle experiments on a Spanish database recorded by Telefónica Investigación y 

Desarollo in Madrid, Spain. The database consists of cellular telephone callers repeating a small string of 

digits or a monetary amount. The speech is small vocabulary, but highly spontaneous. The training set 

consists of approximately 4 hours of training speech and 2 hours of testing speech data. For more 

information on the TID corpus, see Section 3.2.1. 

The process was the same as that for MR: We trained and tested standard HMMs on the raw TID speech. 

We then Viterbi aligned the speech as before to derive oracle segmentation information. We then duration 

normalized the entire train and test sets, and repeated our training and testing on the Spanish speech. The 

results are shown in Table 4.2. 

 WER Relative Improvement 
Baseline 5.2% - 
Normalized duration  
   (6 frames) 

3.4% 34.6% 

Table 4.2 Results from phone duration normalization on spontaneous Spanish TID speech. 

 

Note that for the Spanish TID data, we empirically determined that a normalized duration of 6 frames is 

best. We observed in this case that our baseline error rate of 5.2% was reduced to 3.4%, which reflected a 

relative improvement of 34.6%. These results confirm the potential effectiveness of the missing feature 

duration normalization approach. They also indicate that there is a great potential for improved 

recognition accuracy, especially in the case of smaller vocabulary and limited domains. 
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4.2.3 Oracle Boundar ies and the Broadcast News Corpus (BN) 
We also conducted oracle experiments on a the NIST HUB4 Broadcast News evaluation data. This 

database consists of televised broadcast news collected in the mid to late 1990s. Model training was 

performed on 45 hours of speech taken from the 1996 and 1997 corpora. Testing was done on the 1999 

Eval 1 data set. For more information on the BN corpus, see Section 3.2.3.  

The procedure was identical to the procedure used for the MR and TID data sets. For this English 

broadcast news data, a normalized duration of 8 frames was used. The results are shown in Table 4.3. 

 

 WER Relative Improvement 
Baseline 33.4% - 
Normalized duration  
   (8 frames) 

31.6% 5.4% 

Table 4.3 Results from phone duration normalization on large-scale broadcast news task. 

 

For the broadcast news task, the baseline error rate of 33.4% was reduced to 31.6% via the duration 

normalization algorithm. This is a relative reduction in WER of 5.4%. These results further confirm the 

effectiveness of recognizing speech with normalized phone durations. As with most large-scale tasks, the 

potential for improvement is not as great as that achieved for smaller tasks. This is most likely due to the 

large amount of training data and complexity of the models that can be derived from such a data set.  

4.2.4 Result Summary: Duration Normalization with Oracle Segmentation Information 
We close this chapter with a summary of the results from applying the duration normalization algorithm 

with oracle segmentation information. Table 4.4 contains a summary of recognition accuracy 

improvements possible for each of the databases tested. 

 

Corpus Relative Improvement 
MR (spon) 20.1% 
MR (read) 10.3% 
TID (Spanish) 34.6% 
BN 5.4% 

Table 4.4 Summary of phone duration normalization results using oracle segmentation on a variety of speech 
corpora. 
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From these results, we observe that the potential accuracy improvements varies depending on the size of 

the task and the nature of the speech. The results from the parallel MR corpus indicate that the potential 

improvement is greater when the speech is more spontaneous than when the speech is more carefully 

prepared and read.  

The broadcast news speech contains a large amount of speech data with varying levels of spontaneity, 

from carefully-prepared and professionally-delivered news reports to ad hoc interviews in the field with 

background noise and other issues. With this large amount of training data and more sophisticated 

recognition models, the potential for improvement with duration normalization, while still significant, is 

not as great as the potential improvement for other tasks. 

 

4.3 Conclusions 

In this chapter, we presented a detailed overview of our duration normalization process which uses 

missing feature reconstruction techniques to enable the normalization of the duration of all sound units 

present in the speech prior to modeling and recognition. This normalization is designed to “ factor out”  the 

phone duration variability and help ensure robust estimation of the HMM acoustic model parameters 

despite the high duration variability observed in spontaneous speech data.  

Using the correct transcripts, we used Viterbi alignment to generate “oracle”  segmentation information 

for use with our duration normalization algorithm. Experiments on the spontaneous register of the MR 

corpus indicated that a normalized duration of 8 frames led to the best overall recognition system 

accuracy, and therefore we fixed our normalized duration to 8 frames for all English language corpora for 

the remainder of this thesis research. (Similar experiments on the Spanish language TID corpus indicated 

a normalized duration of 6 was better for spontaneous Spanish speech; therefore, we fix the normalized 

duration to 6 frames for TID.) 

When the segmentation information is known a priori, we observed that the duration normalization 

algorithm yields large improvements in recognition system accuracy, with relative reductions in word 

error rates in the range of 5.4%–34.6%. The potential for improvement varied depending on the size of 

the corpus and the size of the vocabulary. Consistent with many speech recognition enhancement 

algorithms, the observed accuracy improvements were quite large on smaller datasets and more modest 

on larger datasets presumably due to the large amount of varied speech data used to train the HMM 

acoustic models. 
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In the following chapter, we present different techniques for automatic segmentation of speech into sound 

units. We focus our search on finding the most effective speech segmentation technique that yields 

significant recognition system accuracy improvements when coupled with our duration normalization 

algorithm.  
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5: Blind Phone Segmentation Techniques 
In this chapter, we discuss automatic techniques to segment the speech waveform into a sequence of 

sound units (“phones”) when the transcript is not known a priori. The duration normalization technique 

described in the previous chapter depends on the quality of an automatically-derived segmentation of 

speech into basic phonetic units. We also discuss and apply some metrics from signal detection theory to 

evaluate the quality of the proposed automatic segmentation techniques. 

5.1 Decoder -based Segmentation 

A simple way to segment the speech waveform into sound units makes use of the speech recognition 

engine and HMM acoustic models for the phonetic units. This process is illustrated in Figure 5.1.  

decode

baseline
HMM

alignspeech
hypothesized
phone
segmentation 

she l ef t  my
wher e wer e you
…

hypothesized transcript

decode

baseline
HMM

alignspeech
hypothesized
phone
segmentation 

she l ef t  my
wher e wer e you
…

hypothesized transcript

 

Figure 5.1 Block diagram for the decoder-based segmentation system. 

 

We start by training baseline recognition models on the training speech corpus using standard Baum-

Welch training. We then attempt to recognize the speech using the baseline models. The decoder 

produces a hypothesized transcript of each utterance in the corpus. We then use the Viterbi algorithm and 

the baseline acoustic models to align the hypothesized transcripts to the speech. Boundary locations are 

hypothesized every time the aligner records a transition out of the last state of one phone’s acoustic model 

and into the first state of the next phone’s acoustic model.  

 

5.2 Exper imental Results Using Decoder-based Segmentation 

We performed duration normalization experiments on the Telefónica (TID), Multiple Register (MR), and 

Broadcast News (BN) corpora using decoder-based segmentation. In each case, we trained baseline 
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models for the particular corpus. We then decoded and Viterbi-aligned both the training and testing sets to 

generate hypothesized phone segmentations for each complete corpus. We performed duration 

normalization on the training set of each corpus using the hypothesized segmentation information. We 

then trained HMM acoustic models on the test corpora. Finally, we performed duration normalization on 

the testing sets and decoded the speech. The results are summarized in Table 5.1. 

 TID MR BN 
baseline 5.2% 40.3% 33.4% 
duration normalization using decoder-based segmentation 5.4% 39.8% 36.0% 
duration normalization using oracle segmentation 3.2% 32.2% 31.6% 

Table 5.1 Duration normalization results on three corpora using decoder-based segmentation. Baseline and oracle 
segmentation results are presented for reference. 

 

It is clear from these results that decoder-based segmentation is insufficient for use with the duration 

normalization algorithm. In 2 of the 3 databases tested, accuracy actually degrades with respect to 

baseline when duration normalization is applied using the decoder-based segmentation.  

 

5.3 Signal Detection Theory: ROCs and the d
�

 Sensitivity Metr ic 

In order to properly evaluate and compare different segmentation techniques, we make a short digression 

to discuss some fundamental notions of signal detection theory (Engen, 1971). We consider the speech 

segmentation problem as a detection problem where we are trying to detect phone boundary locations 

within a speech signal. This is a two-class pattern recognition problem: the detector must decide whether 

a frame of speech data corresponds to a true boundary location (“ T” ) or a false, non-boundary location 

(“ F” ). 

When attempting to automatically detect boundaries, there are four possible situations that can arise. 

These situations are defined and described using standard signal detection theory terminology as follows: 

1. “hit”  = a true boundary location (T) is correctly identified as a boundary (“ T” )  

2. “miss”   = a true boundary location (T) is incorrectly identified as a non-boundary (“ F” )  

3. “ false alarm”   = a non-boundary location (F) is incorrectly identified as a boundary (“ T” )  

4. “correct rejection”   = a non-boundary location (F) is correctly identified as a non-boundary (“ F” )  

 
A good detector will maximize the number of “hits”  and “correct rejections”  while minimizing the 

number of “misses”  and “ false alarms” .   
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Many of our segmentation systems make use of a decision threshold (
�
) when hypothesizing speech 

segmentations. We evaluate our detection systems by purposefully varying the decision threshold and 

recording the resulting probability of correct detection and probability of false alarm for each value of 
�
. 

Given this information, we plot the Receiver Operating Characteristic (ROC), with the probability of false 

alarm on the x-axis and the probability of correct detection on the y-axis. In evaluating different 

segmentation algorithms, we will report results together with ROC graphs and estimated sensitivity 

parameters where appropriate. 

