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ABSTRACT

The objective of this thesis is the development of signal processing and analysis tech-

niques that would provide sharply improved speech recognition accuracy in highly

reverberant environments. Speech is a natural medium of communication for humans,

and in the last decade various speech technologies like automatic speech recognition

(ASR), voice response systems etc. have considerably matured. The above systems

rely on the clarity of the captured speech but many of the real-world environments

include noise and reverberation that mitigate the system performance. The key focus

of the thesis is on the robustness of ASR to reverberation.

In our work, we first provide a new framework to adequately and efficiently repre-

sent the problem of reverberation in speech feature domains. Although our framework

incurs modeling approximation errors, we believe that it provides a good basis for

developing reverberation compensation algorithms. Based on our framework, we suc-

cessfully develop a number of dereverberation algorithms. The algorithms reduce the

uncertainly involved in dereverberation tasks by using speech knowledge in terms of

cepstral auto-correlation, cepstral distribution, and, non-negativity and sparsity of

spectral values. We demonstrate the success of our algorithms on clean-training as

well as matched-training.

Apart from dereverberation, we also provide an approach for noise robustness via

a temporal-difference operation in the speech spectral domain. There, via a theoretical

analysis, we predict an expected improvement in the SNR threshold shift for white-

noise conditions. We also empirically quantify and study speech-feature level distortion

with respect to speech-signal level additive noise.

Finally, we provide a new framework for a joint reverberation and noise repre-

sentation and compensation. The new framework generalizes the spectral domain

reverberation framework by incorporating an additive noise term. Working under the

new framework, we combine our dereverberation and noise compensation approaches

for better dereverberation as well as for the most challenging speech recognition task

that includes both noise and reverberation components.
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CHAPTER 1

INTRODUCTION

The objective of this thesis 1 is the development of signal processing and analysis

techniques that would provide sharply improved speech recognition accuracy in highly

reverberant environments. In the following section we provide a brief introduction to

speech technology, discuss the issue robustness for speech technologies to noise and re-

verberation, understand and model the phenomenon of reverberation for speech recog-

nition, and briefly introduce a conventional feature extraction procedure for automatic

speech recognition (ASR). Finally, we present the thesis organization.

1.1 SPEECH TECHNOLOGY

Speech technologies have considerably matured in the last decade and serve as the ba-

sis for numerous speech-based applications. Some of the examples of key speech based

technologies are Automatic speech recognition (ASR), speaker recognition (SRE), and

speech translation (ST). Speech is the natural medium of communication for humans,

and the growth of speech technologies have greatly advanced the human-computer in-

teraction (HCI) by enabling the computer to ”listen” and ”talk”. The applications of

HCI have resulted in some of the key technologies of today such as interactive voice

response (IVR), dictation systems, and voice-based command and control for robots,

etc. The speech characteristics of a person are very unique to the person, and conse-

quently the speech technologies have been greatly successful in speaker identification

and verification tasks. Speech technologies have not only reduced the communication

gap between humans and machines but also between humans speaking different lan-

guages through speech to speech translation. Speech technologies have indeed been

one of the highly successful technologies of the current generation.

1Copyright c© May 2011, Kshitiz Kumar, All rights reserved.
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1.2 ENVIRONMENTAL ROBUSTNESS FOR SPEECH TECHNOLO-

GIES

Current state-of-the-art speech-based systems perform very well in the controlled envi-

ronments where the speech signals are reasonably clean. But real-life conditions are far

less controlled and include noise and reverberation in the environment. While human

speech perception is remarkably robust to noise and reverberation, speech percep-

tion by machines is very sensitive to environmental conditions. This has considerably

affected the widespread deployment of speech technologies in practice. The issue of en-

vironmental robustness has been the object of significant attention in the last decade.

A number of algorithms have been successfully developed for robustness to noise but

reverberation remains a challenging problem.

1.3 UNDERSTANDING REVERBERATION

Reverberation is an acoustic phenomenon in which a sound wave traveling in an en-

closure is repeatedly reflected by the difference surfaces in the enclosure. Thus, rever-

beration lets the sound persist even after original sound is switched off. We further

explain reverberation with respect to Fig. 1.1(a). There, the sound source radiates

sound with a specified directivity pattern. Sound waves hitting an enclosure surface

will be partly absorbed, partly transmitted and the rest attenuated and reflected back

into the enclosure. The amount of sound absorption, transmission and reflection de-

pends on the surface material and the sound frequency. The amount of energy in the

reflected components will gradually diminish due to absorption by the surface mate-

rials. Reverberation for an enclosure is parameterized in terms of reverberation time

(RT), which is the time taken for the signal power to decay by 60 dB from the instant

the signal source is switched off. Thus, environments with greater RTs imply a longer

persistence of the sound in the enclosure after its source is switched off.

Reverberation thus creates a collection of reflected and attenuated sounds in an

enclosure. These reflected sounds interfere with and distort the original sound. A

“listener” in the environment (see Fig. 1.1(a)) will hear the direct signal component

as well as the reflected components. The impact of reverberation on human auditory

perception depends upon the room RT. If the RT is small, the environment will rein-
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Fig. 1.1: (a) Direct and reflected signal components, (b) Simulated room impulse

response (RIR) for an environment with RT of 300 ms.

force the sound which may enhance the sound perception. But if the room RT is large,

a spoken syllable may persist for long and interfere with the spoken syllables in future

[1]. This severely degrades speech perception [2–4]. Since reverberation is a collection

of reflected and attenuated sounds, it is mathematically modeled as a linear system

to represent the delayed and attenuated components of the sound. Fig. 1.2 presents a

physical model of reverberation.

! !
s[n] s̃[n]

h[n]

Fig. 1.2: Modeling reverberation for a time-domain signal.

The signal s[n] in Fig. 1.2 represents a discrete-time clean speech signal, s̃[n]

represents the reverberated signal and h[n] represents the reverberation filter mapping

s[n] to s̃[n]. The filter h[n] represents the room impulse response (RIR) of the linear

system from the source s[n] to the microphone which receives the signal. The RIR

will in general depend on the room characteristics including the geometry of the room,

source and receiver locations, and absorption properties of the objects and walls in the
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room. Thus, the characteristics of the filter h[n] will change according to changes in the

room characteristics. It is typically assumed that compared to changes in the speech

spectral characteristics, the room spectral characteristics change slowly and that room

characteristics are nearly stationary over a short time interval (1-2 s). Thus, the filter

h[n] is assumed to be time-invariant and overall it is a linear time-invariant (LTI)

system.

We plot a simulated RIR for a room with RT of 300 ms in Fig. 1.1(b). There, we

note that the reflected components are initially sparse but as reverberation gradually

builds up, the rate of arrival of the reflected components increases very sharply. Finally,

after about 300 ms the sound energy in the enclosure have decayed by 60 dB. The above

RIR was simulated by image method proposed by Allen and Berkeley in [5]. We used

the RIR program [6] to simulate image-method-based RIR. The simulation assumed a

rectangular shoe-box room. We will be using [6] for a number of reverberation related

experiments in later chapters. Roomsim [7] is an alternate RIR simulation tool that

compared to [6] offers many more parameters in the simulation process.

1.4 IMPACT OF REVERBERATION ON ASR

Since the objective of the proposed work is robustness of ASR to reverberation, it

is important to understand how reverberation affects ASR performance. As noted

in Sec. 1.3, reverberation causes a sound to persist in a medium even after the sound

source is switched off. Thus, reverberation will lead to temporal and spectral smearing

of a signal [8–10], which will significantly distort the perceived sound. The distortion

of the signal and hence its spectrum is very harmful for ASR, as ASR is essentially

a pattern-matching algorithm based on the features derived from the signal spectral

patterns. The distorted spectral patterns will not match well to the corresponding

clean spectral patterns, resulting in degraded ASR performance [11]. We further illus-

trate the impact of reverberation on ASR in Fig. 1.3. There, we plot the spectrogram

(see Sec. 1.5) corresponding to a typical clean speech signal in Fig. 1.3(a). Fig. 1.3(b)

plots the spectrogram corresponding to reverberated speech with an RIR at RT of 300

ms in Fig. 1.1(b). The mismatch between the spectrograms in Fig. 1.3(a) and (b) is

discernible and very harmful for the current ASR systems. We plot the word error

rate (WER) for DARPA RM Database [12] [13] in the presence of reverberation in
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Fig. 1.4, where we note that the ASR performance degrades rapidly in reverberation

with the WER jumping from 6.7% for clean speech to 51% for RT of 300 ms.

Figure 1.4 is a plot of the ASR for mismatched training and testing conditions,

where training was done on clean speech and testing was performed using different

reverberation conditions. With an oracle knowledge of the test environment, we could

also perform a matched training and testing, where training is also done on data from

the test environment. It is worthwhile noting that even with matched training and

testing the WER is significantly high. Specifically, for matched training the WER in-

creases from 6.7% for clean conditions to 20% for RT of 500 ms. Thus, even matched

training and testing, which incorporates oracle knowledge does not provide good ASR

performance. The reason for the severe ASR degradation due to reverberation primar-

ily lies in the temporal and spectral smearing effects of reverberation. Reverberation

leads to a complex mixing of the neighbor sounds. Since a particular speech signal is

a temporal sequence of different sound units, the impact of reverberation on a partic-

ular sound unit not only depends on the environment’s RIR but also on the preceding

sequence of sounds [8]. Thus, reverberation will affect different sounds differently, and

even matched training will not be robust to reverberation. The objective of the pro-

posed work is to design a set of compensation algorithms for reverberation that will

sharply reduce the difference in WER between clean and the reverberant conditions.

1.5 MEL-FREQUENCY CEPSTRAL COEFFICIENTS (MFCC)

In this section we briefly introduce the conventional Mel-frequency cepstral coefficients

(MFCC) [14] features for an ASR system. We summarize MFCC feature extraction

in Fig. 1.5. An incoming speech signal s[n] is first analyzed by a filter bank which

typically consists of 40 filters for 16000-Hz signal sampling frequency. The center

frequencies and bandwidths of the filters are chosen to crudely mimic human ear

characteristics. The x[n, i] denotes the output of the ith filter bank at discrete-time

instant n. Next, short-time power (typically over 25 ms) is calculated for the filter-

bank outputs, andXs[n, i] denotes the corresponding power coefficients for the ith filter.

The power coefficients Xs[n, i] are fed to a logarithmic non-linearity stage to obtain the

coefficients Xl[n, i], which are passed through the discrete cosine transform (DCT) for

dimensionality reduction to the 13-dimensional cepstral coefficients in Xc[n, i], there
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i ∈ {1 . . . 13}. The Xc coefficients are also referred to as MFCC features. The ASR

system operates on these MFCC features.

1.6 THESIS ORGANIZATION

The rest of this work is organized as follows. Chapter 2 provides a review of the current

reverberation-compensation approaches for ASR. It also highlights the missing science

in the current approaches. There, we specifically note the need to better analyze and

model reverberation in the speech feature domain. We propose a new framework for

analyzing and modeling reverberation in Chapter 3. We show that proposed frame-

work is a generalization of a prior such framework. Next, we develop several algorithms

using the proposed framework. Chapter 4 presents the cepstral post-filtering (CPF)

algorithm for reverberation compensation, an algorithm which makes simplified as-

sumptions about the reverberation filter to develop a post-filtering technique on the

cepstral sequences. Next, we propose the maximum-likelihood-based inverse filtering

(LIFE) technique in Chapter 5. There, we maximize the feature likelihood criterion to

seek an inverse filter to compensate for reverberation in our proposed framework. On

an appropriate ASR database, we show that the proposed approach sharply reduces

the ASR WER by up to 45% relative reduction in WER for RT of 300 ms conditions.

In Chapter 6 we propose a non-negative matrix factorization (NMF) approach for

dereverberation. There, we use the non-negativity of speech spectra as a constraint to

guide speech dereverberation. NMF provides a relative reduction of 40 to 45 percent

in WER for RTs of 300 and 500 ms. In Chapter 7 we develop delta-spectral cepstral

coefficients (DSCC) features for noise compensation. The DSCC features capture the

dynamic spectral characteristics, and they offer a robust alternative to conventional

delta-ceptral coefficients (DCC) features. DSCC features provide a 5-10 dB SNR im-

provement in effective SNR different additive noise conditions. In Chapter 8 we provide

a framework for jointly representing reverberation and noise in the spectral domain.

This framework generalizes the spectral domain reverberation framework proposed in

Chapter 3. The new framework also characterizes explicitly for approximation error

in the reverberation framework in Chapter 3. In Chapter 8 we also provide vari-

ous combinations of the algorithms developed in this work to compensate jointly for

reverberation and noise.
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Fig. 1.3: (a) Spectrogram of a clean speech signal, (b) Spectrogram of a reverberated

speech sample with the RIR in Fig. 1.1(b).
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CHAPTER 2

LITERATURE REVIEW AND MISSING SCIENCE

In this section, we review some of the prominent dereverberation approaches for ASR.

We also discuss the major limitations in the current methods and as well as missing

elements in those approaches.

2.1 FEATURE-MODEL-BASED APPROACHES

The feature model-based reverberation compensation approaches parameterize the ef-

fect of reverberation on the speech features. Some of the traditional approaches model

reverberation as an additive shift on the log-spectral or cepstral features, and pro-

pose algorithms to compensate for the additive shift. Next, we discuss a few specific

algorithms that use this approach [15, 16].

2.1.1 Cepstral Mean Normalization

Cepstral mean normalization (CMN) is a simple and ubiquitously used algorithm for

ASR. CMN was initially proposed in [17] for statistical mean normalization of speech

features. Later CMN was adapted for compensating an unknown linear filtering op-

eration whose impulse response had a very short duration (shorter than the analysis

window of 25 ms for speech feature). Reverberation is also a linear filtering operation

in the time domain but its impulse response extends much longer in time. Hence,

the benefits of CMN do not extend to compensating for reverberation. Discussion of

CMN is still important for its conceptual merit, as other algorithms such as LTLSS

(discussed below) are direct variants of CMN. CMN builds on homomorphic signal

analysis which transforms in the time domain to addition in the log-spectral domain.

The additive components due to reverberation are relatively stationary compared to

the speech components and can be compensated for by mean normalization of the
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log-spectral components. CMN can work if speech feature analysis is done over long

time segments but typically speech analysis is done using segments of approximately

20-30 ms. CMN modeling does not hold and provides only limited improvement in

these cases.

2.1.2 Long-Term Log-Spectral Subtraction

Long-term log-spectral subtraction (LTLSS) [18] is a direct extension of CMN pro-

cessing. LTLSS is essentially CMN applied to longer analysis windows on the order

of 1 to 2 seconds. Even though LTLSS is first applied on longer analysis windows,

speech features must be obtained from short-duration segments. This leads to the use

of an analysis-synthesis framework for LTLSS. LTLSS is applied over longer analysis

windows from which speech is reconstructed, and ASR features are obtained from the

reconstructed speech.

2.1.3 Model based Dereverberation in Mel-Spectral Domain

A model-based dereverberation approach that utilizes the ASR acoustic models to

infer the optimal speech state sequences was proposed in [19, 20]. This work models

reverberation in the spectral domain and learns the reverberation parameters from

data recorded in that particular environment. While CMN and LTLSS were pure

feature-domain approaches, this work achieves dereverberation by finding the most

likely state sequence considering both the acoustic and reverberation models. Although

the algorithm works well for RIRs that are known a priori, it can not be generalized

to unknown RIRs.

2.2 LINEAR-PREDICTION-BASED APPROACHES

A great deal of dereverberation approaches operate on the linear-prediction (LP) resid-

ual of speech signals. LP processing can be done either in the time or narrow-band

frequency domains. We discuss a few approaches under the broad framework of LP

processing in the following:
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2.2.1 LP Residual Based Enhancement

Dereverberation has also been studied in the framework of the LP [21] residual. It was

observed in [22] that the probability distribution function (PDF) of the LP residual

for clean speech components is sub-Gaussian whereas the corresponding PDF for the

reverberated components is approximately Gaussian. Thus, the LP residual for the

reverberated segments exhibits higher entropy than that of the clean segments. Based

on the above observation, they developed an algorithm to exploit the LP residual’s

entropy to first identify and then suppress the reverberated components. Further, the

LP residual’s kurtosis characteristics was utilized in [23] for dereverberation.

2.2.2 Frequency Domain Linear Prediction

Frequency domain linear prediction (FDLP) [24] also lies in the broad framework of

the LP residual processing. While conventional LP residual methods operate on the

time domain signals but FDLP operates in the frequency domain. Specifically, a long

speech segment (1-second) is analyzed by the DCT operation. The DCT coefficients

are framed by a rectangular window and LP analysis is performed on the framed DCT

coefficients. The framed DCT coefficients represent a narrow-band signal for which

reverberation is modeled as a constant but an unknown gain term. Reverberation

compensation is achieved by gain normalizing the LP residual.

2.3 MODULATION-SPECTROGRAM-BASED APPROACHES

The modulation spectrogram of a narrow-band signal is defined as the frequency re-

sponse of the signal’s amplitude envelope. The modulation spectrogram for a wide-

band signal, such as speech, is obtained by passing the signal through a bank of

narrow-band analysis filters with the desired center frequencies, and then obtaining

a frequency response for each of the narrow-band signals at filter-bank outputs. A

number of reverberation-compensation approaches study the effects of reverberation

on the modulation spectrogram and propose filtering schemes to compensate for re-

verberation.
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2.3.1 Relative Spectral Processing

Relative spectral (RASTA) processing [25] is a log-spectral domain modulation-filtering

scheme for dereverberation. Speech studies suggests that most of the speech informa-

tion lies in the range of 4-20 Hz modulation frequencies. Based on these results, the

RASTA approach makes use of an empirical filter that enhances the speech character-

istics in the modulation frequencies of interest. The scheme is well motivated but its

solution is at best an empirical one. In practice, RASTA filters works like CMN, in

that they remove low-frequency additive components in the cepstral domain.

2.3.2 Modulation Spectrogram based Features

A new representation of speech signals in terms of its modulation [26] spectrogram

was proposed in [27,28]. The work builds on the importance of the speech modulation

frequencies in the range of 0-16 Hz, as was earlier noted in [25]. It was empirically

observed that these modulation frequencies and the features derived from them are

not only important for ASR applications but are also robust to reverberation.

2.3.3 Minimum Variance Modulation Filter

The minimum variance modulation filter (MVMF) algorithm [29] is a recent work

approach to noise and reverberation compensation in the modulation frequency do-

main. It is motivated from and builds on the principles of RASTA processing [25].

While RASTA designed an empirical modulation filter, MVMF formulates and solves a

data-driven optimization in the modulation frequency domain to minimize a distortion

criterion based on modulation frequency components.