To evaluate the accuracy of a detector, it is important to separate the sensitivity (d � ) of the detector from 

its bias ( ). These measures are derived by assuming that the T and F detection classes are governed by 

underlying normal distributions with respective means mT and mF, and equal standard deviations 
�

T = �
F = � . This is illustrated in Figure 5.2. 

p(x | T)p(x | F)

mF mT

� �

�

�

d'

p(x | T)p(x | F)

mF mT

� �

�

�

d'

 
Figure 5.2 Illustration of detector sensitivity (d� ) and bias (� ) for a two-class problem with underlying normal 
probability distributions. The d�  shown in the figure assumes that the standard deviation (� ) of both classes is 1. 

 

The sensitivity measure d � , which is independent of the decision threshold 
�
, is given by the difference 

between the means of the two classes divided by the standard deviation: 

 
σ

FT mm
d

−
=′  (5.3.1) 
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The bias  is the difference between the decision threshold 
�
 and the midpoint between the two means: 

 
2

FT mm +
−= θ  (5.3.2) 

In practice, the decision threshold 
�
 is adjusted according to the a priori statistics of the two classes and 

the costs associated with each type of detection error (misses v. false alarms). This adjustment is a 

purposeful bias of the detector. 

To evaluate the accuracy of a classifier on a given test set, we must first estimate the detector’s 

probability of correct detection (PD) and probability of false alarm (PF). We estimate PD by computing the 

ratio of the number of hits to the total number of boundary locations in the corpus, and we estimate PF by 

computing the ratio of the number of false alarms to the total number of non-boundary locations in the 

corpus. For ease of computation, we then convert the estimated PD and PF values to z scores using the 

following coordinate transforms: 

 �
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Finally, the sensitivity parameter d �  and detector bias  are calculated using the following formulas: 

 FD zzd −=′  (5.3.5) 

 
2

FD zz +
=  (5.3.6) 

 

The graph in Figure 5.3 shows different ROC curves that correspond to particular values of the sensitivity 

parameter d � . These curves are known as isosensitivity ROC curves because the value of d �  is the same for 

every point on the curve. A sensitivity value of d �  = 0 corresponds to chance accuracy. The greater the 

value of d � , the more accurate the system is. Note that the accuracy of an unbiased detector would lie on 

the “knee”  of each curve. The more biased a detector is, the further away the operating point lies from the 

knee of its corresponding isosensitivity curve. 
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Figure 5.3 Example isosensitivity ROC curves for different values of the sensitivity measure d � . 

 

The graphs in Figure 5.4 show the relationship between the probability of correct detection PD and the 

sensitivity parameter d � . To generate these curves, we assume that the detector is unbiased, i.e. that PF is 

always equal to 1 – PD  Note that d �  approaches infinity as PD approaches 1.0.  
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Figure 5.4 Relationship between the sensitivity measure d �  and the probability of correct detection, assuming that 
the classifier is perfectly unbiased. The plot on the left uses a linear scale, and the plot on the right uses a semi-log 
scale. 
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5.4 Results and Analysis: Decoder-based Segmentation 

In this section, we report segmentation results for decoder-based segmentation performed on the test set 

of each of the three evaluation corpora (TID, MR, BN).  

The decoder-based segmentation results for the TID test corpus are shown in Table 5.2. The first chart 

shows the raw count in number of frames processed and detected. The second chart shows the results as a 

percentage. The sensitivity index d �  is also given.  

 “ T”  “ F”  

T 43126 883 

F 1308 675876 

 

 “ T”  “ F”  

T 98.0% 2.0% 

F 0.2% 99.8% 

 

 

d �  = 5.0 

Table 5.2 Decoder-based segmentation detection results for the TID corpus. 

 

It is clear from these results that the decoder-based segmentation performs very well on the TID test data, 

with a 98% probability of correct detection and only a 0.2% probability of false alarm. The sensitivity 

index d �  is 5.0 for this detector. 

 

Decoder-based segmentation on the spontaneous MR test set performs as follows (Table 5.3): 

 “ T”  “ F”  

T 9489 1452 

F 985 104143 

 

 “ T”  “ F”  

T 86.7% 13.3% 

F 0.9% 99.1% 

 

 

d �  = 3.5 

Table 5.3 Decoder-based segmentation detection results for the MR corpus. 

 

While the classification is not as accurate on MR as it is on TID, the classifier still performs with a high 

sensitivity index of 3.5. Decoder-based segmentation achieves an 86.7% hit rate with a 0.9% rate of false 

alarm on the conversational MR data. It is clear from these results that decoder-based segmentation 

accuracy is related to the WER of the standard baseline models when decoding the test set. For TID, 

baseline WER is 5.2%, while for MR, the baseline WER is 40.3%. Consequently, the decoder-based 

segmentation is less accurate on the MR data. 
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Decoder-based segmentation and the BN corpus yields the following results (Table 5.4): 

 “ T”  “ F”  

T 41112 3139 

F 2320 305653 

 

 “ T”  “ F”  

T 92.9% 7.1% 

F 0.7% 99.3% 

 

 

d �  = 3.9 

Table 5.4 Decoder-based segmentation detection results for the BN corpus. 

 

Again, the decoder-based segmentation performs quite well on BN data. The sensitivity index is 3.9 with 

a hit rate of 92.9% and a false alarm rate of 0.7%. We also note that the accuracy of decoder-based 

segmentation again relates to the baseline word error rate of the recognition system. The BN baseline 

WER of 33.4% is better than the baseline WER for MR but worse that the baseline for TID. Accordingly, 

the decoder-based segmentation accuracy is better than that of the MR system but worse than that of the 

TID system. In all cases, the decoder-based segmentation yields strong sensitivity indices ranging from 

3.5 to 5.0.  

 

5.4.1 Decoder-Based Segmentation—Detector  Bias 
The decoder-based segmentation results presented above indicate that the detection system is biased, i.e. 

the probability of missing a boundary is much greater than the probability of false alarm. For TID, we 

estimate a detection bias  of 0.412. For MR the detection bias  is 0.626, and for BN the detection bias  

is 0.494. We therefore investigated the possibility of adjusting the speech recognizer so that the resulting 

segmentation results would be less biased. 

The SPHINX-III speech recognition system offers two adjustable parameters to optimize accuracy: the 

word insertion penalty and the phone insertion penalty. These penalties are incurred during the search 

every time the recognizer hypothesizes a transition into a new word or phoneme. The word insertion 

penalty is designed to favor hypotheses with a “ reasonable”  number of words given the overall duration 

of the utterance, and most state-of-the-art HMM-based systems make use of such a parameter.  

We experimented with a variety of word and phone insertion penalty values on the MR corpus and found 

that we were able to move the operating point of the detector only slightly towards the desired unbiased 

operating point. The observed change was too small to have a significant impact on our recognition 
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results. After exhausting the practical means to reduce the bias of the decoder-based segmentation system, 

we concluded that the effects of the bias were unavoidable. 

 

5.5 Phonetic Decoder-based Segmentation  

At the end of this chapter, we discuss in detail a fundamental problem that results when decoder-based 

segmentation is used together with duration normalization (see Section 5.7 “The Decoder-based 

Segmentation Dilemma”). It would be advantageous to develop a high quality segmentation algorithm 

which does not depend on the sequence of word strings hypothesized by the baseline recognition system.  

We experimented with using the acoustic recognition models to search for the most likely sequence of 

phones present in the speech signal. This is known as phonetic or “all phone”  decoding. The phonetic 

decoding search is not constrained by the dictionary of words and their corresponding “valid”  sequences 

of phones in the language. Unlike word decoding, when SPHINX-III is used in “all phone”  mode, the 

system outputs the hypothesized sequence of phonemes and the corresponding start and end frames for 

each hypothesized phone. Using the baseline recognition models trained for each corpus, we performed 

phonetic decoding of the TID corpus.  

Phonetic decoder-based segmentation on the TID test set performs as follows (Table 5.5): 

 “ T”  “ F”  

T 40856 3153 

F 7479 669705 

 

 “ T”  “ F”  

T 92.8% 7.2% 

F 1.1% 98.9% 

 

 

d �  = 3.8 

Table 5.5 Phonetic decoder-based segmentation detection results for the TID corpus. 

 

In this instance, the segmentation derived by the phonetic recognition system performs worse than the 

segmentation derived by the word recognition system. Similar results were observed on MR data. This is 

due to the fact that the phonetic decoding is often error prone, and unconstrained phone error rates of the 

systems are significantly worse than corresponding word error rate values for constrained word decoding.  

We attempted to use all phone decoding to segment speech for duration normalization, but the technique 

was not successful. The accuracy of all phone decoder-based segmentation duration normalization was 

always worse than baseline accuracy due to the large number of phone and boundary errors introduced by 

the lower quality phonetic decoding. 
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5.6 Signal Processing-based Segmentation Techniques  

We also investigated and evaluated a series of segmentation techniques that work directly on the speech 

signal, independent of the recognition engine. We experimented first with an “edge detection”  technique 

where we assigned boundary locations to places in the signal where the spectrum changed dramatically 

using a variety of distortion metrics. We then moved to a more elaborate “split-and-merge”  algorithm to 

find regions of spectral stability within the speech signal. 

5.6.1 Edge Detection Segmentation 
In edge detection segmentation, we analyze the speech signal and look for locations in the speech where 

the signal is changing rapidly. We first convert the speech signal to the 20-dimensional log Mel spectral 

domain. This gives a time sequence of 20-dimensional vectors we call x[n]. We then calculate a running 

distortion metric ( ) across the time sequence of speech log-spectral vectors and compare to a decision 

threshold 
�
. If  is greater than 

�
, we hypothesize a boundary location at that point in the signal; 

otherwise, we assign that frame of speech to the non-boundary class.  

We experiment with the following three distortion metrics for edge detection segmentation. Note that 

d( x , y ) represents the standard Euclidian distance between vectors x and y.  