2.4 ROBUST FRONT-ENDS

A robust feature-extraction scheme is critical for ASR. While MFCCs are perhaps the

most dominant features for ASR, a number of alternate feature extraction schemes [30–

32] have been proposed in literature that attempt to derive speech features with in-

herent robustness to noise and reverberation. We discuss PNCC and AFE feature

extraction schemes in the following sections.
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2.4.1 Power Normalized Cepstral Coefficients

Power normalized cepstral coefficients (PNCC) [30] were recently proposed as a new

feature extraction algorithm that exhibits better robustness to both noise and rever-

beration. The approach is motivated by principles of auditory processing. PNCC

processing replaces the log nonlinearity in the MFCC features with a power-law non-

linearity that mimics some human auditory characteristics. PNCC achieves noise

robustness via subtracting an estimate of the inferred distortion power. PNCC also

achieves reverberation robustness via a temporal suppression stage.

2.4.2 Advanced Front-End

The ETSI advanced front-end (AFE) standard [31] is a noise robust feature extrac-

tion scheme in a client/server based distributed system framework for speech applica-

tions. The standard is primarily aimed for ASR applications on mobile phones. In the

client/server model, client i.e. the hand-held device, performs feature processing, the

resulting features are encoded and transmitted to a server which decodes the features

and performs computationally heavy task of ASR decoding and sends back results

to the client. This distributed framework for ASR is efficient with respect to trans-

mission bandwidth requirement, and processing and power consumption on the client

devices. The model also significantly mitigates encoding/decoding errors associated

with transmitting a speech signal. Although AFE provides significant robustness to

noise, it does not provide any improvement in reverberation.

2.5 INVERSE FILTERING USING A KNOWN ROOM IMPULSE RE-

SPONSE

Some work in dereverberation has focussed on situations in which the room impulse

response is known a priori. Even though such a scenario is not generalizable to other

cases when the room impulse response is not known, deriving an inverse filter from

even known room impulse response is non-trivial. This is because the room impulse

response is generally non-minimum phase [33] and thus non-invertible. Further, this

approach is infeasible in all cases in practise because the RIR depends on the locations

of objects in the room, including sound source and receiver. If the sound source is non-
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stationary then there is no unique RIR from the source to receiver, then this approach

can not apply. Overall such approaches can only provide approximate solutions to the

inverse problem.

2.6 TWO-STAGE PROCESSING

Recently several types of two-stage processing (eg. [34–37]) methods have been pro-

posed for speech dereverberation. Since the overall room impulse response (RIR) is

typically very long, to efficiently solve the problem the RIR is subdivided into early and

late reflection components [38], typically marked by a 30-50 ms boundary. Two-stage

methods apply individualized processing for each of the stages. The late components

result in uncorrelated additive noise and are compensated for by a variant of the

spectral subtraction methods. The early components are not uncorrelated, and are

compensated by a variant of the inverse-filtering schemes. These methods have been

found to work well in practice.

2.7 MULTIPLE-MICROPHONE-BASED APPROACHES

Nabelek and Robinson [39] compared human monaural and binaural speech percep-

tion abilities in reverberant techniques, and concluded experimentally that the binaural

abilities strongly helped monaural-only perception. Consequently Speech dereverber-

ation has a been addressed by a number of multiple-microphones-based approaches

eg. [40–45]. Some of the work in this area has been applied to the Microsoft’s Kinect

gaming platform (launched in 2010). It includes an array-processing-based approach

for noise and reverberation compensation. Although the focus of this thesis is single-

microphone based reverberation compensation techniques, we review a few multiple-

microphone-based techniques in below.

2.7.1 Interaural Time-Delay (ITD) based Techniques

A number of dereverberation approaches build on the differences in time-delay infor-

mation for signals arriving at the left and right ears. For example, if the source is an

anechoic room lies along is at the perpendicular bisector of the line joining the left

and right ear then both the ears receive the source signal at identical instants due to
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identical path lengths from the source to each of the ears. If the source is from the

perpendicular bisector then the signal path lengths from the source to the two ears are

different which in turn produces a different time-delay between the signals reaching

the two ears [46]. This difference is referred to as interaural time delay (ITD). The

techniques in [41,42,47] use the ITD criterion to suppress the signal components from

undesired directions and consequently enhance the signal for the source. The work in

[48] is another manifestation of the time-delay idea at the ears. Their work extracts

zero-crossing information and makes a signal suppression decision on zero-crossings

values.

2.7.2 Maximum-Likelihood Beamforming

An ASR acoustic model-based beamforming approach was proposed by Seltzer in [44]

for speech dereverberation. Even though a number of beamforming approaches pro-

posed earlier helped improve speech intelligibility in reverberant environments, they

did not necessarily improve ASR accuracy. The work in [44] noted the importance of

including the ASR models in the beamforming optimization, and consequently built

an optimization criterion that maximizes the likelihood of the speech state sequences

with respect to the acoustic models.

2.7.3 Microphone Selection Approaches

A speech frame-based score competition (FSC) in a multiple microphone setting was

proposed by Jin et al. in [49, 50]. The work was targeted for speaker identification

applications. At first a likelihood function is learned from clean speech frames. During

testing, the likelihood scores from the different speech frames at a particular instant

compete among themselves and the frame with the highest likelihood score is selected.

The FSC approach does not directly compensates for reverberation but it exhibits

robustness to reverberation because it can potentially select the least reverberated

frame among all the reverberated frames at a particular instant.
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2.8 LIMITATIONS OF CURRENTAPPROACHESANDMISSING SCI-

ENCE

In this section we discuss some of the major limitations in the current approaches and

the corresponding missing elements in those approaches. We also propose research

directions on the basis these missing elements in the current research.

2.8.1 Inadequate Reverberation Model

One of the most significant limitations of the current framework in reverberation com-

pensation for ASR is the model from which the reverberation compensation algorithms

operate. Many of the current approaches work on a model that represents reverber-

ation as an additive shift in the cepstral domain and that applies variants of mean

normalization techniques for reverberation compensation. These models are based on

a premise that the features are obtained over long-duration segments, but typically

speech features are obtained over short-duration segments (20-30 ms), for which the

conventional models do not adequately represent the phenomenon of reverberation. A

major contribution of our work is to provide an understanding and modeling of re-

verberation for the features derived from short-duration segments. We develop a new

framework to parameterize the effects of reverberation. Once we have an adequate

framework from representing reverberation, we can develop multiple algorithms on

that framework to compensate for reverberation. A key aspect of our reverberation

model is that it consists of very few modeling parameters. This significantly assists in

parameter estimation and consequently in reverberation compensation because fewer

parameters imply more reliable parameter estimates when only limited amount of data

may be available.

2.8.2 Lack of Objective Solutions

In the development of dereverberation algorithms for ASR, there has often been a

disconnect between the motivation for an algorithm and the solution proposed by the

algorithm. Often the proposed solution does not adequately reflect the motivation,

leading to a sub-optimal solution. Filtering schemes like RASTA were motivated by

modulation characteristics but the proposed solutions are at best empirical, and in
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practice RASTA processing ends up being similar to CMN. The LP-residual-based

approaches may locally optimize the LP-residual characteristics of speech but may not

optimize the features that go to speech recognizer. A key focus in this thesis is to

design algorithms based on a defined objective function that assists ASR.

2.8.3 Lack of Theoretical Analysis and Robustness Predictions for Algo-

rithms

The focus of many of the current approaches is more on experimental results with

theoretical analysis often missing. Of course, positive experimental results are the key

to the success of an algorithm but theoretical analysis provides a deeper understand-

ing into the working of an algorithm and can also provide theoretical performance

bounds on that algorithm. In our approaches we strive to provide insightful analysis

into the working of our algorithms. For our dereverberation approach, we show that

the algorithm is guaranteed to compensate for reverberation under certain stated con-

ditions. In addition, very few attempts have been made in literature to predict the

estimated noise-robustness capacity of algorithms. For our noise-compensation (see

Ch. 7) algorithm, we provide a bound on the achievable signal-to-noise ratio (SNR)

improvement from the algorithm and found a 0.93 correlation between our prediction

and the observed. A key question that we raise throughout our work is the maximum

benefit that an algorithm can provide under realistic experimental conditions.

2.8.4 Knowledge about the Room Environment

A number of reverberation compensation approaches require some knowledge about

the room reverberation parameters. This becomes an issue with the practical de-

ployment of the algorithm in unknown environments. A key goal of this thesis to

propose completely blind reverberation compensation algorithms that do not require

any knowledge about reverberation parameters. Instead of guiding our dereverbera-

tion optimization problems with prior knowledge about reverberation parameters, we

propose and successfully guide our optimizations using generic speech knowledge in

terms of it’s feature auto-correlation sequences, feature sparsity, and feature probabil-

ity distributions.
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2.8.5 Feature-Domain vs. Time-Domain Processing

A great deal of past work in dereverberation for ASR has been directly borrowed

from the dereverberation work in the speech enhancement community. The focus in

the speech enhancement work is to improve speech intelligibility for consumption by

humans and in practice these methods provide limited improvement for ASR. ASR is

essentially a feature-based pattern matching algorithm where the features are derived

from nonlinear processing on the time domain signals. The nonlinearity implies that

the optimal criterion in the time domain may not be optimal in the feature domain. In

our work, we build feature-domain optimization criterions such that ASR can directly

benefit due to better feature matching.

2.8.6 Unified Model for Environments with both Noise and Reverberation

In our work we provide a new perspective on the problem of a joint noise and rever-

beration modeling and experimentally verify its benefits on speech utterances that are

affected by both noise and reverberation. Many of the past such joint models were de-

rived from premises of noise, as against reverberation, being the most dominant source

of degradation. That worked well for noise-only conditions but did not adequately rep-

resent reverberation and correspondingly it neither worked for reverberation-only nor

for both noise-and-reverberation conditions. We instead derive our unified model from

our reverberation-only model that adequately represents reverberation and then we

naturally generalize it to a unified model for both noise and reverberation conditions.

The unified model can also be used to encapsulate the additive error in our rever-

beration model, and highlights that a better dereverberation technique should include

denoising as an intermediate step.
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CHAPTER 3

MODELING REVERBERATION IN THE FEATURE

DOMAIN

This chapter is devoted to modeling and representing reverberation for the purpose

of automatic speech recognition (ASR). One of the most significant limitations of

the current reverberation-compensation framework for ASR is the model on which the

reverberation-compensation algorithms operate. Since the reverberation-compensation

algorithms are derived from a model, the compensation algorithms will be sub-optimal

if the model itself is inadequate. In this chapter we first present a conventional model of

reverberation in the cepstral feature domain. We highlight its limitations and present

a new framework for representing reverberation in the feature domain. The proposed

framework will be used in subsequent chapters for designing reverberation compensa-

tion algorithms.

3.1 CONVENTIONAL FEATURE-DOMAINREVERBERATIONMODEL

In this section we present a conventionally-used model of reverberation with respect to

the MFCC features in Fig. 1.5. This model builds on the physical model of reverber-

ation in Fig. 1.2 and the background discussion in Sec. 1.5 in which we presented the

conventional MFCC features for ASR. The time-domain reverberation model in Fig. 1.2

represented reverberation as an LTI system in terms of a filter h[n]. MFCC features

in Fig. 1.5 were obtained by analyzing the speech signal s[n] in terms of a filter bank.

Fig. 3.1 shows the same analysis of the input signal s[n] in presence of reverberation.

There, s[n] will first undergo a linear filtering operation by h[n], the corresponding

output s̃[n] will then be analyzed by the filter bank. The variable y[n, i] refers to the

output of the ith-filter. Both h[n] and the ith-filter constitute linear filtering operations,

and since linear filtering is commutative, the order of the filters Filter-i and h[n] can be
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interchanged without affecting the channel output y[n, i]. We illustrate an interchange

of the above filters in Fig. 3.2. Referring to Fig. 3.2, x[n, i] is the ith-filter output

! ! !

s[n] s̃[n] y[n, i]

h[n] Filter-i

Fig. 3.1: A physical model of reverberation.

! ! !

s[n] x[n, i] y[n, i]

Filter-i h[n]

Fig. 3.2: An equivalent representation for y[n, i] in Fig. 3.1.

in the absence of reverberation and y[n, i] is the corresponding output in presence of

reverberation. Thus we have a convolution operation in y[n, i] = x[n, i] ∗ h[n]. Note

that the convolution is performed over the discrete-time index n. Speech features are

derived from the signal spectral contents and since convolution in time is multiplication

in frequency, we obtain

Y [k, i] = X [k, i] · H[k] (3.1)

where k is an index for frequency and the symbols Y [k, i], X [k, i],and, H[k] respectively

denote the discrete fourier transform (DFT) of y[n, i], x[n, i], and, h[n]. We reiterate

that the signal x[n, i] and the coefficients X [k, i] correspond to clean speech s[n] and

that y[n, i] and Y [k, i] correspond to reverberated speech s̃[n]. Note that except for

H[k], the DFT terms include the index i corresponding to the ith-filter. Currently, it is

important to note that the DFT analysis is performed over the entire duration of the

signals. This is in contrast to the feature analysis in Fig. 1.5, where feature analysis

is performed over short segments (∼25 ms) by evaluating a short-term power in that

segment. Next, noting that currently we operate on the entire signal, we evaluate
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signal power at the output of the ith-filter in:

Py[i] =
1

Ny

∑

n

y[n, i]2 =
1

N2
y

∑

k

|Y [k, i]|2 (3.2)

=
1

N2
y

∑

k

|X [k, i]|2 · |H[k]|2 (3.3)

≈ 1

N2
y

∑

k

|X [k, i]|2 · P̂h[i] (3.4)

= Px[i] · P̂h[i] (3.5)

where, Px[n, i] and Py[n, i] respectively denote the signal power corresponding to x[n, i]

and y[n, i]. Note that the power evaluation is done over the entire duration of y[n, i]

whose length is Ny. In deriving (3.5), we first applied Parseval’s theorem in (3.2),

incorporated (3.1) in (3.3). The approximation in (3.4) can be justified if the signal

x[n, i] exhibits a narrow bandwidth as it is the output of the ith-filter, which is a band-

pass filter with a narrow bandwidth. Thus, for each i, most of the k terms in X [k, i]

will be approximately 0. Hence, the summation over k in (3.3) will run only over a

small connected range of k. Finally, we derive (3.4) by assuming that the frequency

response of h[n] is approximately constant over a narrow frequency range of x[n, i].

Equation (3.5) represents the overall power of y[n, i] in terms of a product operation

over the corresponding power of x[n, i].

Next, the feature extraction procedure applies a logarithmic operation on the signal

power content, so we obtain

log(Py[i]) = log(Px[i]) + log(P̂h[i]) (3.6)

which in the log-spectral domain, represents the effects of reverberation as an additive

shift operation. The DCT operation is next applied on the log-spectral components to

derive cepstral features. Since the DCT is a linear operation, the additive components

in the log-spectral domain are still additive in the cepstral domain. Thus, the con-

ventional cepstral-domain model represents reverberation as an additive shift in the

cepstral domain. We reiterate that the model has been derived for feature analysis

performed on the entire duration of the signal. Note that in Fig. 1.5, the cepstral

features are evaluated over short signal segments so the model needs to be extended

for features derived from short segments. The conventional model simply assumes

21



that the additive shift model derived for the entire duration of the signal holds for

the features derived from short segments as well. Finally the conventional approach

relates the cepstral features for the signals y[n, i] and x[n, i] in below:

Yc[n, j] = Xc[n, j] +Hc[j] (3.7)

where, Yc[n, j] and Xc[n, j] are respectively the jth cepstral feature for the signals s̃[n]

(reverberated speech) and s[n] (clean speech), and Hc[j] is a constant representing

the effect of reverberation. We show the above reverberation model in Fig. 3.3. Thus

Xc[n, j] !+!
"

Hc[j]

!
Yc[n, j]

Fig. 3.3: Conventional reverberation model for the jth cepstral feature.

the conventional model represents reverberation as an unknown but constant additive

shift in the cepstral domain. This is the model of reverberation used in many studies,

where reverberation compensation is done by a variant of cepstral mean normalization

(CMN), which removes the additive bias due to reverberation. Although CMN provides

significant robustness to ASR and is ubiquitously used in all ASR systems, the ASR

accuracy with CMN processing is still limited. The key limitation in CMN is due to

limitations in the model in Fig. 3.3. The model holds only if the feature analysis is

performed over the entire duration of the signal. The model is approximately valid if

the the duration of the filter h[n] is significantly small in comparison to the feature

analysis duration (∼25 ms) and has been found to be useful in mitigating the impulse

responses associated with speech recording devices like microphones. Since the RT

of a room can last hundreds of milliseconds, the conventional cepstral domain model

does not accurately hold for representing the effects of reverberation. In the next

few sections we provide a new framework for modeling reverberation in the cepstral

domain and show it to be a correction over the conventional model in Fig. 3.3.

22



3.2 MATHEMATICALMODEL OF REVERBERATION IN THE SPEC-

TRAL DOMAIN

In this section we provide a new model for representing reverberation in the spectral

domain, and later in Sec. 3.3.1 we extend the model to cepstral domain. We build our

model from the development so far in Fig. 3.2. We incorporate the model in Fig. 3.2

in the ASR system from Fig. 1.5, resulting in Fig. 3.4. We note that since our model

will be derived from the signal flow in Fig. 3.4, it will incorporate the issue of speech

features analysis being performed over short signal segments. This is in contrast to the

assumption of feature analysis being performed over the entire duration of the signal

in the conventional model in Sec. 3.1. The index i in {Ys[n, i], Yl[n, i]} represents the

!s[n]

x[n, 1] y[n, 1] Ys[n, 1] Yl[n, 1]

! ! ! ! !Filter-1 h[n] Short-Time
Power

Log

DCT !

Yc[n, 1 . . . 13]

ASR
Filter-2

Filter-40

!

!

!

!

!

!

· · · · · ·

· · · · · ·

Fig. 3.4: Incorporating Reverberation in MFCC feature extraction.

outputs corresponding to the ith-filter in the filter bank. Yc[n, 1 . . . 13] represents the

13-dimensional cepstral features over the discrete-time index n. Since signal spectral

analysis is performed individually for each of the filters in the filter bank, we discuss

further modeling and analysis in terms of only one of the filter, specifically the Filter-1.

The analysis for the first filter can easily be extended to the rest of the filters in the

filter bank. Next, for brevity of notation we use the symbols {x[n], y[n], Ys[n], Yl[n]} to

represent the single-dimensional sequences for the first filter in the filter bank. From

Fig. 3.4, we note that in presence of reverberation the ASR system will operate on the

cepstral coefficients Yc that are derived from spectral coefficients Ys. The objective of

this section is to relate Ys to the corresponding clean spectral coefficients, i.e., Xs in

Fig. 1.5 even when the signal analysis is performed over short segments. We begin
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from the linear-filtering model relating x[n] and y[n] and first relate the x2[n] and

y2[n] terms. The short-time power for x[n] and y[n] will be obtained by averaging

x2[n] and y2[n] over a short duration. We begin from y[n] =
∑Nh−1

l=0 h[l] x[n− l] to

show that

y2[n] =
∑

l

∑

m

h[l]h[m]x[n − l]x[n−m]

=
∑

l

h2[l] x2[n− l] +
∑

l

∑

m"=l

h[l]h[m]x[n − l]x[n−m]

︸ ︷︷ ︸

E[n]

(3.8)

Thus, y2[n] is composed of two broad components. One of the components is a linear

filtering operation over x2[n] and the other is a noise-like additive component, E[n].

The E[n] term represents error in the linear filtering approximation of y2[n]. Next, we

evaluate short-duration power by averaging over a short duration of the y2[n] terms.

Since the speech feature analysis is typically performed over ∼25 ms, the short duration

power for a particular n will be evaluated by weighted-average over the past 25 ms

of y2[n]. The power averaging may be done by uniformly weighting all the y2[n]

terms. The uniform weighting corresponds to using a rectangular window in the feature

analysis. The power averaging may also be done for any other window shape, and is

most commonly performed using a hamming window. We describe the weighted power

averaging operation in terms of an A[.] operator. The A[.] operator is a linear operator

which for time-instant n, windows the past 25 ms y2[n] coefficients according to a

specified window function and calculates an average over the windowed y2[n] terms.

Using the linear A[.] operator over a short segment of y2[n], we have:

A[y2[n]] = A[
∑

l

h2[l] x2[n− l] + E[n]]

=
∑

l

h2[l]A[x2[n− l]] + A[E[n]]
(3.9)

where we invoked the linearity of A[.]. We formalize our spectral-domain model in

Ys[n] = Xs[n] ∗Hs[n]
︸ ︷︷ ︸

Ŷs[n]

+Es[n]

where, Ys[n] = A[y2[n]], Xs[n] = A[x2[n]], Hs[n] = h2[n], Es[n] = A[E[n]]

and for small Es[n], Ys[n] ≈ Ŷs[n]

(3.10)

24



Eq. (3.10) represents Ys[n] in terms of a convolution over Xs[n] and an additive Es[n]

term, where the index n represented discrete-time sample instants. For ASR applica-

tions, Ys[n] is invariably downsampled. In (3.10) we derived a spectral-domain model

before the downsampling stage but we assume it to hold in the downsampled domain

as well. Thus, in either the pre-downsampling or post-downsampling stage, we approx-

imate a reverberated spectral feature sequence as a convolution over the corresponding

clean feature sequence. Further, we define the following distortion criterion to quantify

the model approximation in Ys[n] ≈ Ŷs[n]:

Ds = 10 log10
(P[Xs[n]]

P[Es[n]]

)

(3.11)

where, P[.] is the conventional power operator for a discrete-time sequence. A high

value for Ds indicates smaller approximation error and thus a better fit of the model.

We provide an empirical demonstration of the spectral domain model in (3.10) in

Fig. 3.5 and Fig. 3.6. There, we applied a hamming window with duration 25 ms

and window shift of 10 ms to demonstrate the model distortion ratio Ds in post-

downsampled domain. We plot Ds (without 10 log10) for each of the 40 Mel-channels

in Fig. 3.5. In Fig. 3.6, we plot Ds in 10 log10 domain (as in (3.11)). In both of the

above plots, we plot the distortion ratio for a power-spectral sequence as well as for the

corresponding magnitude-spectral sequence. We see that the Ds ratio is larger in the

magnitude-spectral domain than in power-spectral domain, specifically the distortion

is about 2-3 times higher in the magnitude-spectral domain than in power-spectral

domain. Thus, the magnitude-spectral model offers a better approximation for Ys[n] ≈
Ŷs[n].

In Fig. 3.7, we provide a demonstration of the model in (3.10) with respect to its fit

at 4 different Mel channels. Note that we already noted the corresponding distortion

levels in Fig. 3.5.

In this section we provided a model of reverberation in the spectral domain. The

model was derived according to the conventional feature extraction steps in Fig. 3.4.

We note that the model derivation incorporates the fact that the feature analysis is

performed over short signal segments. In the next section we extend the model to the

log spectral domain and also to the cepstral domain.
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Fig. 3.5: An empirical evaluation of the distortion ratio in (3.11) for each of the

Mel-channels.
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Fig. 3.6: An equivalent plot of the distortion ration in Fig. 3.5 in 10log10 domain.
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Fig. 3.7: A demonstration of the approximation error in the spectral-domain model

in (3.10) for (a) 7th Mel-channel centered at 508 Hz, (b) 14th Mel-channel centered at

1060 Hz, (c) 21st Mel-channel centered at 1860 Hz, (d) 28th Mel-channel centered at

3030 Hz.

3.3 MATHEMATICAL MODEL OF REVERBERATION IN THE LOG-

SPECTRAL AND CEPSTRAL DOMAINS

In this section we build on the spectral-domain reverberation model in (3.10) and

derive a reverberation model in the log-spectral domain. We begin from the linear

filtering model in (3.10) to obtain Ys[n] =
∑

mHs[m]Xs[n−m]. For subsequent use,

we define the sum of filter-taps as S∆ and the normalized filter-taps as H́s

S∆ =
∑

m

Hs[m], H́s[m] ! Hs[m]/S∆

Using the above notations we obtain an equivalent representation of Ys in

Ys[n] = S∆

∑

m

H́s[m]Xs[n−m]
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We take the log operation on Ys to obtain log-spectral components:

log(Ys[n])
︸ ︷︷ ︸

Yl[n]

≥ log(S∆)
︸ ︷︷ ︸

L∆

+
∑

m

H́s[m] log(Xs[n−m])
︸ ︷︷ ︸

Xl[n−m]

there we applied Jensen’s inequality and for brevity we defined {Yl[n], Xl[n], L∆} as

highlighted above. Note that Jensen’s inequality requires that
∑

m H́s[m] = 1 and

H́s[m] ≥ 0. Finally we have

Yl[n] = L∆ +
∑

m

H́s[m]Xl[n−m]

︸ ︷︷ ︸

Ŷl[n]

+El[n]

where, El[n] incorporates the approximate error due to the Jensen’s inequality. If the

error term El[n] is small, we can obtain:

Yl[n] ≈ Ŷl[n] = L∆ +
∑

m

H́s[m]Xl[n−m] (3.12)

Our reverberation model (3.12) in the log-spectral domain models reverberation in

terms of two components, a liner-filtering operation and then an additive shift.

We empirically study the fit of the log-spectral domain model in (3.3) with respect

to a distortion ratio criterion in the log-spectral domain. The aforesaid distortion

criterion is defined in parallel to the spectral domain distortion criterion in (3.11) as

shown below:

Dl = 10 log10
(P[Xl[n]]

P[El[n]]

)

(3.13)

In parallel to Fig. 3.6, Fig. 3.8 and Fig. 3.9 demonstrate a fit of the log-spectral model in

downsampled log-spectral domain. We see that the model achieves a distortion level

in the range of 16-19 dB. Next, we extend the reverberation model to the cepstral

domain.

3.3.1 Mathematical model of Reverberation in the Cepstral Domain

The MFCC features fed to an ASR system are derived by DCT operation on the log-

spectral features. In this section we extend the derived log-spectral domain in (3.12)

to the cepstral domain. The DCT is a linear operation, so a reverberation model in
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Fig. 3.8: An empirical evaluation of the distortion ratio in (3.13) for each of the

Mel-channels.

the log-spectral domain directly extends to the cepstral domain. Thus in the cepstral

domain we obtain

Yc[n] = C∆ +
∑

m

Hc[n]Xc[n−m] (3.14)

where Yc and Xc are respectively the cepstral sequences for y and x. We represent our

cepstral domain models in Fig. 3.10. There, Fig. 3.10(a) represents a generic cepstral

domain reverberation model and Fig. 3.10(b) represents a ceptral domain model for

jth cepstral feature.

Fig. 3.10 represents our new framework to study reverberation in the cepstral

domain representation of the speech features. The model represents reverberation

effects in the cepstral domain in terms of two components. One of the components

is a linear filtering operation and the other is a constant additive component. This

model can be compared with the conventional reverberation model in Fig. 3.3. The

current model can be seen as an extension of the conventional model as it extends

the conventional model to include a linear filtering operation in the model. It is

also worthwhile comparing our reverberation model in the cepstral domain with that

of the joint channel and noise model in [51–53]. It is very interesting to note that

despite the vast differences in the domain and the scope of two models, they consist
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Fig. 3.9: A demonstration of the approximation error in the log-spectral domain model

in (3.12) for (a) 7th Mel-channel centered at 508 Hz, (b) 14th Mel-channel centered at

1060 Hz, (c) 21st Mel-channel centered at 1860 Hz, (d) 28th Mel-channel centered at

3030 Hz.

Xc[n] ! Hc[n] !+"
"

C∆

!
Yc[n]

(a)

Xc[n, j]! Hc[n] !+"
"

C∆[j]

!
Yc[n, j]

(b)

Fig. 3.10: (a) A generic reverberation model in the cepstral Domain, (b) Reverberation

model for the jth cepstral feature.

of identical fundamental blocks. Finally, we note that the overall reverberation model

is a nonlinear model. The nonlinearity stems due to the constant additive term which

is a nonlinear operation.
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3.4 DISCUSSION

In this chapter we first presented a conventional model of reverberation. We noted

that the model is strictly valid only if the speech analysis is performed over the entire

duration of the signal. The model is approximately valid if the duration of the impulse

response is small compared to the feature-analysis duration. Typically speech analysis

is performed over short segments (25 ms) for which the conventional model does not

adequately represent reverberation that extends up to hundreds of milliseconds. Any

compensation approach based on the inadequate model will also be sub-optimal. An

accurate understanding and modeling of reverberation for speech features is therefore

critical to the success of an algorithm and the key focus of this chapter was to develop

an adequate model of reverberation. In our work we derived reverberation represen-

tation at the different stages in feature extraction, i.e., in the spectral and cepstral

domains. Our model incorporates the fact that feature analysis is performed over short

segments. The subsequent chapters in this thesis will use the framework proposed in

this chapter to derive reverberation compensation algorithms.
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CHAPTER 4

CEPSTRAL POST-FILTERING

In Chapter 3 we provided a model for representing reverberation in the cepstral feature

domain. In this chapter we will build on the proposed model and provide an algorithm

for compensating reverberation in that domain. The proposed algorithm, called cep-

stral post filtering (CPF) 1, is shown in Fig. 4.1. There, Xc and Yc respectively indicate

the clean and reverberated cepstral features and Hc models the room reverberation in

terms of a linear filter. Thus, the ASR training will be done on the Xc features, while

ASR testing will operate on the Yc features. This leads to a mismatch between the

training and testing features and correspondingly a loss in ASR performance.

4.1 CPF FORMULATION

In cepstral post-filtering work we characterize the mismatch in terms of a mean-squared

criterion and attempt to identify a cepstral filter that minimizes the mismatch between

the clean and reverberated features. Specifically, in Fig. 4.1 we design a post-filtering

scheme to minimize mismatch between the cepstral features Xc and Yc. Thus, our

objective is to design an FIR filter P [n] to minimize e[n] in the mean-squared error

sense. It can be seen that

e[n] = Wc[n]− Zc[n]

= P [n] ∗Xc[n]− P [n] ∗Hc[n] ∗Xc[n]
(4.1)

The length of filter P [n] is assumed to be Np. We seek to obtain the optimal filter

P [n] which minimizes the mean square error of e[n].

1This work was published in [54].
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Fig. 4.1: Cepstral post-filtering for reverberation compensation.

4.2 CPF OPTIMIZATION

In this section we derive the optimal filter P [n] as noted in Fig. 4.1. For convenience

we rewrite the effect of Hc[n] as

Wc[n]− Zc[n] = P [n] ∗
(

Xc[n]−Hc[n] ∗Xc[n]
)

= P [n] ∗
(

Xc[n]−Hc[0]Xc[n]−
Nh−1
∑

i=1

Hc[i]Xc[n− i]
)

︸ ︷︷ ︸

r[n]

= (1−Hc[0])P [n] ∗Xc[n]− P [n] ∗
(
Nh−1
∑

i=1

Hc[i]Xc[n− i]
)

= (1−Hc[0])Wc[n]
︸ ︷︷ ︸

f [n]

−P [n] ∗
(
Nh−1
∑

i=1

Hc[i]Xc[n− i]
)

︸ ︷︷ ︸

d[n]

(4.2)

where Nh represents the length of Hc[n]. The effect of the filter Hc(z) (z-transform of

Hc[n]) is decomposed into the following two components to represent the direct and

the reflected signal components, (a) the coefficient Hc[0] encapsulates the direct signal

component, (b) the filter coefficients {Hc[n]} ∀n ≥ 1 account for the reflected and

attenuated signal components. We note that the filter coefficients have been time-

delayed to account for any delay in the direct signal component. The unknown delay

may also be incorporated in Xc[n] itself. Thus, in the absence of reverberation, the

filter Hc(z) reduces to a multiplication by Hc[0] and in the presence of reverberation,
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the filter Hc(z) introduces additional delayed and attenuated components in r[n]. In

(4.2), we also introduced f [n] and d[n] for later use. The difference between Wc[n]

and Zc[n] is due to two terms, f [n] and d[n]. The f [n] term is simply a scaled version

of Wc[n], which can be normalized by scale normalization. The actual error between

Wc[n] and Zc[n] is due to the d[n] term and our next objective is to compensate for

that error. We further simplify d[n] as below:

d[n] = P [n] ∗
(
Nh−1
∑

i=1

Hc[i]Xc[n− i]
)

= P [n] ∗
(
Nh−2
∑

j=0

Hc[j + 1]Xc[n− 1− j]
)

, substituting j = i− 1 or i = j + 1

= P [n] ∗
(
Nh−2
∑

j=0

Gc[j]Xc[n− 1− j]
)

︸ ︷︷ ︸

du[n]

(4.3)

where, for convenience we defined a new filter Gc[n] where the filter-taps of Gc[n] =

Hc[n + 1] ∀ n ∈ {0 . . . (Nh − 2)}. Thus filter Gc[n] is a (Nh − 1) length FIR filter

and is essentially the filter Hc[n] whose filter-taps have been advanced by a single tap

and the filter-tap Hc[0] set to 0. Our objective now is to minimize the error d[n] in

the minimum squared error sense. Thus, we seek the optimal filter P [n] which, when

applied to both Xc and Yc, minimizes the mean square compensated distortion d[n]

as defined above. So we minimize the expected distortion, E[d2[n]]. Using (4.3), we

obtain E[d2[n]] as below:

E[d2[n]] =
∑

0≤i,j≤Np−1

P [i]P [j]E[du[i]du[j]] (4.4)

where, Np represented number of filter taps in the filter P [n].The terms E[du[m]du[n]]

in above can be obtained by using (4.3) as below:

E[du[m]du[n]] =
∑

0≤i,j≤Nh−2

E[Gc[i]Gc[j]Xc[m− 1− i]Xc[n− 1− j]]

∼=
∑

0≤i,j≤Nh−2

E[Gc[i]Gc[j]Xc[m− i]Xc[n− j]]
(4.5)
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where the equivalence in the equation above is due to the expectation operation. Such

an optimization will in general be a function of the filter Gc[n] which is of course

completely unknown. Thus, to proceed further we need to solve the problem under

certain reasonable assumptions. Even though, Gc[n] is completely unknown, we can

make certain assumptions about the frequency response characteristics of the filter

Gc[n]. Since Gc[n] operates on the individual cepstral features Xc which possess a

narrow bandwidth, we assume that the filter Gc[n] has a flat gain characteristic for the

narrow-band features Xc. We specifically assume that the deterministic autocorrela-

tion sequence (φGG) of the filter Gc[n] to be φGG[n] = 0, ∀ n )= 0. Thus, we assume

that

E[Gc[i]Gc[j]] = σ2δ[i− j], σ2 )= 0 (4.6)

with δ being Kronecker delta, we can obtain E[du[m]du[n]] in (4.5) as

E[du[m]du[n]] = (Nh − 1)σ2RX [n−m] (4.7)

where RX is the autocorrelation sequence of Xc. Substituting (4.7) into (4.4), we

obtain

E[d2[n]] = (Nh − 1)σ2
∑

0≤i,j≤Np−1

P [i]P [j]RX [i− j] (4.8)

We can differentiate (4.8) with respect to P [n] to find the optimal P [n] but this will

result in the optimal P being 0: if all the elements in P [n] are equal to 0, all features

in Xc and Yc will be mapped to 0, and the mean square distortion E[du[n]2] will always

be zero as well. While this is clearly the optimal solution in the mathematical sense,

it is not a useful solution. In order to avoid the degenerate solution P = 0 we further

constrain filter P [n]:
Np−1
∑

j=0

P [j] = 1 (4.9)

Since the filter P [n] operates on energy-based coefficients, (4.9) imposes an energy

constraint and normalizes the filter energy.

To minimize E[d2c [n]] in (4.8) under (4.9), we construct a Lagrangian optimization

criterion as below:

Λ(p,λ) = (Nh − 1)σ2
∑

0≤i,j≤Np−1

P [i]P [j]RX [i− j] + λ(

Np−1
∑

j=0

P [j]− 1) (4.10)
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Differentiating (4.10) with respect to [P,λ] and equating the differentials to zero, we

can obtain the optimal filter P [n] as below:











RX [0] RX [1] . . . RX [Np − 1] 1

RX [1] RX [0] . . . RX [Np − 2] 1

. . . . . . . . . . . . . . .

RX [Np − 1] RX [Np − 2] . . . RX [0] 1

1 1 . . . 1 0











×











P [0]

P [1]

. . .

P [Np − 1]

λ′











=











0

0

. . .

0

1











(4.11)

The filter taps of the optimal filter P [n] can be compactly obtained in:

P =
R−1

XX1

1TR−1
XX1

(4.12)

where RXX is the auto-correlation matrix of Xc. The obtained filter P [n] is applied

across all reverberation conditions, The obtained filter is therefore invariant to the

reverberation condition.