1. Backward Difference:  

 ( )]1[],[][ −=∆ nndn xx  (5.6.1) 

2. Forward + Backward Difference: 

 ( )]2[],[][backward −= nndn xxδ  (5.6.2) 

 ( )]2[],[][forward += nndn xxδ  (5.6.3) 

 ][][][ backwardforward nnn δδ +=∆  (5.6.4) 

 

3. Dendrogram-based Distortion Metric 

 ][][][ backwardforward nnna δδ −=  (5.6.5) 

 
�
�
� −−−

=∆
otherwise  ,                        0

signin differ  ]1[ and ][ if  ,    ]1[][ 
][

nananana
n  (5.6.6) 
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The backward distortion (Eq. 5.6.1) is the simplest distortion metric which looks for immediate spectral 

change within a range of one frame of speech. The forward + backward distortion metric (Eq. 5.6.4) looks 

for locations in the speech signal which are vastly different than those that come 2 frames earlier and 

those that come 2 frames later. The idea is that at boundary locations, the speech frame should look 

different from its neighbors in either direction.  

The dendrogram-based distortion metric is similar to the metric used by segmental modeling/recognition 

systems when they build a “dendrogram” or hierarchical segmentation network for the speech signal 

(Glass & Zue, 1988). When building a dendrogram, each frame of speech is “associated” either with the 

frames preceding the given frame or the frames following the given frame depending on the association 

direction with the smaller distortion. In Eq. 5.6.5, we define a[n] as an “association”  metric corresponding 

to the speech signal. If a[n] is positive, then the forward distortion is greater than the backward distortion, 

which means that frame n is associated with the preceding frames. If a[n] is negative, then the backward 

distortion is the greater distortion, implying an association with the following frames. Since boundaries 

are hypothesized in the base level of a dendrogram network whenever the association direction changes, 

we define the final dendrogram-based distortion metric in Eq. 5.6.6 as follows: [n] is the magnitude of 

the association change when there is an association change (i.e. when a[n] and a[n–1] differ in sign), and 

[n] is 0 when there is no association change.  

The ROC results for the backward distortion metric are presented in Figure 5.5 for TID and MR data. 

Note that the accuracy for decoder-based segmentation is presented with symbol ×  for comparison. The 

sensitivity index for backward difference edge detection is approximately 1.9 for TID and 2.0 for MR 

data. It is clear that the decoder-based segmentation outperforms backward difference edge detection. 
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Figure 5.5 ROC results for edge detection using the backward distortion metric on TID (left)  
and MR (right). Decoder-based segmentation is shown as an “X”  for reference. 

 

Forward + backward difference edge detection ROC for TID and MR data are shown in Figure 5.6. 

Again, the decoder-based segmentation accuracy is presented for reference. 
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Figure 5.6 ROC results for edge detection using the forward and backward distortion metric on TID (left)  
and MR (right). Decoder-based segmentation is shown as an “X”  for reference. 
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Sensitivity index d �  values of approximately 2.1 and 1.9 are observed on TID and MR data respectively. 

Again, decoder-based segmentation outperforms forward+backward difference edge detection on both 

data sets. 

The results for the dendrogram-based edge detection are shown in the following ROCs (Figure 5.7): 
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Figure 5.7 ROC results for edge detection using the dendrogram-based distortion metric on TID (left)  
and MR (right). Decoder-based segmentation is shown as an “X”  for reference. 

 

For dendrogram-based edge detection, the d �  values are approximately 2.3 for both TID and MR. 

Although we see a slight improvement over the other two metrics, we still observe that the decoder-based 

segmentation greatly outperforms our edge detection techniques.  

In summary, we present overlapping ROC curves for direct comparison of the different edge-detection 

distortion metrics (Figures 5.8 and 5.9). We also present a chart of sensitivity index (d � ) values for each 

edge-detection technique as well as for the decoder-based segmentation (Table 5.6).  
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Figure 5.8 Summary ROC results for edge detection using the different distortion metrics on the TID corpus. 
Decoder-based segmentation is shown as an “X”  for reference. 
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Figure 5.9 Summary ROC results for edge detection using the different distortion metrics on the MR corpus. 
Decoder-based segmentation is shown as an “X”  for reference. 

 

Sensitivity Index Values (d
�

) TID MR 
decoder-based segmentation 5.0 3.5 
backward difference edge detection 1.9 2.0 
forward+backward difference edge detection  2.1 1.9 
dendrogram-based edge detection 2.3 2.3 

Table 5.6 Summary sensitivity index values for edge detection using the different distortion metrics on the TID  
and MR corpora. Decoder-based segmentation is shown for reference. 
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For both TID and MR data, the dendrogram-based edge detection is the best of the edge detection 

methods. However, in both cases, the decoder-based segmentation approach presented in Section 5.1 is 

clearly superior. For TID, the edge detection methods would incur a probability of false alarm greater 

than 0.5 to achieve the probability of correct detection that decoder-based segmentation achieves. For 

MR, the edge detection methods would have a false alarm probability of 0.1 when the decoder-based 

segmentation hit probability is achieved.  

 

5.6.2 “ Split-and-Merge”  Segmentation 
Image processing researchers often use a technique known as “split-and-merge”  segmentation to 

automatically locate distinct regions or “objects”  within a given image (Horowitz & Pavlidis, 1974). With 

a few modifications, we can apply split-and-merge to the phonetic segmentation problem in speech. 

We start with a spectrogram representation of the speech signal, which for our experiments is a time 

sequence of 20-dimensional log Mel spectral vectors (x[n]). An example log spectrogram from TID data 

is shown in Figure 4.2. 

We constrain our search for regions within the speech image to blocks that span the entire vertical axis in 

order to look for time sequences with similar spectral characteristics. We then proceed to break the image 

up into distinct regions with a small variability in spectral features. We define the mean vector and 

variability corresponding to a speech region as follows: 
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=
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In the above equations, N is the number of frames in the region ( 1nstart n end +−=N ), and d( x , y ) is 

the Euclidian distance between the vectors x and y. 

For split-and-merge segmentation, we have the freedom to vary two threshold parameters: 
�

split and 
�

merge 

Any region with variability greater than 
�

split will be split during the split phase of the processing, and any 

two regions whose mean vectors differ (Euclidian distance) by less than 
�

merge will be merged during the 

merge phase of the processing. 
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Split-and-merge segmentation works as follows: 

1. Initialize:  Assign the entire image to a single starting “ region” . Calculate the mean vector x  and 

variability � 2 corresponding to the base region.  

2. Split phase:  Examine all regions in the image. If the variability of a region is greater than 
�

split, 

bisect the region into two distinct regions. Continue splitting until every region has a 

variability less than 
�

split. 

3. Merge phase:  Examine all regions in the image pairwise from left to right. If the Euclidian distance 

between a pair of mean vectors is less than 
�

merge, merge the regions. Continue 

merging until the difference between all neighboring mean vectors is greater than 
�

merge. 

4. I terate:  Repeat the split and merge phases until the final iteration makes no further changes to 

the hypothesized region list. 

We performed split-and-merge segmentation on the TID and MR testing data sets. The results are given 

in the following ROC plots (Figure 5.10). We experimented with different threshold values for 
�

split and 
�

merge. The ROCs below are the best detection accuracies we achieved, which are a result of holding 
�

merge 

constant at 1.125 and varying 
�

split from 10–40. As in previous sections, the decoder-based segmentation 

accuracy is shown for reference. 
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Figure 5.10 ROC results for split-and-merge segmentation on TID (left) and MR (right).  
Decoder-based segmentation is shown as an “X”  for reference. 
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As with edge detection, split-and-merge segmentation is an effective speech segmentation method, but it 

is also inferior to decoder-based segmentation. We overlay the ROCs for edge detection and split-and-

merge below in Figures 5.11 and 5.12. For both TID and MR data, split-and-merge performs slightly 

better than our best edge detection method (dendrogram-based distortion). 
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Figure 5. 11 Summary ROC results for split-and-merge segmentation and edge detection segmentation  
on the TID corpus. Decoder-based segmentation is shown as an “X”  for reference. 

 

MR Boundary Detect ion  Resu lts  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Prob[false alarm]

P
ro

b[
co

rr
ec

t d
et

ec
tio

n]

decoderseg

split & merge

edge detection
(dendrogram )

 
Figure 5.12 Summary ROC results for split-and-merge segmentation and edge detection segmentation  
on the MR corpus. Decoder-based segmentation is shown as an “X”  for reference. 
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From the ROC graphs, it is clear that although split-and-merge segmentation shows a slight improvement 

over edge detection segmentation, it is still not able to compete with the original decoder-based 

segmentation approaches. Table 5.7 quantifies the results in terms of sensitivity index: 

Sensitivity Index Values (d
�

) TID MR 
decoder-based segmentation 5.0 3.5 
phonetic decoder-based segmentation 3.8 ~3.0 
split & merge segmentation 2.6 2.4 
dendrogram-based edge detection 2.3 2.3 

Table 5.7 Summary sensitivity index values for split-and-merge segmentation and edge detection segmentation on 
the TID and MR corpora. Decoder-based segmentation results are shown for reference. 

 

Split-and merge segmentation has a d �  value of 2.6 for TID data and 2.4 for MR data. While the classifiers 

are good, they are far from the decoder-based segmentation d �  of 5.0 for TID data and 3.5 for MR data. 

 

5.7 Analysis: The “ Decoder-based Segmentation Dilemma”  

The sequence of automatic segmentation experiments presented in this chapter led us to the conclusion 

that the simplest method of decoding the speech and Viterbi-aligning the hypothesized transcript to the 

speech data produces segmentations with a high level of quality that our other methods are unable to 

achieve. However, making use of decoder-based segmentation together with duration normalization is 

problematic: What typically happens is that words found in the speech signal that are highly spontaneous 

or under articulated are misrecognized by the baseline recognition system. The incorrect word is then 

aligned to the speech signal to produce a corresponding errorful boundary hypothesis. When these 

incorrect boundaries are applied to normalize the speech signal so that every phone has the same duration, 

the mistake is then reinforced by our approach. The duration normalization recognition models then tend 

to make the same mistake that the baseline decoder made in the first place. We term this phenomenon the 

“decoder-based segmentation dilemma”. 