Finally using the filter P [n] from (4.12) in (4.2), we obtain approximately:

Wc[n]− Zc[n] ≈ (1−Hc[0])Wc[n]

Zc[n] ≈ Hc[0]Wc[n]
(4.13)

Thus assuming that the term d[n] in (4.2) is compensated for by the filter P [n], Zc[n] is

approximately a scaled version of Wc[n]. Note that Hc[0] is also completely unknown

and thus we account for the unknown scale factor by scale normalization using the

established cepstral variance normalization procedures.

4.2.1 CPF Assumption

The CPF processing derived in Sec. 4.2 is built upon the assumption in (4.6). In this

section we specifically discuss and understand the validity of that assumption. In CPF
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processing we assume that:

φ[m] !
Nh−2
∑

n=0

Gc[n]Gc[n +m] =
Nh−1
∑

n=1

Hc[n]Hc[n +m] < ε << 1, ∀m )= 0 (4.14)

Thus we assume that the deterministic autocorrelation sequence of the coefficients

in the filter Gc(z) is approximately a delta function. In Fig. 4.2(a), we plot the fre-

quency response corresponding to an experimentally obtained filter Hc(z) for a real

recorded RIR at an RT of 470 ms for the 0th cepstral feature. We note that the fre-

quency response of the filter Hc(z) is nearly flat across different frequencies. We also

plot the frequency response corresponding to the autocorrelation sequence in (4.14) in

Fig. 4.2(b). We note that our assumption that the frequency response is a constant,

as implied by (4.14), does not strictly hold. However, the error due to the assump-

tion is within approximately 5 dB over the modulation frequencies of 5-20 Hz, the

frequency range which is believed to carry most of the speech knowledge. Thus, we

experimentally support our assumption in (4.14) with respect to Fig. 4.2(b).

Note that in practice, the filter Hc[n] is completely unknown and to make the

dereverberation solution tractable we are required to make certain reasonable assump-

tions about the filter Hc[n]. Any additional information about the filter Hc[n] in terms

of its corresponding autocorrelation in (4.14) can also be incorporated in the CPF

framework.

4.2.2 Error Tradeoff in Clean versus Reverberated Condition

In this section we study the consequences of CPF processing with respect to the

associated error tradeoffs in the CPF framework of Fig. 4.1. Note that in the CPF

framework, training is done on the Wc data sequences instead of training on the Xc

sequences that correspond to the clean (unreverberated) condition. This leads to an

error in clean conditions due to the differences between the Xc and Wc sequences. The

CPF error in the presence of reverberation is the residual difference between the Wc

and Zc sequences. Figure 4.3 describes the tradeoff in CPF processing with respect to

normalized errors in the clean and reverberated conditions. The only parameter in CPF

processing is the Np parameter that specifies the number of filter taps in the filter P [n]

in Fig. 4.1. We see in Fig. 4.3 that increasing theNp parameter helps reduce the error in

the presence of reverberation for all the cepstral features but simultaneously increases
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Fig. 4.2: (a) The frequency response for the filter Hc(z) for a real recorded RIR at

an RT of 470 ms for the 0th cepstral feature (b) The experimentally observed and

the assumed frequency response corresponding to the autocorrelation sequence φ[m]

in (4.14) for the filter in (a).

the error in clean condition. Thus, there exists a tradeoff between performance in the

clean and reverberated conditions. For ASR applications, we experimentally find that

Np ∈ {5, 7} works.

4.3 EXPERIMENTS AND RESULTS

We applied our post-filtering compensation to a subset of the YOHO database [55]

for the task of speaker identification (SID) [56–59]. Reverberant speech was obtained

by convolving clean speech with simulated room impulse responses produced by the

RIR [6] simulator for room acoustics. We used a simulated room with dimensions

5×4×3 m with a single microphone located at the center of the room, and a distance

of 1 m between the source and the microphone. SID accuracy results using CPF are

summarized in Fig. 4.4. The SID accuracy curve labeled “GMM” corresponds to a

Gaussian Mixture Model based SID system, also the uncompensated case. “GMM-P-

n” refers to the use of a post-processing filter P [n] with the parameter n denoting the

duration of the FIR impulse response.

Comparing the results we note that our post-filtering compensation approach pro-

vides substantial improvement in SID accuracy, with greatest improvements observed
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Fig. 4.3: Error tradeoff for clean vs. reverberated condition in CPF processing.
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Fig. 4.5: CPF for reverberation compensation in an ASR task.

for the larger RTs. Best performance was obtained for the relatively small number

of five filter taps, in which case the relative SID average error rate decreased by 38%

compared to the uncompensated case.

4.3.1 ASR Experimental Setup and Results

The ASR system we used for training and decoding speech was the CMU Sphinx-3
2 open source system. We trained the system on speech from clean condition and

tested its performance on clean as well reverberant environments. The test data were

different from the training data in all the cases. The acoustic models were all 3-

state left-toright Bakis topology hidden markov models (HMMs) [60,61] with no skips

permitted between states. Each state output distribution was modeled by a mixture of

8 Gaussians. The total number of tied states used was 1000. The language model used

was a standard bigram model for the task under consideration, built inhouse using the

CMU Language modeling toolkit. The features used were conventional 13-dimensional

MFCC features augmented by delta and doubledelta cepstra. Each full feature vector

was 39-dimensional. Cepstral mean normalization (CMN) was applied in all cases.

2Available online at http://cmusphinx.sourceforge.net/html/cmusphinx.php
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We tested the CPF algorithm on an ASR task using the DARPA RM [12] database

available from the Linguistic Data Consortium and we present the corresponding re-

sults in Fig. 4.5. We note that CPF processing provides very competitive results for

more challenging reverberant environments. Specifically at RT of 500 ms condition,

CPF provides the best ASR word error rate (WER) performance. In that particular

reverberation condition, CPF provides a 12% reduction in relative WER and a 6%

relative reduction over the best performing MVMF algorithm.

4.4 DISCUSSION

In this chapter we developed a compensation for reverberation in terms of post-filtering

the cepstral sequences. The filter parameters were obtained by formulating and solving

a mean-squared objective function. In our experiments, we found the optimal number

of filter taps in P [n] to be in 5 to 7. In Fig. 4.3 we found that although the distortion

E[d2] decreases with a greater number of filter taps, the similarity between the uncom-

pensated and compensated clean features decreases as well. That led to a tradeoff for

the filter-length parameter Np with respect to error in clean and reverberated condi-

tions. Overall, the CPF approach provided significant improvements in SID and ASR

accuracy across different reverberation conditions.
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CHAPTER 5

MAXIMUM-LIKELIHOOD-BASED CEPSTRAL INVERSE

FILTERING

Speech dereverberation has been addressed by a number of algorithms in the past

but it still remains a challenging problem. Compensation for reverberation has been

difficult because the environment reverberation characteristics are generally unknown,

so the compensation algorithms must work without any a priori information about

the reverberation parameters. Some of the past work has considered blind methods

for dereverberation but the improvements have been limited, possibly due to an incor-

rect model of reverberation or an improper domain for reverberation compensation.

Our work in this chapter serves to provide a compensation algorithm that is built on

an adequate reverberation model in an appropriate domain, i.e., the speech feature

domain. Further, the algorithm does not require any a priori information about the

reverberation parameters.

In this chapter we propose a maximum-likelihood-based cepstral inverse filtering

(max-LIFE)1 for compensating reverberation in the cepstral domain. Note that we

have already proposed the CPF algorithm for reverberation compensation in Chap-

ter 4. Both CPF and LIFE operate in the framework of our proposed reverberation

model in Chapter 3 and design a reverberation-compensate filter to compensate for

the environment filter as modeled by Hc(z) in Fig. 5.1. The key difference between

CPF and LIFE lies in the reverberation-compensation problem formulation. While

CPF made simplified assumptions on the filter Hc(z), the LIFE processing does not

make any assumption about the form of Hc(z). The filter is thus allowed to have arbi-

trary frequency response in the LIFE framework, so the LIFE approach tries to solve

the reverberation compensation in a more general fashion than was attempted in the

1This work was published in [62].
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CPF approach. The LIFE approach sets up a likelihood objective criterion to guide

the reverberated features to a domain corresponding of the clean features. Likelihood

based objectives have also been applied for other signal processing applications in [63].

A key advantage of the likelihood objective is that the objective does not require any

a priori information about the reverberation filter parameters. Thus, LIFE filtering

is blind to the reverberation parameters and can work across different reverberation

conditions.

5.1 MOTIVATION FOR THE MAXIMUM LIKELIHOOD CRITERION

FOR ESTIMATING INVERSE FILTERS

In this Chapter we seek to improve the robustness of ASR systems with respect to

reverberation. In Chapter 3, we provided a model of reverberation in the cepstral do-

main where the model included a finite impulse response (FIR) linear time-invariant

(LTI) system. Using the FIR representation of reverberation, a typical approach for

reverberation compensation is to design a system which acts as an inverse for the re-

verberating LTI system. Nevertheless, the design of such an inverse system is difficult

because the time domain reverberation filter is generally both unknown and potentially

non-invertible. In this work, we propose the estimation of an inverse system to com-

pensate for reverberation using a maximum likelihood (ML) criterion [63]. ML only

requires knowledge of the probability density function (pdf) from which the signals

are drawn, which can be obtained from a small amount of training data. ML trans-

forms the reverberated signals into a space from which the clean signals are believed

to originate and thus dereverberates the signal.

We first demonstrate analytically the merit of the ML criterion through two simple

illustrations. We show that under certain assumptions about the original signal, it

is possible to estimate approximately the optimal inverse LTI parameters from the

recordings of reverberant input signals. We demonstrate our approach for both all-

zero and all-pole inverse systems.
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5.1.1 Inverse FIR Filter

In this illustration, we formulate a simple reverberation problem and demonstrate that

we can invert the effects of reverberation with an estimated all-zero filter. We assume

that the reverberated signal x[n] can be represented in terms of a convolution of the

original unobserved signal s[n] and an FIR filter H(z), which models the reverberation.

We further assume that the the original signal s[n] is white and Gaussian, with zero

mean and an autocorrelation that is the Kronecker delta function. We assume that

the filter H(z) has only two taps (and hence only a single delay tap). The assumption

that the reverberation filter is only of length 2 appears very restrictive at first but

we can overcome this restriction by applying the approach in each of multiple narrow

sub-bands. We assume that a large number of narrow sub-band versions of the H

filter can approximate the actual H filter. Note that these assumptions are only for

the present illustrations; we will allow the number of filter taps to be unconstrained

in the actual ASR problem. We formalize our assumptions as follows:

s[n] ∼ N(0, 1), the original signal

H(z) = 1 + h z−1, the reverberation filter

x[n] = s[n] ∗ h[n] = s[n] + h s[n−1], the reverberated signal

(5.1)

Next we formulate our problem in terms of designing a filter that operates on the

reverberated signal x[n] using a log-likelihood criterion with respect to the pdf of s[n],

to design the inverse filter parameters. In Eq. (5.2) below, P (z) denotes the supposed

inverse FIR filter and y[n] is the estimated dereverberated signal.

P (z) = 1 + p z−1

y[n] = x[n] ∗ p[n] = x[n] + p x[n− 1]
(5.2)

The filter parameter p is estimated by maximizing L, the likelihood of y[n] with respect

to the pdf of s[n].

L = logΠn

1√
2π

exp(
−y2[n]

2
) (5.3)

The above can be simplified to minimizing

L = E[y2[n]] (5.4)

where we replaced summation by expectation and ignored positive constants under the

operation. The optimal filter parameter is obtained by differentiating L with respect
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to the unknown p.

∂L

∂p
= 2E[(x[n] + p x[n−1])x[n−1]]

= 2(Rxx[1] + pRxx[0])

Setting the above to 0, we obtain:

p = −Rxx[1]/Rxx[0]

Noting that x[n] is the convolution of s[n] and filter H(z), the relationship between

the autocorrelation sequence of x[n] and s[n] becomes

Rxx[n] = Rss[n] ∗Rhh[n] (5.5)

It can easily be shown that

Rxx[n] = [h, 1+h2, h], n ∈ [−1, 0, 1] (5.6)

from which we obtain

p = −h/(1 + h2)

Next, assuming that h , 1 and making the first-order approximation of neglecting

the squared term for h, we obtain

p ≈ −h (5.7)

The assumption of h , 1 holds if we work on narrow sub-bands of H and assume that

the frequency response of H may be nearly a constant for each of the sub-bands. So

far, we showed that under the assumptions in Eq. (6.1), we can devise a log-likelihood

criterion to invert the filter H by P = [1 −h], which indeed is expected to be the

inverse of filter H under first-order approximations. Finally we note that Eq.(6.1) does

not include an explicit gain term for the reverberation filter H . While the maximum

likelihood procedure described cannot be used to estimate the gain term, gain inversion

can be achieved via variance normalization.

5.1.2 Inverse IIR Filter

In the illustration in Sec. 5.1.1 we showed that we can estimate an inverse reverberation

filter in terms of a FIR filter. In this illustration, we start with the same assumptions
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as in Eq. (6.1) but we model the inverse filter as an all-pole IIR filter, showing that

we can approximately estimate the optimal inverse filter parameters. Specifically, we

assume that the inverse filter P and the dereverberated signal y[n] are of the form:

P (z) =
1

1 + p z−1

y[n] = x[n] ∗ p[n] = x[n]− p y[n− 1]
(5.8)

Following the same principles as in Sec. 5.1.1 we obtain

∂L

∂p
= 2E[(x[n]− p y[n−1])y[n−1]]

As before, it can be shown that p = Rxy[1]/Ryy[0] and

Rxy[1] = Rxx[1] = h

Ryy[0] =
1 + h2 − 2p h

1− p2

from which we obtain:

p =
h(1− p2)

1 + h2 − 2p h

Clearly, p = h is one of the two solutions in the above quadratic equation and the

estimated compensation filter becomes:

P (z) = 1/(1 + hz−1)

which is indeed the inverse of the filter H(z).

Sections 5.1.1 and 5.1.2 illustrated the maximum likelihood formulation for esti-

mating a filter (FIR or IIR) that inverts the effects of reverberation. The illustrations

showed analytically that our approach is well founded and can approximately guaran-

tee the optimal performance under certain assumptions. While these assumptions, of

course, do not hold for speech signals, we relax some of those assumptions in Sec. 5.2

which follows, and we extend the approach to ASR. While analytical verification of

our approach for realistic reverberant environments is not tractable, we validate our

approach through experimental results in Sec. 5.4.

46



5.2 MAXIMUM-LIKELIHOOD-BASED INVERSE FILTERING (MAX

LIFE)

In Sec. 5.1 we formulated the problem of reverberation compensation in terms of

obtaining an appropriate inverse filter, proposing the use of a maximum likelihood

criterion for obtaining that inverse filter. We demonstrated that the approach can

approximately estimate the optimal inverse filter parameters. In the present section

we extend our approach for reverberation compensation for speech data, referring

to the extended approach as maximum likelihood based inverse filtering (Max-LIFE).

We build our current work on the cepstral domain reverberation model derived in

Chapter 3. This aforesaid model characterized reverberation as linear filtering in the

cepstral domain. Some other recent dereverberation work is in a similar framework

including e.g. [19, 54, 64, 65]. Our reverberation model extends the earlier representa-

tions of reverberation as a simple additive shift in the log-spectral or cepstral domains.

Continuing along these lines we seek to design an inverse reverberation filter that does

not make any a priori assumptions about the nature of the actual room reverberation

filter. We formulate a maximum likelihood objective function which requires the pdfs

of the features of clean speech, which can be obtained from training data. The like-

lihood objective is expected to guide the features to the space from which the clean

features originate, thereby dereverberating the features. In Sec. 5.1.1 the pdf was

assumed to be a single Gaussian density in Eq. (6.1). Since a single Gaussian density

is insufficient for real speech applications, we extend the pdf to be a Gaussian mixture

model (GMM), trained from a pool of clean speech features. The number of filter

taps to model reverberation was assumed to be 2, in the discussion of Sec. 5.1.1, but

for practical ASR the number of filter taps modeling reverberation will need to be

unconstrained.

5.2.1 Mathematical Formulation of LIFE Filters

We show the working of LIFE algorithm in Fig. 5.1, which summarizes the process-

ing for a unidimensional feature. The approach can easily be extended to multi-

dimensional features by individually applying the processing to each of the multi-

dimensional features under the assumption that the features are uncorrelated. The

Xc[n] in Fig. 5.1 is a unidimensional cepstral feature for clean speech, whereas Yc[n]
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models the corresponding reverberated feature. The model was derived in Chapter 3.

The LIFE processing applies a two-fold compensation scheme to Yc[n]. It first com-

pensates for the additive constant C∆ by mean normalization as is also done in CMN.

The effects of Hc(z) are normalized by a P (z) filter.

Xc[n] ! Hc[n] !+
"

C∆

!
Yc[n]

Mean Norm. ! P [n] !
Zc[n]

Fig. 5.1: LIFE compensation in cepstral feature domain.

The P (z) filter parameters are designed by a maximum-likelihood (ML) criterion.

In general the ML criterion is based on a probability distribution which in our work

corresponds to the distribution of clean features in Xc[n]. We assume that the features

Xc[n] are distributed according to a Gaussian Mixture Model (GMM) and we learn

the GMM parameters from available clean training data. Among other choices, the

P (z) filter can be chosen to either be a finite impulse response (FIR) or an all-pole

infinite impulse response (IIR) filter. While we illustrate these developments only for

the inverse IIR filter, the approach can easily be adapted for the FIR filters. We derive

the updated equations assuming P (z) to be an all-pole IIR filter with M coefficients,

the reverberation-compensated features (Zc[n]) become:

Zc[n] = Yc[n]−
M−1
∑

m=1

p[m]Zc[n−m] (5.9)

The parameters that describe P are obtained by maximizing the log-likelihood with

respect to the GMMs for speech. Specifically, P = argmaxP L, where the log-likelihood

L for the compensated features is

L =
1

Nz

Nz∑

j=1

log

(

∑

i

wi
√

2πσ2
i

exp

(

−(Zc[j]− µi)2

2σ2
i

))

(5.10)

The GMM parameters are represented by the set {wi, µi, σi} with Nw being the number

of Gaussian densities and Nz being number of feature frames in Zc[n]. For the ease of
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writing and understanding the equations we define:

γj
i =

wi
√

2πσ2
i

exp

(

−(Zc[j]− µi)2

2σ2
i

)

γj =
Nw∑

i=1

γj
i

L =
1

Nz

Nz∑

j=1

γj

(5.11)

Using the above definitions we maximize Eq. (5.10) by gradient ascent via its partial

derivative with respect to the parameters in P . It can be shown that:

∂L

∂p[m]
=

1

Nz

Nz∑

j=1

Nw∑

i=1

γj
i

γj

(Zc[j]− µi) Zc[j −m]

σ2
i

(5.12)

Next, we iteratively obtain the parameters for p[m]:

p̂[m] = p[m] + ν
∂L

∂p[m]
(5.13)

where ν is a small-valued learning-rate parameter. The filter update in (5.12) provide

a deep understanding into the evolution of P . Summing over the j terms for a fixed i in

Eq. (5.12) results in an update for p[m] that is proportional to the mth auto-correlation

sequence of Zc[n]. Summing over the i terms for a fixed j in Eq. (5.12) results in p[m]

becoming proportional to the summed and weighted likelihoods of γi
j. Thus the overall

filter updates are proportional to the “likelihood-weighted” auto-correlation sequences

of Zc[n].