The underlying problem is as follows: good segmentation requires the use of a good statistical model for 

the fundamental speech units we are looking for in the speech. State-of-the-art HMM acoustic models 

provide a compact and effective way to model the spectral characteristics of the fundamental speech units 

together with the time series nature of observed speech features. When the HMM acoustic models are 

constrained by language models containing information concerning the likelihood of the sequence of 

words in a given language, adequate speech recognition and segmentation is possible. When these 

constraints are removed and the HMMs are used to recognize sequences of phonemes rather than 
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sequences of words, the resulting recognition and segmentation quality is substantially degraded. 

Segmentation techniques like edge-detection and split-and-merge segmentation which do not make use of 

an underlying statistical model of speech are even less accurate. 

We also investigated combining the different segmentation techniques presented in this chapter to build 

upon the accuracy of decoder-based segmentation. This was not successful for several reasons: First, in 

many of the cases when boundaries are missed by decoder-based segmentation, there is little or no 

evidence in the speech signal that would indicate that a boundary should be hypothesized at that location. 

Attempts to use distortion metrics or other methods to recover such lost boundaries are too prone to errors 

and are therefore ineffective. Also, automatic, minimum-error techniques to combine the classifiers place 

the largest weight on the most accurate classifiers. Because the decoder-based segmentation is far 

superior to the other classifiers, the supporting information provided by the other classifiers is virtually 

ignored when combined decisions were made. 

Our conclusion is that the “decoder-based segmentation dilemma” will not be overcome by further work 

to improve the segmentation quality. In the following chapters, we investigate reformulation of the 

duration normalization algorithm in order to cope with imperfect segmentation information that will be 

present in real world recognition tasks.  

 

5.8 Conclusions 

In this chapter, we presented a variety of techniques for estimating the segmentation of the speech 

waveform into its constituent sound units. We found that the decoder-based segmentation approach to be 

by far the best approach for automatically segmenting speech into sound units. Decoder-based 

segmentation outperforms traditional signal processing-based approaches to detect edges or coherent 

regions in the speech spectrogram.  

While decoder-based segmentation is the best approach from a boundary detection perspective, it is 

problematic when used in conjunction with duration normalization to improve overall recognition 

accuracy on spontaneous speech. The recognition errors made by the baseline system are reinforced by 

the use of the corresponding boundaries, and the duration normalization system is often led to repeat the 

same errors.  

Segmentation approaches that do not rely on a recognition system are attractive because they avoid the 

problem of reinforced recognition errors; however, the quality of their segmentation information is 

inadequate for use with the duration normalization system. 
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We conclude that further improvements of segmentation quality would be very difficult to achieve. In the 

next chapter, we investigate the possibility of modifying the duration normalization algorithm so it can 

better cope with segmentation errors.  
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6: The Modified Duration Normalization Algor ithm 
In the previous chapter, we showed that despite the high quality of automatic segmentation techniques, 

the basic duration normalization process does not yield significant improvements in recognition accuracy. 

This chapter begins with an examination of the effect of phone segmentation errors on the duration 

normalization process. We then detail simple variants of duration normalization which are designed to 

help cope with boundary insertions and deletions in automatically-derived phone segmentations. Finally, 

we close with experiments that show meaningful improvements in speech recognition accuracy via 

duration normalization and automatically-derived phone boundaries. 

6.1 Motivation: Impact of Segmentation Errors 

While duration normalization has the potential for large improvements in recognition accuracy, the 

problem of blindly estimating accurate phone segmentations has continued to thwart our efforts to achieve 

real recognition improvements via duration normalization. Major problems occur when phone boundaries 

are inserted or deleted.  

Figure 6.1 illustrates an example abstracted from our test speech data. In this example, there are two 

phone boundaries relatively close together in an utterance. As is often the case in spontaneous speech, 

there is little evidence for these boundaries in the data (probably due to phone elision), and the automatic 

segmentation algorithm misses these boundaries entirely. If both boundaries had been detected, the 

“short”  darkened segment between the boundaries would have been expanded by the duration 

normalization algorithm, as illustrated in the lower left of Figure 6.1. Because the boundaries are not 

detected, the little evidence for the “short”  phone present in the original speech is almost completely 

discarded when the length of the improperly-detected “ long”  segment is reduced for duration 

normalization. This type of boundary detection error leads to a word deletion or substitution error in the 

final recognition hypothesis. Similarly, when the boundary detection algorithm makes boundary insertion 

errors, the resulting recognition hypothesis often contains a word insertion or substitution error. 
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Figure 6.1 Illustration of resulting normalized segments when boundary detection is in issue. 
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Figure 6.2 shows mel-frequency log spectrograms for an utterance from the TID Spanish database. In this 

example, the boundaries for the short /z/ and /i/ phones in the middle of the word “setecientas”  (/s e t e z i 

e n t a s/) are missed by our best automatic segmentation technique. The segmentation shown above the 

spectrogram in the uppermost panel is the correct segmentation. The segmentation shown below the 

spectrogram in the uppermost panel is derived automatically using decoder-based segmentation, and it 

contains boundary deletions. When the speech is normalized using the oracle boundaries, we can see an 

expansion of the short /z/ phone which makes it more “visible”  to the recognizer. When the speech is 

reconstructed and recognized using the automatically-derived, errorful phone boundaries, the evidence for 

the short /z/ phone is lost, and the recognizer misrecognizes “setecientas”  as “setenta”  (/s e t e n t a/). 

 

 

Figure 6.2 Log spectrograms illustrating the result of normalizing with correct and incorrect segmentation 
information. The segmentation above the spectrogram in the uppermost panel is correct. The segmentation below the 
same spectrogram contains several deleted boundaries. The result of normalizing using the correct segmentation is 
shown in the middle panel. The result of normalizing using the errorful segmentation is shown in the bottom panel. 
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These observations lead us to investigate variants of the duration normalization algorithm that will incur 

less devastating consequences when boundaries are missed or inserted by automatic boundary detection 

techniques. 

6.2 Par tial Contraction Duration Normalization 

As illustrated in the previous section, hypothesized phone segmentations with deleted boundaries gravely 

impact the recognition system by throwing away useful information when incorrectly labeled long 

segments are contracted. We therefore investigated a partial contraction of the long segments to help 

ensure that useful information is not discarded. The partial contraction is controlled by a reduction 

parameter r which can be any real number between 0 and 1.  

Partial contraction is performed as follows: Let l0 be the original length of a given long segment. Let Lnorm 

be the desired normalized duration prescribed for each segment. Since the segment under consideration is 

a long segment, we know that l0 > Lnorm . Define ldiff to be the difference between the original length of the 

segment l0 and the desired normalized duration Lnorm .  

 norm0diff Lll −=  (6.2.1) 

The normalized length of the long segment is given by the following equation:  

 diffnorm lrLl ⋅+=′  (6.2.2) 

If the reduction parameter r is set to 0, we have complete contraction as performed in standard duration 

normalization. If r is set to 1, the long segments are not contracted and are remain at their original 

durations. For values of r between 0 and 1, a partial contraction is performed as a percentage of the 

difference between the original length of the hypothesized segment and the desired normalized length of 

the segment. The partial contraction process is illustrated in the following Figure 6.3. 
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Figure 6.3 Illustration of partial contraction duration normalization using different values  
of the reduction parameter r. 

 

Figure 6.4 shows the same TID utterance from Figure 6.2 normalized using partial contraction duration 

normalization and a variety of reduction parameter (r) values. 

Note that in partial contraction duration normalization, expansion operation is not changed. Typically, we 

are using normalized durations of 6 or 8 frames. Because the HMM acoustic model for each phone 

contains 3 states, the hypothesized short segments will range in duration from 3–7 frames. Since the 

resulting normalized duration must be specified as an integer number of frames, we hypothesize that 

interpolating between the original length of a short segment and a normalized duration of 8 frames would 

not make a significant impact on the accuracy of the system.  
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Figure 6.4 Log spectrograms illustrating the result of partial contraction duration normalization using a variety of 
reduction parameters. Note that the time scale is not the same from panel to panel. 

 

6.3 Par tial Contraction Duration Normalization: Exper imental Results 

We performed partial contraction duration normalization experiments on the Telefónica (TID) and 

Multiple Register (MR) corpuses. In both cases, we segmented the databases blindly using the decoder-

based approach described in Section 5.1. We varied the reduction parameter r between 0 and 1 and 

normalized the training and testing data sets using partial contraction duration normalization. We then 

trained models to correspond to each r value and tested under matched conditions.  

The results for TID are given in Figure 6.5. 
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TID Partial Contraction Duration Normalization Results
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Figure 6.5 Recognition results using partial contraction duration normalization on the TID corpus.  
Results are presented as a function of the reduction parameter r. 

 

On the TID data, partial contraction achieves a 3.8% relative improvement over baseline accuracy. The 

WER is 5.0% when the reduction parameter r is 0.5. We observe accuracy slightly better than baseline for 

r values of 0.3, 0.4, 0.5, and 0.7.  

Partial contraction duration normalization on the MR corpus yields the following results (Figure 6.6): 
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Figure 6.6 Recognition results using partial contraction duration normalization on the MR corpus.  
Results are presented as a function of the reduction parameter r. 
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Partial contraction duration normalization performs slightly better than baseline for all values of r tested. 

The best accuracy is seen when r = 0.4: the WER of 38.5% reflects a 4.5% relative improvement over 

baseline accuracy on MR data.  

 

6.4 Var iants of Duration Normalization: Standard, Expand-Only, Contract-Only 

For a given phone segment, the duration normalization algorithm will do one of two things: If the phone 

is longer than the desired duration, the sequence of log spectral vectors corresponding to the phone are 

downsampled in time to achieve the normalized duration. If the phone is shorter than the desired duration, 

the log spectral vectors are expanded in time, and the “missing”  vectors are replaced by missing feature 

methods.  

As described in the Section 6.1, boundary detection errors often lead to recognition errors, especially in 

cases when short phones are not detected. To alleviate this problem, we experimented with the following 

variants of duration normalization: 

• standard: expand short phones, contract long phones 

• expand-only: expand short phones, leave long phones at their natural durations 

• contract-only: contract long phones, leave short phones at their natural durations 

Figure 6.7 illustrates the results of normalizing a given segment of speech using each of the three variants 

of duration normalization: 

 

standard

contract only

expand only

standard

contract only

expand only
 

Figure 6.7 Illustration of the different variants of duration normalization: standard, contract-only, and expand-only. 
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The expand-only variant helps to compensate for examples like the illustration shown in Figure 6.1 and 

the example shown in Figure 6.2. If the boundaries of a “short”  phone were missed, the surrounding 

segment would be incorrectly considered a long phone and contracted by the standard duration 

normalization approach. In expand-only duration normalization, the incorrect long phone would not be 

contracted in time, giving us a better chance to properly recognize the missed short phone during 

decoding. Similarly, contract-only duration normalization helps to compensate for spurious boundaries 

inserted by automatic boundary estimation algorithms. 

Each variant of duration normalization gives rise to a different set of acoustic models during training and 

a different recognition hypothesis during decoding. Decoding with expand-only duration normalization 

should produce fewer word deletion errors but more word insertion errors. Conversely, decoding with 

contract-only duration normalization should result in more word deletion errors and fewer word insertion 

errors. These systematic variations should make the hypotheses good candidates for merging via the 

parallel hypothesis combination method reported by Singh in (Singh et al., 2001).  

In Singh’s method, the hypotheses are combined into a graph with nodes representing each word. 

Crossovers are introduced between the hypotheses at time instants when both hypotheses have a transition 

from one word to the next. (Note that if the same word is seen in both hypotheses at the same time, the 

two words are merged into a single node in the graph.) The graph is then searched for the best scoring 

hypothesis with respect to the language model. For more details on hypothesis combination, see the 

complete description in Section 2.8. 

6.5 Exper iments Using Automatically-Der ived Phone Boundar ies and Hypothesis 
Combination 

We started by training baseline models on each of the training sets using standard Baum-Welch training. 

In our “oracle”  experiments, we used decoder-based segmentation and the reference transcripts to derive 

“oracle”  phone boundaries. In our “blind”  experiments, we used decoder-based segmentation to derive the 

locations of our estimated phone boundaries.  

Using these phone boundaries, we then normalized our training and testing sets using each of the three 

variants of duration normalization (standard, expand-only, contract-only). For each corpus, we trained 

three separate acoustic models on the training set, one model for each variant of duration normalization.  

We then decoded the testing sets using each variant of duration normalization, which produced three 

recognition hypotheses for a given utterance. Finally, we employed hypothesis combination to select the 

final recognition hypothesis and scored our results. Table 6.1 reports results for TID data. Table 6.2 

contains results for MR data. BN results are reported in Table 6.3. 
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TID results WER Relative Improvement 
baseline 5.2% — 
“oracle”  experiment 3.2% 38.5% 
“blind”  experiment 4.8% 7.7% 

Table 6.1 Results for duration normalization and hypothesis combination on the TID Spanish connected digits data. 
This technique achieves a 7.7% relative reduction in WER on TID. 

 

MR results WER Relative Improvement 
baseline 40.3% — 
“oracle”  experiment 31.7% 21.3% 
“blind”  experiment 37.8% 6.2% 

Table 6.2 Duration normalization and hypothesis combination results for the spontaneous register of the MR corpus. 
A relative reduction in WER of 6.2% is seen on MR data. 

 

BN results WER Relative Improvement 
baseline 33.4% — 
“oracle”  experiment 28.8% 13.8% 
“blind”  experiment 32.1% 3.9% 

Table 6.3 Broadcast News 1999 Eval 1 recognition results with duration normalization and hypothesis combination. 
A 3.9% relative reduction in WER is achieved on BN data. 

 

Our experimental results show a reduction in WER over baseline for each of the databases tested. 

Consistent with experiments using various speech compensation algorithms for robust recognition, the 

accuracy improvement achieved using smaller databases is greater than the accuracy improvement 

achieved using larger databases such as broadcast news. In large tasks, the extensive amount of training 

data and detailed modeling framework lead to a system that is presumably more robust. It is interesting to 

note that the duration normalization and hypothesis combination algorithm yields an accuracy 

improvement even in the large-scale test. 

We note that when using standard duration normalization alone with oracle segmentations, the best 

possible relative reduction in WER is 34.6% for TID, 20.1% for MR, and 5.4% for BN. Standard duration 

normalization alone with estimated segmentations does not yield significant improvements over baseline 

accuracy on any of the databases tested. When duration normalization is combined with hypothesis 

combination, significant improvements are achieved in all of our tests. 

Our results show that duration normalization is a practical technique for improving speech recognition 

accuracy for HMM-based systems when the recognition hypotheses produced by its variants are 

combined with hypothesis combination.  
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6.5.1 Detailed accuracy analysis for  var iants of duration normalization 
Tables 6.4, 6.5, and 6.6 show the breakdown of errors made by each variant of duration normalization 

using estimated segmentation information on our test corpora. The word recognition errors are broken 

down into substitution (sub.), deletion (del.), and insertion (ins.) errors. The baseline error breakdown and 

post-hypothesis combination error breakdowns are also given for reference.  

TID  
WER breakdown 

Sub. 
er rors 

Del. 
er rors 

Ins. 
er rors 

Baseline 3.7% 0.7% 0.8% 
Standard dur. norm. 4.1% 0.7% 0.6% 
Expand-only dur. norm. 3.8% 0.6% 0.8% 
Contract-only dur. norm. 4.0% 0.7% 0.5% 
Dur.norm. + hyp. comb. 3.6% 0.6% 0.6% 

Table 6.4 Types of recognition errors made by each variant of duration normalization with estimated segmentation 
information on TID data. Word recognition errors are broken down into substitution (sub.), deletion (del.), and 
insertion (ins.) errors. 

 

 

MR  
WER breakdown 

Sub. 
er rors 

Del. 
er rors 

Ins. 
er rors 

Baseline 23.2% 11.9% 5.2% 
Standard dur. norm. 22.2% 13.7% 3.9% 
Expand-only dur. norm. 23.0% 12.8% 4.5% 
Contract-only dur. norm. 22.1% 13.9% 3.6% 
Dur.norm. + hyp. comb. 20.7% 13.6% 3.5% 

Table 6.5 Types of recognition errors made by each variant of duration normalization with estimated segmentation 
information on MR data. Word recognition errors are broken down into substitution (sub.), deletion (del.), and 
insertion (ins.) errors. 

 

BN  
WER breakdown 

Sub. 
er rors 

Del. 
er rors 

Ins. 
er rors 

Baseline 22.8% 6.8% 3.8% 
Standard dur. norm. 24.5% 7.0% 4.5% 
Expand-only dur. norm. 25.2% 6.2% 5.2% 
Contract-only dur. norm. 22.9% 7.7% 3.3% 
Dur.norm. + hyp. comb. 21.8% 7.0% 3.3% 

Table 6.6 Types of recognition errors made by each variant of duration normalization with estimated segmentation 
information on BN data. Word recognition errors are broken down into substitution (sub.), deletion (del.), and 
insertion (ins.) errors. 
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As expected, expand-only duration normalization produces fewer word deletion errors and more word 

insertion errors than standard and contract-only duration normalization. Also, contract-only duration 

normalization produces fewer word insertion errors and more word insertion errors than standard and 

expand-only duration normalization. In all cases tested, hypothesis combination is able to take advantage 

of these variations to produce recognition hypotheses with a lower word substitution rate than any of the 

single duration normalization variants alone.  

Tables 6.7, 6.8, and 6.9 show a complete result summary for each variant of duration normalization 

applied to each of our data sets. Again, baseline and post-hypothesis combination results are also given. 

TID  
result summary 

 
WER 

Relative 
Improvement 

Baseline 5.2% — 
Standard dur. norm.  5.4% -3.8% 
Expand-only dur. norm.  5.2% 0% 
Contract-only dur. norm.  5.2% 0% 
Dur. norm. + hyp. comb. 4.8% 7.7% 

Table 6.7 Summary of errors made using duration normalization and estimated segmentation information on the 
TID corpus. Hypothesis combination of the individual recognition hypotheses produces a 7.7% relative reduction in 
WER when compared with the baseline. 

 

MR  
result summary 

 
WER 

Relative 
Improvement 

Baseline 40.3% — 
Standard dur. norm.  39.8% 1.2% 
Expand-only dur. norm.  40.3% 0% 
Contract-only dur. norm.  39.6% 1.7% 
Dur. norm. + hyp. comb. 37.8% 6.2% 

Table 6.8 Summary of errors made using duration normalization and estimated segmentation information on the 
MR corpus. Hypothesis combination of the individual recognition hypotheses produces a 6.2% relative reduction in 
WER when compared with the baseline. 