Note that Eq. (5.12) requires knowledge of Zc[j] which in turn depends on P in

Eq. (5.9), so Zc[j] will also be updated after each iteration of P .

5.2.2 The Top-1 Approximation for Filter Updates

The filter update described in Eq. (5.13) may be simplified through suitable approxi-

mations. A common approximation in GMMs is to replace the overall GMM likelihood

score in Eq. (5.10) by the top-scoring Gaussian density among the set of Gaussian
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mixtures. This approximation, referred to as the Top-1 approximation, results in:

γj =
Nw∑

i=1

γj
i ≈ γj

i∗
, i∗ = argmax

i
γj
i

∂L

∂p[m]
=

1

Nz

Nz∑

j=1

(Zc[j]− µi∗) Zc[j −m]

σ2
i∗

(5.14)

Note that i∗ is a function of j in Eq. (5.14). This approximation is more valid

for sparsely-distributed features in terms of the Gaussian densities where only the

top-scoring density can adequately describe the overall feature score. A Top-N ap-

proximation could be similarly derived by approximating Eq. (5.10) with the top-N

Gaussians.

5.3 LIFE FILTER PARAMETERS

In this section we finalize a LIFE processing framework with a robust set of parameters

determined experimentally. Please see Sec. 4.3.1 for details on the ASR experimental

setup.

5.3.1 Pre-processing for LIFE Filters

The LIFE processing framework assumes the cepstral features to be independent across

time but in practice the features are correlated and hence not independent. Consid-

ering this, a pre-processing step before the LIFE filtering stage that may partially

decorrelate the features may assist the LIFE processing. In Chapter 4 we noted that

CPF processing has an effect of partially decorrelating the features, consequently we

experimented with pre-processing the LIFE filters with CPF processing. We present

the corresponding ASR WER results on DARPA-RM [12] database in Fig. 5.2. We see

that at RT of 300 ms, CPF provides a relative reduction of 8.6% in WER compared to

MFCC. LIFE processing without CPF pre-processing provides a 31.3% relative reduc-

tion in WER over MFCC but LIFE with CPF pre-processing the features provides 40%

relative reduction, thus the CPF pre-processing strongly assists LIFE processing. In-

terestingly we note that CPF processing improves the WER obtained using MFCC by

8.6% while it improves the processing with LIFE by 13.7%. In other words CPF works
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Fig. 5.2: A pre-processing stage for LIFE filter.

in strong synergy with LIFE processing, so we include a CPF pre-processing stage,

where the cepstral features are first passed through a CPF stage and the resulting

cepstral features are then passed through LIFE processing.

In the above experiments, LIFE processing was applied with a single-density Gaus-

sian model to model the speech cepstral features. Next, we experimentally evaluate

LIFE processing for multiple Gaussian densities.

5.3.2 Number of Gaussian densities in Modeling Speech Cepstral Features

in LIFE Processing

In Fig. 5.3 we present our LIFE-based reverberation compensation results for multiple

Gaussian densities in modeling the speech cepstral features. We see that increasing

the number of Gaussian densities does not substantially improve the WER. We also

highlight an interesting tradeoff associated with increasing the number of Gaussian

densities. The advantage includes a better modeling for the overall distribution of the

speech feature. But this also results in a poorer model for individual utterances and

since LIFE processing works on an utterance basis, where the utterances are typically 4-

5 seconds long, increasing the Gaussian densities offers a modeling tradeoff. Increasing
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Fig. 5.3: LIFE processing for different Gaussian densities.

Gaussian densities also increases the computational complexity of the LIFE algorithm.

On the basis of the results in Fig. 5.3 we determine the number of Gaussian densities

to be 1 in subsequent implementations of LIFE framework.

5.3.3 Duration of Filter Taps in LIFE Processing

The number of filter taps i.e. M in (5.9) is an important parameter in the LIFE

algorithm. In Fig. 5.4 we evaluate the LIFE algorithm for different number of filter

taps. Note that the frame-shift interval in the feature extraction was 10 ms, so each

filter-tap equivalently spans a duration of 10 ms. We see that 20 taps, corresponding to

200 ms, works nearly the best for LIFE processing at different reverberant conditions.

5.3.4 An Oracle Experiment with Zero Modeling Error

LIFE processing works on the reverberation model derived in Sec. 3.3.1. There,

model derivation incurred an additive error term that we ignored in our final model

in Fig. 3.10. In practice, the model will have some errors and may degrade the overall

dereverberation performance of LIFE processing. We conducted an oracle experiment
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Fig. 5.4: LIFE processing for different filter lengths. A single filter-tap spans 10 ms

for a feature extraction scheme with the frame sampling frequency of 100 Hz.

to test LIFE processing under zero modeling error. This oracle experiment isolates

and identifies the potential merits of LIFE processing that would be obtained with a

correct model. We simulated the oracle experiment by directly convolving the cepstral

features with exponentially decaying RIRs corresponding to RTs of 300 and 500 ms.

LIFE processing was applied to the convolved features. Note that even though the

modeling error was zero, LIFE processing is still blind to the actual RIR. We present

the corresponding ASR results in Fig. 5.5. LIFE processing with zero modeling error

achieves a WER of 11% at the simulated RT of 500 ms, which is fairly close to the

MFCC baseline for clean conditions of 6.7%. Thus we conclude that LIFE processing

by itself has strong merit and can provide huge improvements in absence of reverber-

ation modeling error. Finally, comparing WER in the above oracle experiment with

that obtained in practical reverberation environments in Fig. 5.2, we note that al-

though LIFE processing provides substantial improvement in WER, its full potential

is limited due to modeling error. We hope that a future improvement that reduces

modeling error before LIFE processing can provide substantial further improvement

for ASR.
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Fig. 5.5: LIFE processing for an oracle experiment with zero modeling error.

5.4 DATABASES AND RESULTS

In this section we experimentally evaluate the LIFE algorithm against some of the

established baseline and reverberation compensation algorithms. Fig. 5.6 summarizes

our ASR dereverberation experimental results using the DARPA RM database. There,

the LIFE GMMs were trained using a single Gaussian density and the inverse P fil-

ter was 20 taps long. We note that compared to the MFCC features, the baseline

algorithms in LTLSS, RASTA-PLP, MVMF, CPF provide only about a 10-15% rela-

tive reduction in WER across different reverberation conditions, but LIFE processing

provides 35-40% relative reduction in WER compared to results using MFCC features.

5.4.1 Composite LIFE Filter

In Fig. 5.7 we plot the frequency responses corresponding to the estimated LIFE filters

for the “C1” cepstral feature for 4 different utterances from the RM database, the

utterances all having been recorded at RT of 300 ms. LIFE filters were individually

obtained for each of the utterances. We see that the frequency responses exhibit a

high-pass characteristics, which is expected because reverberation smears the speech

spectrum and acts like a low-pass filter in time. Consequently the dereverberation
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Fig. 5.6: WER comparisons for LIFE processing.
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Fig. 5.7: LIFE frequency responses for the “C1” cepstral feature for 4 different utter-

ances at RT of 300 ms.

filter is expected to exhibit a high-pass characteristic.

The LIFE filters for the different utterances for a particular reverberation condi-

tion are similar but not identical. We ideally expect the LIFE filters to be identical for

55



0 10 20 30 40 50
−12

−10

−8

−6

−4

−2

0

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

Fig. 5.8: The average frequency response for the “C1” cepstral feature at RT of 300

ms.

a particular reverberation condition. This raises an important question as to whether

the differences among the filters are significant for ASR. Alternatively, is it necessary

for the LIFE filters to be derived on an utterance-by-utterance basis? If not, could

a composite-LIFE filter be obtained by averaging over the LIFE filters for different

utterances for a particular reverberation condition? To answer the above questions,

we conducted an experiment in which for each reverberation condition, we individually

obtained the LIFE filters for 20 different utterances belonging to that particular con-

dition. We also obtained a composite-LIFE filter by averaging over the 20 individual

LIFE filters and appropriately applied this composite-LIFE filter to all the utterances

belonging to that particular reverberation condition in the database. Note that the

LIFE filters are different for the different reverberation conditions but are identical

for the different utterances of a particular reverberation condition. We expect the

composite-LIFE filters to work similar to the original LIFE processing.

In Fig. 5.8, we plot the frequency response of the composite LIFE filter at RT of

300 ms and in Fig. 5.9, we compare the LIFE and composite-LIFE algorithms. These

results verify that composite-LIFE filters perform similar to the original LIFE filter,

and hence we note that the an individual LIFE filter for a particular reverberation
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Fig. 5.9: WER for the composite-LIFE filter that was evaluated for each of the differ-

ent room conditions.

condition incorporates a strong average characteristics which is strongly dependent

upon the reverberation condition.

5.4.2 Experiments on Real Room Impulse Response

In all the experiments so far, the reverberant speech was obtained by convolving clean

speech with a simulated room impulse response (RIR). In this section, we apply LIFE

processing on data obtained from a real RIR. We obtained an RIR corresponding to RT

of 500 ms from the ATR [13] database. In Fig. 5.10, we plot the WER for MFCC and

LIFE processing. We see that benefits from LIFE processing extend to real RIRs, and

at RT 500 ms, we obtain 38% relative reduction in WER. This improvement favorably

compares with the 35-40% relative reduction in WER for RTs 300-500 ms conditions

in Fig. 5.6.

5.4.3 Experiments on Recorded Speech in Non-Stationary Environment

All of the experiments reported so far were done on speech utterances convolved with

either simulated or real RIRs. This implicitly assumed the room to be stationary
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Fig. 5.10: LIFE processing on a recorded RIR from ATR database.

which may not be true in practical environments. Usually speaker and listeners may

move around in room which leads to non-stationarities in the RIR. Although LIFE

processing worked substantially well in stationary environments, it does not guarantee

its performance in realistic non-stationary environments. In Fig. 5.11 we report LIFE

processing results on an ATR [13] database with TIMIT utterances recorded in a

room with RT of 470 ms. There the speaker was moving in circular motion and the

experiment setting incorporates a non-stationary reverberant environment. We note

that LIFE processing works in non-stationary environments as well and provides a

45% relative reduction in WER compared to baseline MFCC processing.

5.4.4 Multi-style Experiments

The experimental paradigm in all the results reported so far was with clean train-

ing, i.e., training was done on clean speech, and decoding was done on the acoustic

models obtained from the clean training. In this section, we introduce a multi-style

experimental paradigm for ASR. In the multi-style paradigm, the training set includes

data from multiple available environment conditions [66]. For reverberation compen-

sation experiments, the training set may include clean data as well as data from a few

reverberant conditions.
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Fig. 5.11: LIFE processing in non-stationary environments.

The multi-style experimental paradigm has become exceedingly important for

speech recognition applications, as it has been reported that a lot of robustness to noise

and reverberation can be easily obtained by a simple multi-style training paradigm.

Interestingly, training does not necessarily require the test condition data to be present

during training. Thus, multi-style training does not require a strict match between the

training and testing conditions and significantly enhances the merit in the approach.

Next we elaborate our framework for multi-style training experiments. We ob-

tained data from 3 different environment conditions as mentioned below:

1. R1: Data from this environment were simulated through the RIR [6] software.

The room dimensions were 5× 4× 3 m.

2. R2: Data from this environment were simulated through the RIR software in

above. The room dimensions were 8× 6× 4 m.

3. JR2: The ATR database includes real recorded RIRs from a few different rooms.

The particular data used were for a room with RT of 500 ms.

In Fig. 5.12, we present our speech recognition experiments in a multi-style setting.

There, the training set data included data from the R1 environment with 3 different

reverberation times of 0, 200, and 500 ms. Testing was performed across the test

59



conditions used in Fig. 5.12. We make the following observations about the multi-

style training paradigm:

• The multi-style training paradigm by itself provides a 60-70% relative reduction

in WER. This is a huge improvement over the clean training paradigm. We

also note that multi-style paradigm also works when data from a particular

test condition are not present in the training data. For example, the training

conditions in Fig. 5.12 include data only from the environment R1, but we see

that this training also provides a 64% relative reduction in WER for data from

environment R2 at RT of 300 ms condition. This is an extremely promising

result for the multi-style setting as it suggests that the results do not critically

depend upon a strong match between the training and testing conditions and

that multi-style training can work even if data from a particular room condition

and/or from a particular environment is not present in the training set.

• Under clean-training paradigm, LIFE processing provides a 30-45% relative

reduction in WER over MFCC features. But under the multi-style training

paradigm even the MFCC features provides 60-70% relative reduction in WER,

thus the clean-training-based LIFE processing is no match for the multi-style-

training-based MFCC processing. Comparing MFCC and LIFE under multi-

style training, we note that on average LIFE processing provides an 18% im-

provement in WER compared to MFCC processing. While it is slowly being

found that many of conventionally popular algorithms for robust speech recog-

nition provide little or no benefit in the multi-style training, LIFE processing

provides significant benefits under multi-style training.

• As expected, the improvement from LIFE processing is different for the various

test environments. Data from the R1 condition were present in the training

condition, and thus provides a partial match for data from test conditions from

R1 condition. In this case LIFE processing provides on average a 12% relative

reduction in WER. Data from the environments R2 and JR2 were not present

in the training data. For the JR2 test condition LIFE provides a 22% relative

reduction in WER. Thus, the improvements from LIFE are greater for a looser

match between training and test conditions.

In Fig. 5.13 we present our WER results for multi-style training framework us-
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Fig. 5.12: LIFE processing in a multi-style training paradigm.

ing the DARPA WSJ database. There the training set included data from the R1

environment with RT of 0, 300, and 500 ms conditions. Our observations for the

reverberation-compensation experiments on the WSJ database are similar to those for

the RM database in Fig. 5.12. We see that for MFCC features, when testing in RT of

300 ms multi-style training provides a 62% relative reduction in WER at RT of 300

ms test condition. But we also note that under multi-style training LIFE processing

provides an additional 17% relative reduction in WER over MFCC. Thus the benefits

from LIFE processing extend to the multi-style training conditions on WSJ database.

In Fig. 5.14, we compare the multi-style training condition in Fig. 5.13 with a

specific type of multi-style training where the training set consists of data only from

the environment R1 with RT of 300 ms. Thus data from the R1 environment at RT of

300 ms will be strictly matched with data in training condition and that is expected

to perform well in ASR experiments. In Fig. 5.14, we first note that the clean data

(RT of 0 ms) performs very poorly for the “Match R1-300” condition. This is so

because the training data did not include clean speech. For the MFCC features with

RT of 300 ms, the “Match R1-300” provides a 6.5% relative reduction in WER over

“Match” (matched) condition training. There, an improvement was expected for the
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Fig. 5.13: WER comparisons for LIFE processing on WSJ database on clean and

multi-style training paradigms.

“Match R1-300” case since data from that particular environment and only from that

environment was present in the training set. Finally we also note that LIFE processing

provides an improvement even when the training and test sets are strictly matched.

For the “Match R1-300” test case at RT of 300 ms, LIFE provides a 18% relative

reduction in WER.

5.4.5 MLLR Experiments

In this section, we study MFCC and LIFE features in the context of maximum-

likelihood linear regression (MLLR) [67, 68] processing framework. MLLR applies

a transformation to the means of the acoustic models to adapt the models to a par-

ticular environment condition. MLLR experiments require transcripts of the spoken

utterances and correspondingly we undertake unsupervised (UnSup) and supervised

(Sup) versions of MLLR. In the unsupervised setting, the transcripts are obtained

by decoding on the original acoustic models, and these transcripts are then used for

MLLR computation. These transcripts will in general be erroneous and may not result

in good MLLR performance. In supervised experiments, the transcripts are assumed

to be known a priori, which should provide better performance than unsupervised

MLLR.
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Fig. 5.14: WER comparisons for LIFE filter under a strongly matched condition at

RT of 300 ms.

In Fig. 5.15, we compare MFCC and LIFE in the context of MLLR on RM

database. We see that adding unsupervised MLLR to MFCC provides a 17% rela-

tive reduction in WER at RT of 300 ms condition, while the corresponding supervised

MLLR provides a 50% relative reduction in WER. Comparing LIFE with unsuper-

vised MLLR, we note that LIFE (wihout any MLLR) provides 40% relative reduction

in WER, which is far better than the unsupervised MLLR using MFCC features. Fi-

nally, comparing supervised MLLR for MFCC and LIFE features, we see that LIFE

processing provides an additional 14% relative reduction in WER. Thus the benefits

of LIFE processing extend processing that includes MLLR.

5.5 DISCUSSION

In this chapter we considered the problem of dereverberation for ASR. We proposed

an algorithm based on a new framework for studying the problem of reverberation for

ASR. Based on our model, we motivated and developed a maximum-likelihood-based

inverse filtering technique for dereverberation. The LIFE filter parameter estimation

does not require any a priori information about the room conditions and thus is
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Fig. 5.15: WER comparisons for LIFE filter.

blind to the actual room response. The filters parameters are derived from a short

speech utterance (4-5 s). Thus, the filters will in general be different across utterances

and also different across reverberation conditions. Since LIFE filters compensate for

reverberation, it is expected that the differences in filter parameters will primarily be

due to the different reverberation conditions and not due to differences in the speech

utterances. We conducted an experiment to verify this hypothesis and found that the

composite filter worked nearly as well as the original LIFE filter. We demonstrated our

approach in reverberant environments, and compared to baseline features we obtained

up to 35-40% relative reduction in WER.
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CHAPTER 6

NON-NEGATIVE MATRIX FACTORIZATION FOR

SPEECH DEREVERBERATION

In this chapter we propose a spectral-domain based algorithm for dereverberation.

Our work builds on the model of reverberation in the spectral domain derived in

Chapter 3. For convenience we show the model in Fig. 6.1. There, Xs[n] represents

the spectral components corresponding to clean speech for the discrete time index

n. Hs[n] filter encodes the effects of reverberation and Ys[n] is the observed spectral

value. The model thus represents reverberation in the spectral domain as a convolution

operation between the underlying clean spectral components Xs[n] and the filter Hs[n].