 

BN  
result summary 

 
WER 

Relative 
Improvement 

Baseline 33.4% — 
Standard dur. norm.  36.0% -7.8% 
Expand-only dur. norm.  36.6% -9.6% 
Contract-only dur. norm.  33.9% -1.5% 
Dur. norm. + hyp. comb. 32.1% 3.9% 

Table 6.9 Summary of errors made using duration normalization and estimated segmentation information on the BN 
corpus. Hypothesis combination of the individual recognition hypotheses produces a 3.9% relative reduction in 
WER when compared with the baseline. 
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Using blindly-estimated segmentation information, the contract-only variant of duration normalization 

outperforms the other two variants in all cases tested. On TID data, no improvements are seen using any 

variant of duration normalization alone, and the standard variant actually causes a degradation in 

accuracy. On the MR data, slight improvements are made by the standard and contract-only variants of 

duration normalization alone. On BN data, all of the variants by themselves cause a significant 

degradation in accuracy compared to baseline. In spite of this, hypothesis combination is a successful 

method to combine these individual hypotheses and choose a good overall hypothesis that consistently 

performs better than baseline.  

 

6.6 Discussion: Duration Normalization Var iants and Hypothesis Combination 

When duration normalization is combined with hypothesis combination, there is a greater improvement in 

recognition accuracy than with duration normalization alone. With oracle segmentations, we see a greater 

potential for improvement than that of standard duration normalization alone. With estimated 

segmentations and standard duration normalization, we are unable to achieve actual improvements in 

recognition accuracy. With estimated segmentations, duration normalization, and hypothesis combination, 

we achieve significant improvements in recognition accuracy on all databases tested, including a more 

rigorous experiment on a large vocabulary Broadcast News recognition task. 

The important thing to note is that each variant of duration normalization makes different types of errors 

at different times, even though by itself it does may not reduce the overall word error rate. Hypothesis 

combination of the recognition output produced by the duration normalization variants outperforms the 

individual hypotheses produced by each variant alone, and it also outperforms the baseline accuracy on 

each data set tested. As stated earlier, when duration normalization and hypothesis combination are used 

in conjunction on the TID corpus, a 7.7% relative reduction in WER over baseline is achieved. The MR 

corpus gives a 6.2% relative reduction in WER and the BN corpus gives a 3.9% relative reduction in 

WER. Using matched pairs analysis, the BN result is statistically significant with 99% confidence. 

 

6.7 Conclusions 

In this chapter we examined the impact of segmentation errors on the effectiveness of duration 

normalization for improved speech recognition accuracy. We found that boundary insertions and 

deletions have a strong impact on the effectiveness of our algorithm. In the previous chapter, we observed 
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that it is extremely difficult to further improve the segmentation quality produced by our automatic 

segmentation algorithms. We therefore searched for ways to make our approach more robust to boundary 

detection errors.  

We observed that the most damaging boundary recognition errors were multiple consecutive boundary 

deletions because they lead the duration normalization algorithm to incorrectly discard a large number of 

frames, throwing away what little evidence there may have been in the signal for certain spontaneous 

speech sound units. We experimented with partial-contraction duration normalization to help combat this 

problem by reducing the amount by which long phones are reduced in time. This approach yielded some 

improvements in accuracy on TID and MR.  

We then experimented with multiple variants of duration normalization: expand-only, contract-only, and 

standard. Together with hypothesis combination, we found significant improvements in recognition 

accuracy, even on the large scale BN test. The different variants made different types of recognition 

errors, and hypothesis combination was successful at choosing the correct words from the candidate 

hypotheses. At the cost of multiple recognition passes for each utterance, significant improvements in 

recognition accuracy can be achieved through duration normalization and hypothesis combination. 

In the next chapter, we explore the idea of using probabilistic segmentation information in normalizing 

sound unit durations. 
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7: The Soft Segmentation Duration Normalization Algor ithm 
The dependence of the duration normalization algorithm on exact segmentation information has made it 

difficult to achieve large reductions in WER when boundaries are inserted or deleted. Previously, we 

assumed that we only had access to the final output of our segmentation algorithms, i.e. the strict binary 

classification of every frame of speech into one of two categories: boundary or non-boundary. In this 

chapter, we present a “soft”  formulation of the duration normalization approach that can make use of the 

underlying likelihood scores associated with each potential boundary location.  

7.1 Using Probabilistic Segmentation to Normalize Phone Durations 

Assume that a given utterance of speech is comprised of a series of N segments: 10 −NSS � . Let 10 −Nll �  

represent the natural length of each segment in number of frames. Also define 1, +iiϕ  to be the probability 

that a boundary is present between segments iS  and 1+iS . This is illustrated in Figure 7.1. 

S0 S1 S2 S3

l0 l2l1 l3

�
0,1

�
1,2

�
2,3

S0 S1 S2 S3
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�
1,2
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Figure 7.1 Illustration of probability scores assigned to boundaries between segments of different lengths. 

 

Our duration normalization approach assigns a new duration 10 −′′
Nll �  to each speech segment. The 

standard duration normalization algorithm defined in Chapter 4 assumes that the likelihood of each 

boundary 1, +iiϕ  is 1.0 for every i and assigns a new duration of normL  to each segment, as shown in 

Equation 7.1.1. 

 norm110 Llll N =′==′=′ −�  (7.1.1) 

In soft segmentation duration-normalization, we assume that 1, +iiϕ  can be any real number in the closed 

interval [ ]1.0 0.0,  for a given boundary location. Given this additional information, we derived a formula 

to compute for the new duration of each segment in an utterance. To illustrate the approach, we present a 

simple example containing 1 boundary. We then comment on the general case of N boundaries in an 

utterance, and we close with a note on the computational complexity of our algorithm.  
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7.1.1 The Single Boundary Case 
The simplest possible case is shown in Figure 7.2. Assume that the speech is composed of two 

hypothesized segments, 0S and 1S , with respective segment lengths 0l  and 1l . The probability that a 

boundary exists between the two segments is 1,0ϕ . (And the probability that the boundary does not exist is 

therefore 1,01 ϕ− .) 

S0 S1

l0 l1

�
0,1

S0 S1

l0 l1

�
0,1

 

Figure 7.2 Illustration of the single-boundary case. 

 

There are only two possibilities for this example: either the boundary is present or it is not. If the 

boundary is present, standard duration normalization would assign a new segment length of normL  to each 

of the two segments. This is illustrated in Figure 7.3 and quantified in Equations 7.1.2 and 7.1.3. 
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Figure 7.3 Illustration of normalizing the single boundary case when the boundary is assumed to be present. 

 

 norm0 boundary| Ll =′  (7.1.2) 

 norm1 boundary| Ll =′  (7.1.3) 

 

If the boundary is not present, standard duration normalization would consider the entire utterance as one 

segment and assign a new segment length of normL  to the combined segment 10 SS + . This is illustrated in 

Figure 7.4. 
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Figure 7.4 Illustration of normalizing the single boundary case when the boundary is assumed to be absent. 

 

In the non-boundary case, the normalized segment lengths 0l ′  and 1l ′  should therefore be a fraction of 

normL  proportional to the original lengths of the two segments. This is quantified in Equations 7.1.4 and 

7.1.5. 

 
10

0
norm0 boundarynon|

ll

l
Ll

+
⋅=−′  (7.1.4) 

 
10

1
norm0 boundarynon|

ll

l
Ll

+
⋅=−′  (7.1.5) 

Combining Equations 7.1.2 and 7.1.4, and incorporating the boundary probability information, we derive 

the appropriate value for 0l ′  as follows: 

 ( ) boundarynon|)boundarynonP(boundary|boundaryP 000 −′⋅−+′⋅=′ lll  (7.1.6) 

 ( )
10

0

norm1,0norm1,00 1 ll

lLLl +⋅⋅−+⋅=′ ϕϕ  (7.1.7) 

 ( )[ ]
10

0

1,01,0norm0 1 ll

lLl +⋅−+=′ ϕϕ  (7.1.8) 

A similar combination of Equations 7.1.3 and 7.1.5, followed by simplification, yields the following 

equation for 1l ′ : 

 ( )[ ]
10

1

1,01,0norm1 1 ll

lLl +⋅−+=′ ϕϕ  (7.1.9) 

Equation 7.1.7 shows clearly that the normalized length assigned to 0S  is an interpolation between the 

boundary and non-boundary lengths controlled by the probability that the boundary exists between the 

given segments.  

 

 



 77 

7.1.2 The General Case 

In general, the speech utterance is composed of N hypothesized segments, 0S … 1−NS , with respective 

segment lengths 0l … 1−Nl , where N is less than or equal to the number of frames in the utterance. We also 

have N–1 probabilities 1,0ϕ … 1,2 −− NNϕ  corresponding to each hypothesized boundary location.  

These N hypothesized segments give rise to 2N–1 possible boundary configurations that must be 

considered. For each configuration, we compute P(C), the probability that the configuration occurs, as a 

product of the probability that each boundary is present ( 1, +jjϕ ) or absent (1– 1, +jjϕ ), depending on the 

specific configuration under consideration. We then compute C|il ′ , the individual normalized segment 

lengths given the current boundary configuration. In a particular boundary configuration C, the segment Si 

will be part of a combined segment containing itself and zero or more neighbor segments (depending on 

the assumed boundary configuration). The value of C|il ′  is a fraction of the global normalized duration 

(Lnorm) that is proportional to the original segment lengths of the segments that make up the corresponding 

combined segment.  

The final value for the normalized duration il ′  of each segment is computed with the following sum over 

all possible boundary configurations (Eq. 7.1.10). Each summand is the probability that a configuration 

occurs times the individual normalized segment length given the assumed boundary configuration: 

 � ′⋅=′
C possible all

C|)C(P ii ll  (7.1.10) 

 

7.1.3 Computational Complexity 
While the presented formulation of probabilistic or soft segmentation-based duration normalization is 

theoretically sound, there are some practical considerations which affect the way it must be implemented 

in practice. We first note that for a given number N of hypothesized segments, the algorithm considers all 

possible boundary configurations when computing the new length of each segment. The algorithm 

therefore has a running time O(2N).  

Ideally, we would like to be able to estimate a continuous likelihood function describing the probability 

that each given frame is a boundary and then use those estimated probabilities together with the softseg 

formulation to determine the proper duration normalization warping. Typical utterances presented to the 

recognizer have a length of 500–1000 frames, which makes consideration of all possible boundary 
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configurations computationally intractable. In practice, we have found it is possible to compute 

normalized durations for utterances with 30 or fewer hypothesized segment boundaries.  

In Section 7.3, we present an experiment where, for practical reasons, decoder-based segmentation is first 

used to locate “anchor”  segments within the speech signal. The softseg approaches are then used to warp 

the speech in each anchor segment using a manageable number of estimated boundary probabilities 

occurring within each anchor segment. 

 

7.2 Simulation Using Oracle Segmentation Degraded by Decoder Segmentation 

Given the proposed soft segmentation duration normalization algorithm, we performed the following 

experiment on the Telefónica (TID) database as a “proof of concept”  to investigate and evaluate the 

effectiveness and soundness of the softseg algorithm. 

We start with the TID database together with the oracle segmentation information derived from Viterbi-

alignment of the reference transcripts to the speech using baseline HMM acoustic models. We also 

generate decoder-based segmentation information by recognizing the speech using the baseline TID 

recognition system and Viterbi-aligning the recognition hypotheses to the speech.  

Using the decoder-based segmentation, we purposefully degrade the oracle segmentation information in 

the following controlled manner:  

1. Correct Boundar ies: For each boundary in the oracle segmentation that is correctly located by the 

decoder-based segmentation, we assign a probability of 1.0 to the boundary location.  

2. Deleted Boundar ies: For each boundary in the oracle segmentation that is not located by the decoder-

based segmentation, we assign a probability of delϕ to the boundary location.  

3. Inser ted Boundar ies: For each boundary hypothesized in the decoder-based segmentation with no 

corresponding boundary in the oracle segmentation, we assign a probability of insϕ  to the boundary 

location.  

We chose values for delϕ  and insϕ  from the following set of possible values: { 0.0, 0.3, 0.5, 0.7, 1.0} . 

When insϕ  is 0.0, there is no penalty incurred for inserted boundaries, and when insϕ  is 1.0, incorrectly 

inserted boundaries have the same weight as correct boundaries in the segmentation. Conversely, when 

delϕ  is 1.0, there is no penalty for deleting a boundary, and when delϕ  is 0.0, deleted boundaries are 

considered completely absent by the soft segmentation duration normalization algorithm. If our soft 
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segmentation formulation is correct, we expect to observe accuracy similar to duration normalization 

using oracle segmentation information when delϕ  is set to 1.0 and insϕ  is set to 0.0. When delϕ  is set to 0.0 

and insϕ  is set to 1.0, we expect to observe accuracy similar to duration normalization using decoder-

based segmentation information. As the weight given to boundary errors is varied between these lower 

and upper bounds, we expect to see recognition word error rates varying between the bound accuracy 

values. 

For TID, baseline recognition accuracy is a WER of 5.2%. Duration normalization using oracle 

segmentations yields a WER of 3.4%, and duration normalization using decoder-based segmentation has 

a WER of 5.4%. In our simulation, we trained a separate recognition model for each possible combination 

of delϕ  and insϕ  values and tested under matched conditions. The resulting WER values are shown in the 

Figure 7.5 with a corresponding table in Table 7.1. 

The simulation shows that the soft segmentation duration normalization is a sound formulation of the 

duration normalization problem. The system behaves as expected, with WERs ranging between the oracle 

segmentation performance (3.4%) and the decoder-based segmentation performance (5.4%) on the TID 

database. The less severe the probabilities assigned to errorful boundary locations, the better the resulting 

recognition accuracies.  
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Softseg Duration Normalization Simulation

 

Figure 7.5 WER surface as a function of the probabilities assigned to inserted and deleted boundaries in the 
decoder-based segmentation of the TID corpus. 
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insϕ    

  0.0 0.3 0.5 0.7 1.0 
 0.0 4.8% 4.7% 5.1% 5.0% 5.1% 
 0.3 4.3% 4.5% 4.5% 4.9% 4.8% 

delϕ  0.5 4.2% 4.4% 4.6% 4.7% 4.9% 

 0.7 3.9% 4.0% 4.3% 4.4% 4.6% 
 1.0 3.5% 3.6% 4.0% 4.1% 4.5% 

Table 7.1 WER scores as a function of probabilities assigned to the inserted and deleted boundaries in the decoder-
based segmentation of the TID corpus. 

 

7.3 Exper iment Using Decoder and Edge Detection Segmentations 

The formal soft segmentation duration normalization algorithm has a running time of O(2N), where N is 

the number of hypothesized boundaries in a given speech utterance. While ideally we would like to 

estimate and use the probability that a boundary exists at each frame in the speech signal, this is not 

computationally feasible. As a practical alternative, we performed the following experiment on the TID 

data set.  

Using baseline models, we perform decoder-based segmentation on the TID corpus. This is done to locate 

“anchor”  segments within the speech signal. We also estimate ][nϕ , i.e. the probability of a boundary 

occurring at each frame in the speech signal, using a simple running Euclidian distortion metric on the log 

spectral vectors. Using the training set of the TID corpus, we divide the data into two classes: “boundary”  

and “non-boundary” . We then estimate the mean and variance of the distortion metric for each class. 

Assuming that the classes are normally distributed, we then estimate ][nϕ  using these simple 

distributions. 

We then apply the soft segmentation duration normalization algorithm to warp each anchor segment to 

the proper normalized duration as follows: We first find all peaks in ][nϕ  that occur within the given 

segment. The peak locations are the estimated boundary locations and probability values input to the soft 

segmentation duration normalization algorithm. (Note that if more than 20 peaks are detected within a 

given segment, we take only the top 20 peak locations to ensure that the number of segments being 

normalized is computationally feasible.) In this manner, we normalize all of the anchor segments in the 

utterance.  

In our experiment, we apply the combined decoder-based segmentation and soft segmentation duration 

normalization to the training and testing sets of the TID corpus. We train models using standard Baum-

Welch training and test under matched normalization conditions. The results are shown in Table 7.2, 

along with baseline and standard duration normalization results for comparison. 
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TID  
Softseg Results 

 
WER 

Sub. 
er rors 

Del. 
er rors 

Ins. 
er rors 

Baseline 5.2% 3.7% 0.7% 0.8% 
Standard dur. norm. 5.4% 4.1% 0.7% 0.6% 
Softseg dur. norm. 5.1% 3.8% 0.7% 0.6% 

Table 7.2 Recognition accuracy using duration normalization with decoder-based segmentation 
and “soft”  (probabilistic) segmentation information. 

 

We see that soft segmentation duration normalization performs better than standard duration 

normalization using the same decoder-based segmentation on the TID database. This accuracy, however, 

is only slightly better than the baseline recognition accuracy. 

Finally, we make use of this softseg hypothesis along with the hypotheses from the other variants of 

duration normalization (standard, expand-only, contract-only) and use hypothesis combination to see if 

we can do better than we have done previously. The hypothesis combination results are shown at the 

bottom of Table 7.3, together with detailed results for each variant of duration normalization tested. 

TID  
Softseg + Hyp. Comb. Results 

 
WER 

Sub. 
er rors 

Del. 
er rors 

Ins. 
er rors 

Baseline 5.2% 3.7% 0.7% 0.8% 
1. Standard dur. norm. 5.4% 4.1% 0.7% 0.6% 
2. Expand-only dur. norm. 5.2% 3.8% 0.6% 0.8% 
3. Contract-only dur. norm. 5.2% 4.0% 0.7% 0.5% 
4. Softseg dur. norm. 5.1% 3.8% 0.7% 0.6% 
Dur.norm. + hyp. comb. (1,2,3) 4.8% 3.6% 0.6% 0.6% 
Dur. norm. + hyp. comb (1,2,4) 4.7% 3.5% 0.6% 0.6% 

Table 7.3 Comparison of recognition accuracy using duration normalization and hypothesis combination. In the last 
row, recognition accuracy is shown when the soft segmentation decoder transcripts are passed to hypothesis 
combination instead of the contract-only decoder transcripts. 

 

We find our best accuracy when hypothesis combination is used to combine standard, expand-only, and 

the soft segmentation duration normalization variants for the TID test set. We achieve a final WER of 

4.7%, which reflects a 9.6% relative reduction in WER over baseline.  

 

7.4 Discussion 

In general, the soft segmentation formulation presented at the beginning of this chapter is a sound 

probabilistic formulation of the duration normalization algorithm. Our simulations confirm that as the 

probabilistic segmentation information approaches the oracle segmentation, the soft segmentation 
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algorithm produces recognition results that approach the accuracy of standard duration normalization 

using oracle segmentation information.  

It is clear that the soft segmentation approach requires a sound technique for estimating the probability of 

a boundary location occurs at several locations throughout the speech signal. As shown in Chapter 5, this 

is an extremely difficult problem. Decoder-based segmentation techniques are reliable, but imperfect. 

Distortion metrics can be applied to look for evidence of boundary locations that are missed by decoder-

based segmentation. 

By design, this combined decoder and soft segmentation-based approach presented in Section 7.3 should 

compensate for missed boundaries in the decoder-based segmentation stream, assuming that there will be 

some amount of distortion in the speech signal around missed boundary locations. In spontaneous speech, 

there are many instances where we see little or no distortion at the missed boundary locations due to the 

rapid, under-articulated nature of conversational speech. This may account for the fact that only slight 

accuracy improvements are achieved using this approach.  