The algorithm utilizes the property that spectra are non-negative, and uses this non-

negativity as a constraint to factor the observed reverberated spectra into individual

components corresponding to Xs and Hs. This algorithm is called non-negative matrix

factorization (NMF) 1.

Xs[n] ! Hs[n] !
Ys[n]

Fig. 6.1: Modeling reverberation in the spectral feature domain.

6.1 MATHEMATICAL FORMULATION OF NMF

Our approach for dereverberation using the spectral domain model presented in Sec. 3.2

is to try to estimate the spectrum of clean speech Xs through a decomposition of the

reverberated speech spectrum Ys into its convolutional components Xs and Hs. In this

section we formulate a least-squares error criterion to achieve this decomposition.

1This work was published in [69].

65



In general, reverberation compensation algorithms should not require a priori

knowledge of nature of the reverberation. This is the case for our algorithm as well.

We do not require any knowledge of Xs and Hs. Our model of reverberation represents

the effects of reverberation as the filter Hs, which is not observed directly. Rather we

attempt to infer the parameters of Hs through the reverberated spectrum Ys. This

problem is highly unconstrained, and there exist infinitely many decompositions of Ys

into Xs and Hs. To constrain the solution space, it becomes necessary to assume some

knowledge about either Xs or Hs that we can use as constraints. In our work, we

choose two such constraints. One is that the spectral components are non-negative

i.e. all the elements in Xs and Hs are greater than or equal to 0. This is apparent

since the magnitude spectra are inherently non-negative. The second assumption is an

optional one, wherein we assume that the clean spectra Xs are sparse. Later in this

chapter we discuss these constraints in greater detail.

To solve the problem of decomposition we use a non-negative matrix factorization

(NMF) framework. NMF was initially proposed for data clustering application in [70].

It was further developed and applied to audio applications in [71, 72], and for speech

signal dereverberation in [64]. We use the NMF paradigm in [64] [71] to build our

framework for dereverberation for ASR. The NMF-based dereverberation work in [64]

was guided for speech enhancement applications, whereas, our work in this chapter

focuses on improving ASR performance. A key contribution of our work over [64] is

the incorporation of Gammatone filters [73] in the NMF framework.

Next we consider the mathematical formulation of NMF. We first assume that our

actual observation sequence is Zs[n, k], which is approximately Ys[n, k]

Zs[n, k] ≈ Ys[n, k] = Xs[n, k] ∗Hs[n, k] (6.1)

The differences between Zs and Ys can result from observation noise or from errors in

decomposing Zs into the convolutional components Xs and Hs. Using (6.1), we define

our objective to be the minimization of the mean-squared error between Zs and Ys.

This objective function is minimized by a gradient descent process that guarantees at

least a locally optimal solution. We further impose the non-negativity and sparsity
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constraints [64] as defined below:

Minimize, E =
∑

i

(

Zs[i, k]−
∑

m

(

Xs[m, k]Hs[i−m, k]
))2

+ λ
∑

i

Xs[i, k]
p

Where Xs[n, k] ≥ 0, Hs[n, k] ≥ 0,
∑

n

Hs[n, k] = 1

(6.2)

where we also constrain theHs[n, k] to sum to 1 for each k, this avoids scaling problems.

Note that sparsity implies that while a small number of spectral components in Xs are

expected to exhibit high values, most other components have very small (negligible)

values. Note also that of the many ways that exist to include sparsity constraints in

an NMF framework, we choose to use the L1-norm. The first term in the objective

function (6.2) minimizes the mean-squared error and the second term imposes sparsity

on Xs. The optimization is solved subject to the stated non-negativity constraints on

Xs and Hs. Corresponding to the L1 norm, we choose p = 1 in (6.2).

6.1.1 Minimization of the Objective Function in an NMF Framework

We minimize the objective function in (6.2) by a variant of the gradient descent ap-

proach that ensures that the spectral components at the end of each iteration of the

gradient descent are non-negative. Noting that for p = 1 in (6.2), the derivative of the

objective function with respect to Xs is

∂E

∂Xs[n, k]
= −2

∑

i

(

Zs[i, k]− Ys[i, k]
)

Hs[i− n, k] + λ (6.3)

with the Xs update equation being

X̄s[n, k] = Xs[n, k]− ηs
∂E

∂Xs[n, k]

where ηs is the learning-rate parameter. Note that in general there is no guarantee

that the updated X̄s is non-negative. However, we can select a special value of ηs to

impose non-negativity. We choose

ηs =
Xs[n, k]

2
∑

i Ys[i, k]Hs[i− n, k] + λ
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Incorporating the above value of ηs in (6.3), the updates become:

X̄s[n, k] ← Xs[n, k].

∑

i Zs[i, k]Hs[i− n, k]
∑

i Ys[i, k]Hs[i− n, k] + λ/2
(6.4)

The updates for Hs can be derived in parallel to the Xs updates in (6.4).

∂E

∂Hs[n, k]
= −2

∑

i

(

Zs[i, k]− Ys[i, k]
)

Xs[i− n, k]

H̄s[n, k] = Hs[n, k]− ηs
∂E

∂Hs[n, k]

ηh =
Hs[n, k]

2
∑

i Ys[i, k]Xs[i− n, k]

H̄s[n, k] ← Hs[n, k].

∑

iZs[i, k]Xs[i− n, k]
∑

i Ys[i, k]Xs[i− n, k]

(6.5)

The iterative update is done for a specified number of iterations. Further, given a non-

negative initialization, the updates are guaranteed to be non-negative. Eq. (6.4)(6.5)

provides iterative updates for the output of a particular sub-band, indexed by k.

Similar processing will also be applied individually to each of the sub-bands. The

NMF optimization will at least reach a locally optimal solution. While the estimated

Xs may not be identically equal to the actual clean spectra, it is expected that the

processing will result in a solution for Xs that will be largely dereverberated.

Fig. 6.2 presents both, the general procedure for frequency-domain NMF process-

ing for dereverberation [64] as well as our specific approach using Gammatone spectra.

In both cases, the speech signal is first pre-emphasized (PE) with a causal filter hav-

ing a single zero at z = 0.97. It is then windowed and FFT analysis is performed on

the windowed signal. In Fig. 6.2(a) which represents NMF processing in the Fourier

frequency domain, the NMF decomposition is directly applied individually to each of

the FFT channels. In contrast, in Fig. 6.2(b) which represents our method, NMF

processing is applied to each individual channel of the Gammatone filtered spectra,

and this is followed by an inverse transformation. Gammatone sub-bands are ob-

tained from the Fourier frequency sub-bands via the Gammatone matrix Gs[k, k′],
that stores Gammatone frequency response for the k′ Gammatone sub-band against

each of the k Fourier frequency sub-bands. NMF processing is applied to the product

Ys[n, k]Gs[k, k′]. We discuss the key advantages with Gammatone-based processing

Sec. 6.2.2. The NMF processed spectra in the Gammatone domain is multiplied by
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Fig. 6.2: (a) NMF processing in frequency domain, (b) NMF processing in Gamma-

tone frequency domain.

the pseudo-inverse of Gs to obtain the processed Fourier frequency components, from

which the signal is reconstructed. Since our processing is performed on individual

channels in the Gammatone filtered magnitude spectral domain, we call our approach

Gammatone sub-band magnitude-domain dereverberation. Finally in both the cases

the signal is optionally reconstructed or feature vectors for speech recognition may be

derived from the resultant dereverberated spectra. For an extension of this work see

[74], there we build on the NMF work presented in this chapter to provide an alternate

non-negative spectral factorization.
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6.2 KEY FEATURES OF GAMMATONE SUB-BAND NMF

In this section we highlight some key aspects of our proposed approach as shown in

Fig. 6.2(b).

6.2.1 Advantage of using Magnitude spectra over Power spectra

The model in (6.1) is an approximation and will in general incur an approximation

error Es as follows:

Ys[n, k]= Ŷs[n, k]+Es[n, k]=Xs[n, k] ∗Hs[n, k] + Es[n, k] (6.6)

We have empirically observed that the approximation error Es is lower in the magni-

tude spectral domain than in the power spectral domain (see Fig. 3.5). Thus, working

in the magnitude-spectral domain incurs lower approximation error. In our approach

shown in Fig. 6.2(b) setting the parameter q = 1 results in magnitude domain NMF

processing, and q = 2 results in power domain processing. We will refer to magnitude

domain processing as “M-NMF” and power domain processing as “P-NMF”.

6.2.2 Advantage of using Gammatone Sub-bands

Processing in the Gammatone domain provides two key benefits. First, the Gamma-

tone sub-bands apply a perceptual weighting to the signal and emphasize the frequency

regions where the speech signal is supposed to be dominant for better perception. This

directly benefits the quality of the clean signal obtained through the decomposition.

Second, working in Gammatone sub-bands offers significant saving in computation.

There are about 257 sub-bands for a 512-points FFT in Fourier frequency NMF as

compared to about 40 to 80 Gammatone sub-bands for the same processing. We

also compared the modeling error in our spectral-domain convolution in Fig. 6.1 (see

chapter 3 for details) and found the error to be smaller in the sub-band domain than

in Fourier domain. We also obtain a significant practical advantage since we esti-

mate fewer parameters from the same overall data. We refer to Gammatone based

NMF processing as “GNMF”. We also performed an experiment by substituting the

Gammatone-filter spectra with Mel-filter spectra and found the ASR results to be

comparable. This suggests that Gammatone spectra may not be uniquely the best for
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sub-band NMF processing. Mel filters however have zeroes in their Mel-spectral values.

This leads to stability issues in the pseudo-inverse calculation stage, and consequently

we prefer Gammatone filters for reliable solutions.

6.2.3 Using Different Hs for Different Sub-bands

In general, we expect the Hs[n, k] in (6.1) to be different for each of the different sub-

bands indexed by k. This is expected to result in a more effective solution for Xs than

can be obtained by using the same Hs for all the sub-bands. We verify this empirically

in the experimental section. To use the same Hs across all sub-bands, the updates in

(6.4) can be adapted as follows:

H̄s[n, .] ← Hs[n, .].

∑

k

∑

i Zs[i, k]Xs[i− n, k]
∑

k

∑

i Ys[i, k]Xs[i− n, k]
(6.7)

We refer to NMF with the same Hs across all sub-bands as “NMF-H”.

6.3 EXPERIMENTAL RESULTS

We applied the NMF formulation in Sec. 6.1 to the problem of dereverberation for

ASR. See Sec. 4.3.1 for our ASR experimental setup. In our experiments, we simulated

reverberation effects to various degrees in the the DARPA Resource Management (RM)

database, dereverberated the signals, and then measured the recognition accuracy on

dereverberated signals using matched and mismatched recognizers.

Utterances in the RM database were artificially reverberated with different RTs

[75], as shown in Fig. 7.12. In the first experiment, NMF processing methods as shown

in Fig. 6.2 were applied to dereverberate the utterances. We used 15-20 iterations of

NMF processing with a window size of 64 ms for the NMF processing, reconstructed

the speech, and extracted conventional MFC features for ASR from the reconstructed

speech. These use a window size of 25 ms. In Fig. 6.3, we present our experimen-

tal results with the different implementations of the NMF processing described in

Secs. 6.2.1, 6.2.2, and 6.2.3. Note that the bar entitled “P-NMF” shows ASR results

for conventional sparsity constrained power domain NMF [64], while the bar titled

“M-GNMF” shows the performance obtained with our approach. Experimentally, we

found that sparsity was not helpful for the Gammatone sub-bands and hence was not

71



30010

20

30

40

50

Reverberation Time [ms]

W
ER

[%
]

 

 

MFCC
P−NMF−H
M−NMF−H
P−NMF
M−NMF
P−GNMF−H
M−GNMF−H
P−GNMF
M−GNMF

Fig. 6.3: WER comparisons for different flavors of NMF.

applied. A small sparsity [64] factor was applied for NMF processing in the Fourier

frequency domain.

Overall, we note that NMF processing in gammatone bands provides 20-25% rel-

ative reduction in word error rate (WER) over the same processing in the Fourier

frequency domain. NMF processing in the magnitude domain provides 10-18% rel-

ative improvement over power domain processing. In addition, the use of different

Hs for different sub-bands provides a 10-20% relative improvement over the same Hs

for all sub-bands. We thus finalize NMF processing in the magnitude domain with

Gammatone sub-bands and different Hs for different sub-bands as our baseline NMF

processing, and from now on we refer to the configuration “M-GNMF” as simply

“NMF”.

In Fig. 6.4 we plot the WER obtained from the Fourier-domain-based magnitude

NMF processing. We study the effect of sparsity in clean as well as in RT of 300 ms

condition. We see that an increasing value of sparsity provides a tradeoff between the

WER for clean and the reverberated conditions. Though sparsity helps in reverberant

conditions, a large sparsity value increasingly hurts results in the clean condition.
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Fig. 6.4: WER comparisons for m-NMF in Fig. 6.3 with different sparsity factors.

Since the spectra of clean speech are already sparse, we need not enforce additional

sparsity constraints on the clean condition. Based on the tradeoff in Fig. 6.4, we choose

a sparsity level of 5 for the Fourier-domain-based NMF processing. The Gammatone

speech spectra do not exhibit sparsity characteristics and hence we did not incorporate

a sparsity factor in GNMF conditions in Fig. 6.3.

In Fig. 6.5, we plot the WER results for the case where the system is trained with

clean (unreverberated speech) and tested on dereverberated speech. We see that here

the relative reduction in WER is limited to 15-20% for the baseline dereverberation

algorithms. The NMF processing provides a 45% relative reduction in WER at RT of

300 ms which is substantially better than any of the baseline algorithms. We also note

that improvements from NMF processing are similar to those obtained from LIFE pro-

cessing in Chapter 5. A key advantage of NMF is that it does not require any a priori

information about the distribution of speech features. Although, LIFE processing in

general requires such prior distribution information, we experimentally evaluated in

Sec. 5.3 that LIFE processing with single Gaussian density worked the best. Corre-

spondingly, LIFE processing too does not require a priori density information.

In Fig. 6.6, we plot the unprocessed and NMF compensated speech spectrograms.

The effect of reverberation can be seen in the lateral spectral smearing in unprocessed
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Fig. 6.6: [Top] Unprocesssed Spectra, [Bottom] NMF Processed Spectra.
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spectr. Reverberation not only blurs the boundaries between different word units but

also makes them less distinct from one another. The NMF-processed spectrogram is

also shown in Fig. 6.6. There, we see that the smearing along time is reduced, the word

boundaries are clearer and the amount of overlap from one word segment to another

is also reduced.

6.3.1 An Oracle Experiment with Zero Modeling Error

In Sec. 5.3.4 we noted that the reverberation model on which LIFE processing oper-

ates is imperfect and carried out an oracle experiment to study LIFE processing under

zero modeling error. NMF processing works on the reverberation model in (3.10) that

too is affected by an additive error term. In this section, we report an NMF-based

oracle experiment that parallels the LIFE-based oracle experiment in Sec. 5.3.4. This

isolates the performance of NMF by itself under zero modeling error conditions. We

simulated the oracle experiment by directly convolving the spectral features with an

exponentially decaying RIRs corresponding to RTs of 300 and 500 ms. NMF pro-

cessing was applied on the convolved features and was blind to the actual RIR. We

present the corresponding ASR results in Fig. 6.7. We see that NMF-based processing

with zero modeling error achieves a WER of 21% at RT of 500 ms. In Fig. 6.5 we

reported a comparable practical (non-oracle) NMF experiment and noted that results

using oracle knowledge were substantially better. Thus we believe that modeling er-

ror substantially limits the NMF performance in practical environments. Comparing

the oracle experiments for NMF and LIFE processing in Fig. 6.7, we see that LIFE

processing shows greater potential than NMF.

6.3.2 Experiments using Real Room Impulse Responses

In the experiments so far, the reverberated speech was obtained by convolving clean

speech with a simulated room impulse response (RIR). In this section, we apply NMF

processing on data obtained from a real RIR. We obtained an RIR corresponding to

RT of 500 ms from the ATR [13] database. In Fig. 6.8, we plot the WER for MFCC

and NMF processing. We see that benefits from NMF processing extends to real RIRs,

and at RT of 500 ms, we obtain 38% relative reduction in WER.
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6.3.3 Experiments on Recorded Speech

In the experiments so far, the reverberated speech was obtained by convolving clean

speech with either a simulated RIR or a real RIR. In this section, we apply NMF

processing on speech recorded as part of ATR [13] database. The database consists

of segments from the TIMIT database. In Fig. 6.9, we plot the WER for MFCC

and NMF processing. We see that benefits from NMF processing extend to recorded

speech where, we obtain 31% relative reduction in WER. The recorded ATR database

inadvertently included additive noise with SNRs in the range of 15-20 dB. We believe

that NMF proceeding could have provided greater improvements in absence of the

additive noise.

6.3.4 Multi-style Experiments

In all the results reported so far in this chapter, the experimental paradigm was clean

training. In this section, we introduce a multi-style paradigm for speech recognition.

In multi-style, the training set includes data from multiple available environment con-

ditions. For additional details on the multi-style training paradigm, see Sec. 5.4.4.

In Fig. 6.10, we plot WER for the case when the ASR system is trained on the

same kind of speech as it is tested on (matched-condition training), specifically the
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training set consists of data from RTs of 0, 300 and 500 ms. We note from those

experiments that the algorithm is able to improve over matched-condition testing,

and to substantially improve over clean-condition testing. Note that it is usually

very difficult to improve over matched-condition testing in ASR. It is usually used

as a gold-standard in many instances. Matched NMF provides an additional 19%

relative reduction in WER over simple matched training and testing with MFCs from

reverberated speech.

6.4 DISCUSSION

In this chapter we presented an NMF-based approach for dereverberation of speech

signals in the Gammatone sub-band domain. This work has specific advantages for

ASR that we have experimentally shown to be valid. The algorithm results in 30-45%

WER reduction under mismatched conditions, when the system is trained on clean

speech but attempts to recognize reverberated speech, or dereverberated speech as the

case may be. The algorithm presented is able to improve WER performance by about

15% relative to matched-condition training, which has been generally observed to be

a performance threshold that is very hard to exceed.
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CHAPTER 7

DELTA SPECTRAL FEATURES FOR ROBUST SPEECH

RECOGNITION

In Chapters 4, 5, and 6, we studied the problem of dereverberation for ASR and

provided algorithms to compensate for it. Apart from reverberation, additive noise

is also a major challenge for ASR. Further, many of the ASR usage environments

may include both noise and reverberation [18]. Because ASR word accuracy degrades

[25, 76, 77] severely in additive noise conditions, we consider the issue of robustness of

ASR to additive noise in this chapter.

Even though a number of algorithms [53, 77–80] have been successfully developed

for noise robustness of ASR, the improvement is still limited in many of the real-world

noise conditions. A few algorithms have shown very good performance in certain

noise conditions, but the performance could not be replicated across different noise

conditions. Our work in this chapter is guided towards deriving inherently robust

features for ASR that can provide improvements across different noise conditions. We

base our work on some of the key characteristics of the speech signal that differentiate

it from noisy signals, specifically the non-stationarity characteristics of speech.

Most current speech recognizers derive their features in the broad framework as

shown in the left column of Fig. 7.1, which describes the development of features

similar to Mel-frequency cepstral coefficients (MFCC). Typically delta-cepstral and

double-delta cepstral coefficients are appended to MFCC features, as discussed below.

In this chapter we argue that recognition accuracy in many practical environments

is improved by replacing delta features in the cepstral domain by delta features in

the spectral domain. We support this argument using both graphical and analytical

arguments based on the spectra of speech and common environmental noises, as well

as experimental studies in which we compare the recognition accuracy obtained using

our framework in the recently-proposed robust ETSI advanced front end (EAFE) [31]

and power-normalized cepstral coefficients (PNCC) [81].
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Fig. 7.1: (a) 13-dimensional MFCC features and 26-dimensional delta-cepstral coeffi-

cients (DCC), (b) 26-dimensional delta-spectral cepstral coefficients (DSCC) features.

The rest of the chapter is organized as follows: we discuss the delta-cepstral fea-

tures and their robustness to noise in Sec. 7.1. In Sec. 7.3 we propose the new delta-

spectral features. We provide the rationale for our proposed features in Sec. 7.4, and
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Fig. 7.2: Word error rates (WERs) obtained in additive white-noise using MFCC

features, MFCC+Delta features, and MFCC+Delta+DoubleDelta features.

our experimental results are in Sec. 7.5. Sec. 7.6 summarizes this study.

7.1 DELTA-CEPSTRAL FEATURES

Delta-cepstral features were proposed (in a different form) by Furui in [82] to add

dynamic information to the static cepstral features. They also improve recognition

accuracy by adding a characterization of temporal dependencies to the frames of the

hidden-markov models (HMM), which are nominally assumed to be statistically inde-

pendent of one another. For a short-time cepstral sequence C[n], the delta-cepstral

features are typically defined as

D[n] = C[n +m]− C[n−m] (7.1)

where n is the index of the analysis frames and in practice m is typically 2 or 3.

Similarly, double-delta cepstral features are defined in terms of a subsequent delta-

operation on the delta-cepstral features. Fig. 7.2 plots the word error rate (WER) for

speech recognition in the presence of white noise for the DARPA Resource Management

(RM) database, following experimental procedures described in Sec. 7.5. We note that

the addition of delta-cepstral features to the static 13-dimensional MFCC features
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Fig. 7.3: (a) Short-time power plot of a Mel-channel (center frequency 1000 Hz)

for a speech and a “real-world” noise segment using 10-ms frames, (b) Short-time

power for clean speech as in (a) and speech in 0-dB “real-world” noise from (a), (c)

Logarithmic power plot for clean speech and noisy speech in (b), (d) Temporal difference

operation over the signals in (c), (e) Temporal difference over the signals in (b), (f)

Gaussianization operation over the signals in (e).

greatly improves speech recognition accuracy, and a further (smaller) improvement is

provided by the addition of the double-delta cepstra. For these reasons some form

of delta and double-delta cepstral features are part of nearly all speech recognition

systems. It can be seen that the improvement provided by delta features gradually

diminishes with lower SNR. We also note that from Eq. (7.1), it can be easily shown

that E[D[n]C[n]] = 0, where E[.] is expectation operator. So the delta-features are

uncorrelated with the static features which helps the frame-independence assumption

in the HMM in ASR.

While the addition of delta-cepstral coefficients (DCC) to MFCC coefficients does

indeed improve ASR recognition accuracy, they do not provide great robustness in low
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SNR noise conditions. The reasons for this can be understood in graphical form by

consideration of Fig. 7.3, which depicts various manipulations of the short-time power

of clean speech, and speech in “real-world” noise at 0-dB SNR (with noise recorded

naturally from locations such as a market, a food court, the street, and a bus stop).

Fig. 7.3(a) plots the short-time power for a particular speech segment, and for the cor-

responding noise segment. We note that the speech signal power exhibits a very high

dynamic range, while the noise spectral power is much more static than the speech

power. Fig. 7.3(b) plots the short-time power for clean speech and speech plus noise

at 0 dB noise using the noise from Fig. 7.3(a). Unsurprisingly, the peaks of Fig. 7.3(b)

remain relatively intact, while the “valleys” are filled by the noise. The corresponding

log-power values are shown in Fig. 7.3(c), and they are a step in the extraction of

MFCC coefficients, as seen in Fig. 7.1(a). Due to compressive nature of the log nonlin-

earity, the spectral peaks are approximately same for the clean and noisy speech but

the remaining frames exhibit a high degree of mismatch. Since noise fills the valleys of

the curves, it is relatively stationary, the noisy log-spectral contour exhibits a sharply

reduced dynamic range in comparison to the corresponding clean log-spectral contour.

Finally, plotting the corresponding delta-cepstral features in Fig. 7.3(d), we note that

the delta features still exhibit a high degree of mismatch between clean and noisy con-

ditions. The delta-spectral features proposed in the Sec. 7.3 both retain the contextual

properties of delta-cepstral features and are robust to noise and reverberation as well.

7.2 NON-STATIONARITY OF SPEECH POWER SEQUENCE

It is well known that speech signals are locally stationary within 25-30 ms but globally

non-stationary. In addition, speech signals exhibit a very high dynamic range in terms

of their spectral amplitude in a narrow band frequency range. In Fig. 7.4, we plot the

output of a Mel-filter bank centered at 1050 Hz for a typical speech and noise signal.

The noise signal is part of a real-world noise recording (see details in Sec. 7.5). We

observe that the noise power flow is relatively more stationary than speech power flow.

We also observe that the speech power flow exhibits very high amplitude variations.

The stationarity and dynamic range characteristics of the speech power flow is very

particular to speech signals – it is not exhibited by many other real-world noise con-

ditions. It is probably these characteristics of speech signals that provide human ears
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Fig. 7.4: Output of 14th Mel-frequency filter, center frequency 1050 Hz, for a typical

speech and noise segment.

with the enormous ability to detect speech sounds in presence of background noise [83].

Due to the differences in stationarity characteristics of speech and noisy signals, human

ears can largely ignore noise that appears to be perpetually present [84] and pay more

attention to the speech signal with rapidly changing spectral patterns. Among the

different types of interfering signals that we face in the real-world, interference from

another speech signal is among the most difficult speech perception tasks for humans.

This is because the interfering speech signal will, of course, have similar power flow

characteristics as that of the target speech signal, so the ability to distinguish one

speech signal from another diminishes.

Based on our understanding and analysis on the differences of speech and noise

spectral characteristics, we propose delta-spectral cepstral coefficients (DSCC) features

for robustness to noise. As shown in Fig. 7.1, noise spectral values are relatively flat

whereas speech spectral values change rapidly. So taking a difference across frames

strongly attenuates the noise components.

7.3 DELTA-SPECTRAL CEPSTRAL COEFFICIENTS

We now discuss the delta-spectral cepstral coefficients for ASR. These features are

motivated by the non-stationarity of speech signals that had been observed in Sec. 7.2

and also in Fig. 7.3(a) where it is easily observed in that figure that the short-time
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power of speech varies much more rapidly than the short-time power of noise. The

vast differences between the rate of change of power for speech and noise are likely to

be one of the many cues that human ears can use to ignore the relatively stationary

noise signals and focus on the rapidly-changing power of speech signals.

The proposed delta-spectral ceptral coefficient (DSCC) features are described in

block diagram form in Fig. 7.1(b). Our objective is to combine the speech contex-

tual information captured by the DCC features in Fig. 7.1(a) with a greater degree of

robustness to additive noise. As can be seen, the major changes are that the initial

time-differencing operation is now moved earlier in the processing and a new Gaus-

sianization stage is added. Specifically, performing the delta operation described by

Eq. (7.1) in the spectral domain will enhance the fast changing speech components,

and suppress the slowly-changing noisy components. Fig. 7.3(e) plots the outcome

of the delta operation in the spectral domain on the power contours in Fig. 7.3(b).

The advantage of the delta-spectral approach is clear by comparison of the similarity

of the curves representing clean and noisy speech in Fig. 7.3(e) (which were obtained

by applying the delta operation in the spectral domain) to the corresponding curves

in Fig. 7.3(d) (which were obtained by applying the delta operation in the cepstral

domain). Thus, overall the DSCC feature extraction process is identical to that of

MFCC features until the “Mel-Filter Spectrum”. The DSCC features are derived from

the Mel-spectrum by applying a temporal difference operation on the spectral values.

Specifically, a filter

Hd(z) = zd − z−d (7.2)

is applied on the individual Mel-spectral feature sequences. The parameter d ∈ [2, 4]

was experimentally found to work well.

Experimentally we found that the delta-spectral features in their current form are

unsuitable for speech recognition applications because the raw delta-spectral cepstral

features are highly non-Gaussian, as is seen in Fig. 7.5. To adapt the delta-spectral

features for speech recognition, we apply histogram normalization to the delta-spectral

features to give them a Gaussian distribution, as shown in Fig. 7.5(b). This Gaus-

sianization nonlinearity is applied on an utterance-by-utterance basis. Fig. 7.3(f) plots

the “Gaussianized” delta-spectral features, which are numerically compressed by the

DCT operation as in Fig. 7.1(b). The DCT operation compresses the 40-dimensional

delta-spectral features to a 13-dimensional vector of delta-spectral cepstral coefficients
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(DSCC). Double-delta features are then derived from the delta-spectral features in the

cepstral domain.

7.3.1 DSCC Comparison with MFCC Features

There are several key differences between the DSCC and MFCC features. The DSCC

features completely ignore the static-spectral contents, deriving their features instead

entirely from the dynamic-spectral contents. Tracing the evolution of the ASR, we

find that the static features were the first to be applied for ASR, dynamic features

were later appended to the static features to further improve ASR performance. But

as we will verify in Sec. 7.5, the dynamic features in the DSCC features are not only

good for ASR but they are also very robust to additive noise. Another important

difference between the DSCC and MFCC features is a different nonlinearity in the

DSCC features. The log nonlinearity has been motivated in the ASR community from

human auditory models that incorporate a nonlinearity stage. In DSCC we instead

apply a data-driven “Gaussianization” nonlinearity.

7.3.2 Comparison of DSCC and RASTA Features

A key difference between the DSCC features and RASTA [25] processing is that the

filtering operation in RASTA is strongly linked to the modulation spectral character-

istics where it attenuates the modulation frequencies outside the range of 4-20 Hz.

The DSCC features are not based on the modulation characteristics and are instead

based on capturing the dynamic transition characteristics in speech. Another signifi-

cant difference between the two is that the filtering operation in DSCC is applied on

the linear spectral values, whereas RASTA is applied in a compressive nonlinearity

domain. Since noise is additive in the spectral domain if the sources are independent,

the filtering operation in DSCC strongly suppresses noise, whereas RASTA processing

can only partially suppress noise.

7.3.3 DSCC Comparison with DPS Features

The DSCC features can be seen as a continuation of DPS. The work in [85] noted the

additivity of noise in the linear spectral domain and proposed a difference operation
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directly on the spectral values. Our work differs from DPS in the subsequent processing

of the delta-spectral values. Our work as well as the work DPS faced the problem of

handling the resulting negative-spectra from the difference operation. DPS handled

the negative spectra by taking absolute values. This omits the distinction between

the rising and falling spectral regions, which in fact become indistinguishable in the

absolute values and harm the robustness of ASR. DSCC features preserve the aforesaid

distinction and apply a Gaussianization nonlinearity, the DSCC ASR results show

substantial improvement over DPS.

7.4 DSCC FEATURE ANALYSIS

In this section we provide a more formal analysis of the SNR improvement in white

noise using the DSCC features. Assuming that the noise is a white Gaussian sequence

sample distribution wi of the form N (0, σ2), the power P in an independently-observed

set of N samples is P = 1
N

∑N
i=1w

2
i . P follows a chi-square distribution with N degrees

of freedom (DOF), which becomes approximately Gaussian for large N . Under the

Gaussian assumption for P , it can be shown that

E[P ] =
1

N
E[

N
∑

i=1

w2
i ] = σ2

V ar[P ] = E[P 2]− E[P ]2 =
E
[∑

i,j w
2
iw

2
j

]

N2
− σ4

=
1

N2

(∑

i

E[w4
i ] +

∑

i,j,i "=j

E[w2
iw

2
i ]
)

− σ4 =
2σ4

N

Thus, P is approximately distributed as N(σ2, 2σ4

N
). The DC power associated with P

is the square of the mean, σ4, while the AC power is the variance 2σ4

N
. DSCC processing

removes the DC power, and we can express the impact of this effect using the ratio

Noise suppression ≈ −10 log10

( PowAC

PowAC + PowDC

)

(7.3)

= 10 log10
(

1 +N/2
)

(7.4)

We use a speech analysis window duration of 25 ms, so the number of samples in the

window duration becomes N = 400 with a sampling frequency of 16,000 Hz, and for
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Fig. 7.5: Histogram of short-time power after the delta operation for a clean-speech

sample (a) before and (b) after Gaussianization.

N = 400, the consequent white noise suppression is 23.03 dB. Thus, the maximum

possible benefit with DSCC processing is a 23-dB SNR noise suppression for the white

noise case.

Noise Type White Real-World Music

Predicted noise suppression 23 12 3.5

SNR threshold-shift in ASR 8.3 7.5 5

Table 7.1: Predicted noise suppression and observed SNR threshold-shift in an ASR

experiment for different noise conditions (in dB). The prediction and observation ex-

hibit a correlation coefficient of 0.93.

In Table 7.1, we experimentally derive the degree of noise suppression for different

noise conditions based on the percentage of total power that is DC power, as above. As

expected, the noise suppression so obtained is greater for relatively stationary noises

such as white noise and the “real-noise” conditions than for background. We also

present the experimentally-observed shift in effective SNR that will be discussed below

in conjunction with a speech-recognition task (cf. Fig. 7.11). While the observed SNR

shifts are not equal to the calculations above for many reasons, (including suppression

of both speech and noise at other frequencies imposed by the DSCC algorithm and
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subsequent nonlinearities in processing), the trends of the dependencies are similar.

Specifically, we found the correlation coefficient between the prediction and observation

in Table 7.1 to be 0.93, that indicates a very good prediction performance for the

measure in (7.3).

7.4.1 Empirical Distortion Analysis at Different Feature Stages

In this section we empirically study the different feature sequences in Fig. 7.3 with re-

spect to their robustness to additive noise at the speech-signal level. Fig. 7.3(b) plots

the power sequence for a segment of clean speech and speech in 0-dB noise for a partic-

ular frequency-band as noted in the figure. As expected the additive noise distorts the

original power sequence. This distortion eventually leads to a mismatch between the

features derived from clean speech and those from noisy speech, leading to a loss in ac-

curacy for an application that is trained to work on features derived from clean speech.

Similarly, additive noise also affects the log-power, delta-log-power, delta-power and

Gaussianized-delta-power feature sequences. In this section we empirically quantify

distortion at the different feature stages for the DCC and DSCC features and attempt

to derive insights into their potential benefit in speech application. For convenience

we define the following terms:

1. Signal-to-noise ratio (SNR): We use the conventional definition of SNR, which

is the ratio of speech signal power to that of noise signal power (in dB).

2. Power-spectrum-to-distortion ratio (PSDR): The error between the power-spectral

sequence corresponding to clean speech and that corresponding to speech in

noise is termed as distortion in the power-spectral domain. We quantify it in

terms of the power ratio of the clean power-spectral sequence and this distortion

signal.

3. Log-power-spectral-to-distortion ratio (LPDR): Similar to PSDR, we quantify

the distortion in the log-power-spectral domain in terms of LPDR.

4. Delta-power-spectral-to-distortion ratio (DPDR): DPDR quantifies the distor-

tion in the delta-power-spectral sequences.

5. Gaussianized-delta-power-spectral-to-distortion ratio (GDDR): GDDR quanti-

fies the distortion in feature sequences that subsequently form the DSCC fea-
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Fig. 7.6: Feature to distortion power ratio for an additive white noise signal at dif-

ferent input SNR levels, (a) Power-spectral to distortion, (b) Log-power to distortion

ration, (c) Delta-log-power to distortion ratio, (d) Delta-power to distortion ratio, (e)

Gaussianized-delta-power to distortion ratio.

tures.

Following the above definitions for SNR and distortion at the different feature

levels, we relate them in Fig. 7.6. We considered white noise in the above experiment.

The horizontal axis denotes SNR in dB. At each SNR, we plot the distortion levels for

each of the 40 Mel-channels, with the channels in ascending numbers. We make the

following observations in Fig. 7.6:
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• PSDR is approximately linearly related to SNR for high SNR regions. The

relationship is however nonlinear in low SNR regions, especially for high fre-

quencies. Further even at 0-dB SNR, the frequencies in 1000 Hz region possess

20-dB PSDR but the high frequencies exhibit negative PSDR levels. Thus as ex-

pected the high frequencies are more adversely affected in white noise conditions.

Although the above observation has been known for years, a quantification of

the observation is new. We see that at 20-dB SNR, the PSDR difference be-

tween 1000-Hz region and high-frequency regions is 10 dB but for 0-dB SNR,

the difference becomes 30 dB.

• In general at different SNRs, the LPDR levels are significantly smaller than

PSDR levels. Thus the conventional log operation on the power-spectral se-

quences hurts the distortion-robustness aspect of the power-sequences. The

log-operation was conventionally applied to mimic the human auditory mod-

els that include a compressive nonlinear stage. Although the compressive log-

nonlinearity provides a way closer to the auditory models, the quantification

in Fig. 7.6(b) highlights that compared to the power sequences, the log com-

pressed power sequences are less robust to additive noise. We note a similar

tradeoff between compressive nonlinearity and noise robustness in the DPDR

and GDDR levels. Gaussianization is also a compressive nonlinearity and com-

paring Fig. 7.6(d) and (e), the absolute distortion levels decrease with nonlin-

earity.

• The DPDR values in Fig. 7.6(d) are similar to that of PSDR, and in fact better

for high frequencies in 0-dB SNR regions. This is understandable since addi-

tive noise is relatively stationary with respect to the nonstationarity in speech,

consequently noise is partially nullified due to delta-operation on the power-

sequences.