 

7.5 Conclusions 

In this chapter we presented a reformulation of the duration normalization algorithm to make use of 

confidence scores associated with each boundary location. We showed that the “soft”  formulation of the 

duration normalization algorithm is consistent but computationally expensive, with a running time on the 

order of two to the number of segments to be normalized. Soft duration normalization is limited by this 

large computational complexity. The approach also depends on quality of the algorithm used to generate 

segmentation probability scores. In order for soft duration normalization to be effective, the segmentation 

algorithm must be able to properly estimate boundary probabilities in areas where the decoder finds little 

evidence for a boundary in the speech signal. As stated previously, segmentation based on little or no 

evidence is a difficult problem. 

In a practical experiment, we used soft duration normalization to normalize the speech between decoder-

derived segment boundaries. This allowed us to make use of boundary probabilities estimated for every 

frame and apply soft duration normalization in a computationally manageable fashion. We achieved a 

small improvement over duration normalization + hypothesis combination alone on the TID database. 

Unfortunately, the small improvement in recognition accuracy is outweighed by the extra computation 

required to generate these results. 
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In the final chapter, we present our thoughts on future work and summarize the major findings of this 

thesis.  

 

 



 84 

8: Summary and Conclusions 
In this chapter, we present a summary of the research and the relevant observations that we have drawn 

from our investigation of duration normalization and the modeling and recognition of spontaneous 

speech. We continue with some comments on future research directions and unresolved questions. We 

close the chapter with our final summary and conclusions. 

8.1 Major  Findings  

8.1.1 Duration Var iability of Speech Sound Units is a Problem when Modeling Spontaneous Speech 
It is known that HMMs do not effectively model the actual phone durations observed in speech data. A 

large variability in the durations of tokens for a given phone class make it difficult for HMMs to 

characterize this class adequately. We have shown that the increased variability of phone durations in 

spontaneous speech is a considerable factor that leads to degraded recognition accuracy of spontaneous 

speech in HMM-based systems (when compared with recognition of carefully-read speech). Using an 

identical HMM-based recognition system on a parallel corpus of read and spontaneous speech, we 

observed baseline recognition word error rates of 15.6% for carefully-read speech and 40.3% for 

spontaneous speech. Techniques that attempt to bridge the gap in recognition accuracy between read and 

spontaneous speech are therefore important avenues of research. The duration normalization technique 

that we developed is one of many possible techniques to improve modeling and recognition of 

spontaneous speech. 

8.1.2 Duration Normalization Can Help Br idge the Gap 
Given a priori knowledge of phone boundary locations, normalizing the duration of each phone example 

in the speech database prior to training is an effective method to overcome the duration modeling 

weakness of the HMM acoustic speech models. Statistical models of speech such as HMMs attempt to 

derive a general model to best explain the given training data. These models generalize well to test data 

that are similar to training data, but fail to generalize as the dissimilarities between the two data sets 

increase. Duration normalization reduces the duration mismatch between training and test data, which 

means that HMMs trained and tested on speech data with normalized durations are expected to perform 

better than HMMs trained and tested on speech data with natural durations.  

In a controlled experiment using the parallel Multiple Register database, we have shown that the potential 

for improvement via phone duration normalization is greater for spontaneous conversational speech than 

it is for carefully read speech. The potential relative reduction in WER for carefully-read speech was 

10.3%, while the potential relative reduction in WER for the spontaneous version of the same speech was 

20.1%. Again, this is because the dissimilarities between training and test data are expected to be higher 

in the case of spontaneous speech. Duration normalization reduces one aspect of these dissimilarities. 
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8.1.3 Phone Segmentation has a Strong Impact on Duration Normalization Results 
Phone segmentation is a difficult problem. The more spontaneous speech data are, the more difficult it 

becomes to segment automatically these speech data into sound units. Spectrographic signatures of 

spontaneous speech show small transition regions between phones and numerous regions where it is quite 

unclear where one phone ends and the next begins. Also, we observe many instances where there is little 

or no evidence in the speech signal for a sound unit that appears in the recognition dictionary of standard 

pronunciations.  

In the oracle case where perfect transcripts are used to derive “correct”  boundary locations, the duration-

normalized recognition system benefits from the placement of boundaries and subsequent expansion and 

reconstruction despite the lack of acoustic evidence for a given phone. We observed potential relative 

reductions in WER in the range of 5.4%–34.6% when correct boundary information is known a priori. 

Although phone duration normalization has the potential to increase recognition accuracy by large 

amounts, the approach is limited in practice due to the difficulties in automatically segmenting the speech 

into phone units. Automatic detection of boundaries for which there is little or no evidence is a difficult 

problem. Our duration normalization approach is adversely affected by boundary detection errors, 

especially when multiple consecutive boundaries are missed. However, one of the key contributions of 

this thesis is the development of methods that work reasonably despite this factor. 

8.1.4 Compensation Techniques Can Cope with “ Imperfect”  Segmentation 
Methods to compensate for boundary detection errors have seen limited success when compared with the 

large potential recognition improvements observed in “oracle”  experiments. We have observed that 

partial-contraction and soft-normalization techniques are effective in reducing the impact of multiple 

consecutive boundary detection errors. Partial-contraction achieves relative reductions in WER of 3.8%–

4.5%. Soft-normalization reduces the WER on the TID corpus by 0.1% absolute. 

The most effective compensation techniques we have developed result from the recognition of multiple 

“views”  of each utterance using different time-normalization schemes (expand-only, contract-only, 

expand and contract). These multiple perspectives into the speech signal result from the expansion and/or 

contraction of different regions of the speech signal identified by automatic segmentation techniques. 

Hypothesis combination techniques are successful in combining the recognition hypotheses from the 

individual recognition systems based on different time-normalization schemes. We observe relative 

reductions in WER of 3.9% on BN, 6.2% on MR, and 7.7% on TID data using this technique. 

The duration normalization + hypothesis combination approach achieves recognition improvements on 3 

separate speech databases, including tests in two languages and tests on a large-scale broadcast news 
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system. Although the achieved improvements are not as substantial as we would like them to be, the 

results should generalize to a wide variety of speech recognition systems. 

 

8.2 Some Future Directions 

8.2.1 Improving Segmentation Quality 
Although from our experience, improving the segmentation quality for spontaneous speech has proven to 

be quite difficult, a few ideas for future research in this area are possible. If the speech segmentation 

problem is ever “solved”  some day, then the duration normalization approach presented in this thesis 

becomes more valuable for robust and accurate ASR systems. 

The use of speech features that can provide accurate views on multiple time scales is one possible venue 

for research. Wavelet-based features may allow for better detection of very rapid spontaneous speech 

events for which there is little evidence in the speech signal. Based on our experience, missing the 

boundaries that delimit short speech events has a grave impact on duration-normalized recognition 

accuracy. Features that provide a better chance at locating these regions may have a positive impact on 

overall recognition accuracy. Note that multiple time scale-based features differ from the dendrogram 

segmentation networks proposed by Glass and Zue who attempt to generate a hierarchical segmentation 

network based on a single set of fixed time scale features (Glass and Zue, 1988).  

Different basic speech units may also allow for better boundary detection and normalization. The use of 

fundamental units that have longer durations (e.g. syllable-based or word-based units) may allow for more 

accurate boundary detection. In spontaneous speech, much of the evidence for individual phoneme units 

is blurred into the neighboring units. There is an increased chance that the evidence for longer 

fundamental units will remain in the signal even when the speech becomes highly spontaneous. 

Further investigation of the human speech production process may result in better segmentation and 

normalization techniques. The process by which canonical “word representations”  in the brain are 

converted to sounds is a complicated one, and there are many factors that contribute to how a particular 

instance of a phone is rendered by a speaker. The more we understand about speech production, the better 

we may be able to adequately capture the necessary salient speech events for robust boundary detection 

and speech recognition. 

8.2.2 Improving Robustness of Duration Normalization to Segmentation Errors 
Although there is still room for improvement in speech segmentation, even the most accurate 

segmentation system will still make errors, especially when the level of spontaneity in the speech 
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increases. We believe that it would be fruitful to pursue methods of normalization that can cope with the 

fact that segmentations are errorful. 

Historically, speech recognition accuracy is enhanced by algorithms that allow for probabilistic decisions 

rather than hard decisions. We therefore recommend further investigation of techniques such as the soft 

duration normalization presented in Chapter 7 of this thesis. Our soft algorithm has a running time on the 

order of 2N, which greatly limits the practical experiments that we can perform using this technique. It 

should be possible, however, to develop methods for normalizing the speech signal using segmentation 

probabilities that are computationally tractable. Once an efficient means for soft normalization has been 

developed, it should be possible to generate further real improvements in recognition accuracy via 

duration normalization techniques. 

One possible algorithm for computationally-tractable soft segmentation is as follows: Begin by estimating 

the probability that a boundary exists at each frame in the speech signal. Then using the estimated 

boundary probability for each frame, toss a “biased coin”  to decide if whether a boundary location should 

be assigned to the frame or not. Finally, normalize using the standard duration normalization procedures 

and the resulting segmentation. Note that this type of soft segmentation approach can be implemented 

using a simple random number generator and has a running time on the order of N rather than 2N. 

Preliminary experiments have shown that this technique has potential. 

 

8.3 Summary and Conclusions 

In this thesis, we present a technique for improving automatic recognition of spontaneous speech by 

normalizing the duration of the sound units that make up the speech signal. We conclude that normalizing 

the speech in such a manner makes it more conducive to the HMM acoustic modeling framework upon 

which most state-of-the-art ASR systems are built. By reducing the duration variability in the speech 

tokens presented to the recognition system, we help to ensure that the acoustic models are more 

accurately trained and better equipped to distinguish between speech sound units.  

The duration normalization approach depends on accurate segmentation information. Despite the 

difficulties in automatic segmentation of spontaneous speech, we were able to develop a duration 

normalization-based system that provides significant recognition improvements on a variety of 

spontaneous speech databases, including broadcast news. While the accuracy improvements are not as 

large as we would like them to be, we have presented a process which helps to bridge the gap in 

recognition accuracy created when ASR systems are presented with natural, conversational speech. 
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