• Fig. 7.6(e) and Fig. 7.6(c) compare distortion levels that respectively apply to

the DSCC and the DCC features. We see that the GDDR levels are significantly

higher than the DLDR levels. At 10-dB SNR, the GDDR levels are approxi-

mately 10-dB higher than DLDR levels. The DSCC features are thus expected

to be more noise robust than DCC features.
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Fig. 7.7: PSDR for the individual Mel-channels against the SNR levels for additive

noises in (a) White-noise, (b) Background music, (c) Real-world noise, (d) Interfering

speaker. The legends in the plot indicate the SNR in dB.
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In Fig. 7.6 we related SNR in the speech-signal domain and distortion in the

features for white noise condition. Next, we expand our study to different noise types.

This new study will highlight the characteristics of different noises and the associated

effect on the speech frequency bands. In Fig. 7.7, we plot the PSDR levels for each

of the 40 Mel-channels for 4 different noise types at different SNR levels. Fig. 7.7(a)

is essentially an alternate representation of the information in Fig. 7.6(a). We see

that white-noise increasingly affects the high-frequency regions with the Mel-channel

regions corresponding to 1000-Hz region being the most robust. Moving from 30-dB to

0-dB SNR, the high frequency regions loose 45-dB PSDR, the low frequencies loose 38-

dB PSDR whereas the frequencies around 1000 Hz loose only about 30-dB PSDR. The

above quantitative trend is expected since the speech-signal power exhibits a peak in

the 800-2000 Hz regions, whereas the white-noise signal power is uniformly distributed

across the entire spectrum.

Fig. 7.7(b) plots the PSDR levels for background music conditions. The music

sample was obtained from HUB-4 database. We note that the low-frequency regions

are the most affected due to music. The high frequency regions possess higher PSDR

for background music than for white-noise. Specifically we note that for high-frequency

regions, the PSDR for background music is non-negative at 0 dB SNR, whereas the

PSDR is below 0-dB for the corresponding white-noise case. Fig. 7.7(c) plots the

PSDR levels for noise samples recorded in real-world settings. We observe that the

Mel-channels from 18 to 24 that correspond to the frequency band of 1500-2500 Hz are

significantly more degraded than other frequency regions. For the interfering speaker

case in Fig. 7.7(d), we note a stark difference with the rest of noise conditions in

Fig. 7.7(a)-(c). There, the PSDR levels are nearly 0-dB at 0-dB SNR for all the Mel-

channels. This was clearly not so for other noises. We also note that for the 1000-Hz

frequency regions, the PSDR levels are the lowest for interfering speaker case. This

explains and supports that the interfering speaker case may perform the poorest among

different noise conditions.

Fig. 7.8 demonstrates a comparison between the DSCC and DCC features in terms

of their respective distortion measures in GDLR and DLDR. We note that DSCC

exhibits superior distortion levels than DLDR for all noise conditions and hence should

provide better robustness to noise. In order to test whether higher GDLR levels predict

better ASR accuracy, we evaluated correlation coefficient between the GDLR levels for
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Fig. 7.8: The GDDR and DLDR levels against SNR for additive noise conditions at

10th Mel-channel in (a) White noise, (b) Background music, (c) Real-world noise, (d)

Interfering speaker. Averaging was done over the Mel-channels.
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different noise types at 10 dB and the corresponding ASR accuracy which we found

to be 0.78. Thus, the GDLR levels exhibit a good correlation with ASR accuracy.

7.5 EXPERIMENTAL RESULTS

We describe in this section experimental results comparing DSCC features to con-

ventional MFCC/DCC and other features using degraded speech from the DARPA

Resource Management (RM) database, which consists of 1600 training utterances and

600 test utterances. Data were obtained by digitally adding the various noises de-

scribed above to the speech signal. We also evaluated the features in reverberant

environments, which were simulated by convolving speech from the RM database with

simulated room impulse responses using the (RIR) software package1 [62]. Please see

Sec. 4.3.1 for our ASR experimental setup.

7.5.1 The effect of d parameter in DSCC

Note that the DSCC features were obtained by applying the filter Hd(z) in (7.2) to

the speech Mel-Spectral sequences. In Fig. 7.10, we study the effect of the d param-

eter on DSCC features with respect to an ASR WER experiment. Fig. 7.9 plots the

understandable frequency responses for the filter in (7.2) for the different d parame-

ters. Observing Fig. 7.10, we note that d = 3 provides a better robustness to both

noise and reverberation. Specifically for real-world noise conditions, DSCC with d = 3

provides a small but an additional 0.5-dB threshold shift than the DSCC with d = 2.

The difference is more evident in presence of reverberation. Since reverberation leads

to spectral smearing, hence it predominantly acts like a low-pass filter, a filter that

has a better high-pass characteristics is more likely to compensate for reverberation,

hence we understand that d = 3 should work better for reverberation. The parameter

d = 2 provides better clean performance. Thus there is a trade-off between the clean

performance and ASR robustness.
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Fig. 7.9: Frequency responses of the DSCC filter with different d parameters.

7.5.2 DCC vs. DSCC

Fig. 7.11, compares the WER obtained using DCC, as in Fig. 7.1(a), against DSCC,

where temporal-differencing is performed in the spectral domain,2 as in Fig. 7.1(b).

These comparisons clearly demonstrate the benefit of performing the time differencing

in the spectral domain instead of in the conventional cepstral domain. It can be seen

that the delta-spectral features substantially increase robustness to noise as well as

reverberation, increasing the effective SNR by 5-8 dB at 50% WER. The use of DSCC

features also provides a 30-45% relative reduction in WER at reverberation times of

300− 500 ms.

7.5.3 DSCC in Advanced Baseline Systems

Fig. 7.12 considers the combination of DSCC versus DCC features with MFCC, AFE

[31] and PNCC [81], it can be seen that the use of the DSCC features provides bet-

ter recognition accuracy than what is obtained from DCC features for all noise and

1http://2pi.us/rir.html
2The DSCC software is available at http://www.cs.cmu.edu/~robust/archive/algorithms/

DSCC_ICASSP2010/.

96



500 300 Clean20

40

60

80

100

Reverberation [ms]

Ac
cu

ra
cy

 (1
00
−W

ER
) [

%
] (a)

 

 

MFCC−DCC
MFCC−DSCC (d=2)
MFCC−DSCC (d=3)

0 10 200

20

40

60

80

100

SNR [dB]

Ac
cu

ra
cy

 (1
00
−W

ER
) [

%
] (b)

 

 

MFCC−DCC
MFCC−DSCC (d=2)
MFCC−DSCC (d=3)

0 10 200

20

40

60

80

100

SNR [dB]

Ac
cu

ra
cy

 (1
00
−W

ER
) [

%
] (c)

 

 

MFCC−DCC
MFCC−DSCC (d=2)
MFCC−DSCC (d=3)

0 10 200

20

40

60

80

100

SNR [dB]

Ac
cu

ra
cy

 (1
00
−W

ER
) [

%
] (d)

 

 

MFCC−DCC
MFCC−DSCC (d=2)
MFCC−DSCC (d=3)

Fig. 7.10: Word error rates (WERs) obtained in additive white noise using the d

parameter in DSCC for (a) Reverberation, (b) White-noise, (c) Background music,

(d) Real-world noise.

reverberation conditions. The DSCC features not only strongly improve the baseline

MFCC-DCC, they also improve the advanced systems in PNCC and AFE. Surpris-

ingly we find that simply appending the 26-dim. DSCC features to the 13-dim. MFCC

works as well as the conventional 39-dim. AFE features.

7.5.4 Magnitude Domain DSCC

In Fig. 7.13, we introduce a DSCC processing in the magnitude domain. This experi-

ment was motivated by the results of magnitude domain vs. power domain NMF results

in Ch. 6. There we found that magnitude domain NMF processing led to better ASR
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(c) WER for real-world noise
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Fig. 7.11: Comparisons of WERs for 26-dim. DCC and 26-dim. DSCC features in

noisy and reverberant environments. MVN is included.
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(b) WER for music noise.
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(c) WER for real-world noise

recordings.
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Fig. 7.12: Comparisons of WERs obtained using DSCC versus DCC processing in

combination with MFCC, PNCC, and AFE features. All the features are 39-dimen-

sional and include MVN.
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Fig. 7.13: WERs obtained in magnitude domain DSCC for (a) Reverberation, (b)

White Noise, (c) Background Music, (d) Real-World Noise.

accuracy. In Fig. 7.13, we compare the DSCC results against DMCC, where DMCC

was obtained from DSCC framework by replacing the power spectra with magnitude

spectra. We see that DMCC and DSCC provide very similar robustness to ASR. A key

difference between DMCC and DSCC lies in their clean performance. DSCC shows a

relative loss of 4.5% in WER over the MFCC clean condition but DMCC shows an

improvement of 10% over the corresponding MFCC features.

7.6 DISCUSSION

In this Chapter we proposed DSCC features that perform temporal differencing in the

spectral domain rather than cepstral domain. We also find a good correspondence as a
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function of noise type between the extent to which the use of DSCC processing reduces

the WER and noise and the fraction of total noise power at DC. We also provided em-

pirical results on spectral, log-spectral and cepstral distortion due to additive noise in

the speech-signal domain. We also demonstrated that compared to DCC features, the

DSCC features exhibit lower distortion levels and hence higher robustness to additive

noise conditions. Overall, we observed that in comparison to conventional cepstral dif-

ferencing, the use of DSCC features improves the effective SNR by 4-8 dB for various

types of additive noise and reduces the relative WER by 20-30% in reverberation.
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CHAPTER 8

A JOINT MODEL FOR NOISE AND REVERBERATION

In Chapter 3 we proposed a framework for representing reverberation in the spectral

domain. In this chapter we provide a generalization of that model to include an

additive noise term. We present our new model in Fig. 8.1, it serves the following key

purposes:

Xs[n] ! Hs[n] !
Ys[n]

+

"

Ns[n]

!
Zs[n]

Fig. 8.1: Modeling reverberation in spectral feature domain.

1. The spectral domain model in Fig. 6.1 included an approximation error term

that was then ignored. The model in Fig. 8.1 accounts for the approximation

error in the sequence Ns[n], and thus serves to extend the earlier model.

2. The model in Fig. 6.1 was a representation for only reverberation in the spec-

tral domain. The new model generalized the earlier model by jointly modeling

reverberation as well as noise in the spectral domain. The additive noise can be

encapsulated by the Ns[n] term in the new model.

Next we provide ASR experimental results using the new reverberation model in

Fig. 8.1.

8.0.1 Joint NMF and DSCC processing for Dereverberation

In Fig. 8.2 we present dereverberation results using the joint NMF and DSCC pro-

cessing, see Sec. 6.3 for experimental details. NMF is first applied on a reverberated
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Fig. 8.2: WERs for a joint NMF and DSCC processing.

speech signal to dereverberate and then reconstruct the signal. DSCC then works

on the NMF-reconstructed signal, where it replaces the traditional DCC features (see

Ch. Ch:DSCC for details). Note that the inclusion of DSCC changes only the dynamic

features, the static features remain unchanged. Under the joint framework, NMF is

expected to compensate for the filter filter Hsin Fig. 8.1 and DSCC can compensate

for the modeling error encapsulated by the additive term Ns. We see that at RT

of 500 ms, the joint NMF and DSCC processing provides an additional 40% relative

reduction over NMF processing and an overall 57% relative reduction in WER over

MFCC. Similarly at RT of 300 ms the joint NMF and DSCC framework provides

60% relative reduction in WER over MFCC. Further, replacing MFCC by PNCC does

not show additional improvements. We also experimented with adding LIFE process-

ing in the NMF and DSCC framework but it did not provide substantial additional

improvements.

8.0.2 Joint NMF and LIFE processing for Dereverberation

In Fig. 8.3 we study a joint NMF and LIFE processing framework on the DARRA RM-

database. The degraded speech signal is first compensated by NMF, which results in a

partially dereverberated speech signal. LIFE processing is subsequently applied to the

NMF output. The combination of NMF and LIFE provides an overall 55% relative
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Fig. 8.3: WERs for a joint NMF and LIFE processing.

reduction in WER at RT of 300 ms, which is significantly better than 44% relative

reduction with just NMF. Similarly at RT of 500 ms, the joint processing provides

a 54% relative reduction in WER, whereas NMF alone provided only 30% relative

reduction.
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Fig. 8.4: WERs for a joint noise and reverberation problem (RT of 300 ms).
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8.0.3 Joint Noise and Reverberation Compensation

In Fig. 8.4 we present a task that includes noise as well as reverberation, hitherto a

very challenging task for ASR robustness. For this problem, the RIR was obtained at

RT of 300 ms and noise was obtained from real-world noise recordings. We see that the

baseline MFCC system nearly fails in this joint problem, with accuracy below 25% in

any of the degraded environments. NMF, DSCC and their joint application according

to the new model in Fig. 8.1 substantially improves the ASR performance. At 50%

WER, DSCC processing provides a 12-dB horizontal threshold shift in equivalent SNR,

whereas the joint NMF and DSCC processing provides 14-dB threshold shift.

8.1 DISCUSSION

In this chapter we proposed a framework for jointly representing reverberation and

noise in the spectral domain. This framework generalizes the spectral domain re-

verberation framework in Chapter 3. We also provide experimental results on the

potential combinations of NMF, DSCC, and LIFE processing. Among other tasks,

we successfully demonstrated our approaches on a very challenging task that included

both reverberation and noise.
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CHAPTER 9

SUMMARY AND CONCLUSIONS

In this Chapter we provide a summary and key contributions of the thesis work. As

stated before, the objective of this work was the development of signal processing and

analysis techniques to sharply improve speech recognition accuracy in highly reverber-

ant environments. We achieved our goal with a two-pronged approach. At first we

studied and modeled the effects of reverberation directly in the speech-feature domain.

Secondly, we provided compensation algorithms in the proposed framework. Next we

provide a brief summary of the key contributions of this work.

9.1 MODELING REVERBERATION

In Chapter 3 we derived models for reverberation in the spectral, log-spectral and

cepstral domains. During the spectral domain model derivation, we made an assump-

tion in (3.10) that the energy in the cross-terms component is relatively small. Later

in Chapter 8 we proposed a new reverberation model that encapsulated the approx-

imation error as an additive noise. The new model serves as a generalization of the

reverberation-only model as it provides a model for a joint noise and reverberation

representation.

9.2 CEPSTRAL-POST FILTERING (CPF)

We proposed our first reverberation-compensation algorithm in terms of a cepstral-post

filtering scheme in Chapter 4. The approach built on the framework in Chapter 3 to

formulate and solve a least square problem for dereverberation in the cepstral domain.

The approach required minimal assumptions on the reverberation filter coefficients and

utilized speech knowledge in terms of it’s cepstral auto-correlation sequences. Overall,

CPF provided significant improvements in an ASR dereverberation task.
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9.3 LIKELIHOOD-BASED INVERSE FILTERING (LIFE)

In Chapter 5 we provided a maximum-likelihood (ML) based approach for blind dere-

verberation. We theoretically motivated the ML approach in a simplified setting.

LIFE achieved dereverberation in the cepstral domain by formulating and solving a

ML criterion based on the probability distribution of speech cepstral features. LIFE

processing provided 40-45% relative reduction in WER under clean-training condi-

tions. The LIFE processing benefits extended to multi-style training as well, where it

provided 12-22% relative reduction in WER. LIFE processing also showed 18% relative

reduction in WER on top of supervised MLLR.

9.4 NON-NEGATIVE MATRIX FACTORIZATION (NMF)

In chapter 6 we proposed NMF for speech dereverberation in the spectral domain.

NMF is based on a mean-squared error optimization which builds on the non-negativity

and sparsity of the spectral values. NMF is also a blind approach for dereverberation

as the algorithm must work blindly for the different room reverberation conditions.

We showed that applying NMF on magnitude spectra, rather than on power spectra,

provided superior performance. We also integrated perceptual weighting in the NMF

framework to enhance the speech frequencies from an auditory perspective. We ex-

perimentally showed that NMF provides up to 40-45% relative reduction in WER for

clean-training. The NMF benefits extend also to multi-style training.

9.5 DELTA-SPECTRAL CEPSTRAL COEFFICIENTS (DSCC)

In Chapter 7 we provided a signal processing scheme for noise robustness, where we

proposed DSCC features that perform temporal differencing in the spectral domain

rather than cepstral domain. We also proposed a suitable non-linearity on the delta-

spectra features for their application in speech recognition. We performed distortion

analysis of the delta-spectra, Gaussianized-delta-spectra and derived cepstral features.

We showed that the approach provided significant improvement for stationary as well

as non-stationary noises.
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9.6 COMPARATIVE OVERVIEW OF ALGORITHMS

In Table 9.1 we briefly provide a comparative overview of the algorithms presented

in the thesis. We compare the algorithms with respect of their computational cost,

oracle performance, requirement of a prior room reverberation knowledge and the fea-

sibility of their online implementation. We represent computational cost for different

algorithms in terms of that required in MFCC feature extraction, which we repre-

sent as 1x. ASR involves feature decoding on top of feature extraction, so for better

perspective on computational requirements, we provide computational cost for ASR

decoding. We see that compared to MFCC, CPF and DSCC are relatively inexpen-

sive algorithms. LIFE and NMF algorithms are more expensive than MFCC but if

we incorporate ASR decoding computations, LIFE is only 20% more expensive than

MFCC, whereas NMF is about 90% more expensive than MFCC.

Computation Oracle

experiment

A priori room

knowledge

Online

MFCC 1.0x - - Yes

CPF 0.1x - None Yes

LIFE 10x 11% WER at

RT of 500 ms

None Yes

NMF 45x 21% WER at

RT of 500 ms

None No

DSCC 1.2x - None Yes

ASR

decoding

50x - - -

Table 9.1: A comparative overview of algorithms.

We compared LIFE and NMF under an oracle experiment in Sec. 6.3.1 and found

that LIFE processing showed stronger potential than NMF. Our algorithms do not

require any a prior knowledge about RIR, source/speaker location etc. and are com-

pletely blind to the room conditions. CPF, LIFE and DSCC algorithms can be made

online for stationary or slowly-changing environments. The required reverberation

compensation parameters can be estimated from past utterances, which can be used

for current utterance and re-estimated for future utterances. The reverberation com-
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pensation stage for these algorithms can then be done online. NMF on the other stage

is a special algorithm, it’s dereverberation stage works in an optimization framework

that requires statistics from the RIR as well as the utterance under consideration.

Correspondingly the NMF reverberation compensation can not be made online.
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