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Abstract

Automatic Speech Recognition (ASR) engines are extremely susceptible to noise. There

is an increasing prevalence of voice-assisted devices which need to recognize speech ac-

curately in a variety of complex listening environments. These include the presence of

background noise, reverberation, and multiple talkers.

The human auditory system, on the other hand, is very good at understanding speech

even in extremely challenging environments. It might therefore, be useful to use our

knowledge of human hearing to develop techniques that lead to robust speech recogni-

tion. This entails applying techniques that have their basis in human auditory processing

towards automatic speech recognition (ASR).

In this thesis, we discuss a number of techniques that address the problem of robust

recognition of binaural signals in the presence of reverberation and multiple talkers since

they pose a significant problem in terms of ASR engine performance. The techniques

discussed here roughly follow the manner in which the auditory system achieves noise

robustness. The fundamental idea behind all the techniques proposed is that sounds em-

anating from the same sound source exhibit some degree of coherence. We aim to use this

property to achieve better isolation of the target signal leading to better speech recognition

accuracy.

Three techniques are proposed. The Interaural Cross-correlation-based Weighting (ICW)

algorithm looks for coherence across sensors using signal envelopes in order to isolate

signals coming from the same location. To reduce the effect of reverberation, steady-state

suppression is applied as an initial step. The ICW algorithm combined with steady-state

suppression leads to significant improvements in ASR accuracy. The Coherence-to-Diffuse

Ratio-based Weighting (CDRW) algorithm uses a model-based technique to evaluate the

ratio of coherent energy to diffuse energy in a given signal. This leads to significantly better

v



performance in ASR. The third technique is the Cross-Correlation across Frequency (CCF)

algorithm, which looks for coherence in frequency for signal separation. The CCF algo-

rithm also effectively smooths the signal. This algorithm has been tested in conjunction

with steady-state suppression and ITD-based analysis. The CCF algorithm leads to im-

provements in ASR especially in the presence of moderate to high reverberation when the

system is trained on clean speech. All algorithms were tested using DNN-based acoustical

models obtained with the Kaldi speech recognition toolkit, using both clean and multi-

style training data.
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CHAPTER 1

INTRODUCTION

In recent times the use of speech-driven devices and applications is on the rise. This has

been especially true due to the widespread use of home or personal assistants that have

a voice-based interface. Such devices have certainly made life much easier. However, the

problem of robust speech recognition has become even more pertinent for this reason.

Machines or devices using a voice interface are required to work seamlessly in a variety

of challenging environments. Some of the important sources of degradation include the

presence of noise from the television, cars, street as well as room reverberation.

Speech recognition systems have undergone significant improvements in recent times

especially with the advent and widespread use of machine learning techniques [1, 2]. Nev-

ertheless, noise robustness remains problematical, especially if the training data differs

significantly from the test cases. Improving speech recognition accuracy in the presence of

non-stationary noise sources and other adverse conditions such as reverberation remains

a challenge.

The human auditory system, on the other hand, is extremely robust. Listeners can

correctly understand speech even in very difficult acoustic environments. This includes

the presence of multiple speakers, background noise and reverberation.

It is useful to understand the reason behind the robustness of human perception and
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to apply auditory processing-based techniques to improve recognition in noisy and re-

verberant environments. There have been several successful techniques born out of this

approach (e.g. [3, 4, 5, 6, 7] among other sources).

The overall purpose of this thesis is to develop a set of algorithms based on our under-

standing of the human auditory system that help improve the recognition of speech by

Automatic Speech Recognition (ASR) engines in complex acoustical environments. There

are a multitude of challenging acoustic environments that a speech recognition system

might encounter. In this work, we choose to address the impact of reverberation and in-

terfering talkers in particular.

The rest of this work is organized as follows. Chapter 2 reviews some background in-

formation and studies. Chapters 3 provides a detailed explanation of the problem setup

and the various systems used for data generation and speech recognition. Chapters 4, 5

and 6 introduce new techniques to achieve better recognition in complex environments.

These technique are binaural in nature (for the most part) and are loosely based on hu-

man auditory processing. In Chapter 7 we present a comparison of the various techniques

detailed in this thesis. Chapter 8 summarizes the primary findings of this thesis and po-

tential future work.
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CHAPTER 2

BACKGROUND

2.1 Some basic binaural phenomena

The ability to localize sounds is extremely important and requires binaural cues. The most

important cues used by the human auditory system for source localization are the Inter-

aural Time Difference (ITD) and Interaural Intensity Difference (IID). An interaural time

difference is produced because it takes longer for a sound to arrive at the ear that is farther

away from the source, as seen in Figure 2.1. Similarly, a difference in sound level between

the two ears occurs because (at least at higher frequencies) the head partially blocks the

propagation of sounds from the source to the ear that is farther from the sound source.

This can be measured as an interaural intensity difference.

The effectiveness of ITD and IID cues depend on frequency. The computation of ITD-

based cues can be thought of as a comparison of phase between the signals arriving at both

the ears. At low frequencies, especially below 1500 Hz, this comparison of phase leads to

accurate timing information. However, at higher frequencies, path-length difference of

the signals propagated to the two ears can become sufficiently long that the phase delay

exceeds half a period. At this point the ITD can no longer be estimated unambiguously.
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Figure 2.1: Figure illustrating the difference in arrival time between the two ears. Since
the sound source A is directly in front of the listener, the sound emanating from A reaches
both ears at the same time leading to an ITD of zero. On the other hand, in the case of
sound source B, there is a difference in arrival times as well as intensity at both ears. The
sound emanating from B reaches the listener’s right ear first leading to a non-zero ITD.
The intensity of the sound at the right ear will also be slightly higher than the left ear.

This issue is mitigated to some extent by the fact that temporal fine structure information

is lost above around 1500 Hz (for humans) and the only timing information that remains

available is related to the low-frequency amplitude envelope of the signal. Because of this,

the accuracy of the timing information extracted reduces significantly. For this reason,

amplitude envelopes are important for ITD-based computations at higher frequencies.

In the case of IIDs, high-frequency content is more important. Low-frequency sounds

have a wavelength that is long compared to the size of the head and so the sound is able to

diffract around the head. The wavelengths of higher-frequency components, on the other

hand, are smaller than the size of the head, which causes these components to be reflected

back toward the source. This results in a difference in intensity between the two ears. As

seen in Figure 2.2, IIDs are insignificant at low frequencies but are as great as 20 dB at

greater frequencies.
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Figure 2.2: Figure showing IID as a function of azimuth from Feddersen et al. The stimulus
in this case in sinusoidal and each curve corresponds to a different frequency.

2.2 The precedence effect

In reverberant environments, a sound that is produced propagates in many directions

and is reflected from nearby surfaces in its path. While the task of resolving the direct

sound from all reflections is a difficult one, the human auditory system manages to localize

sounds quite robustly even through this clutter of information.

For example, consider an arrangement of two loudspeakers in an anechoic room such

that the speakers are at the same distance from the listener, and stimulated by identical

sounds such that the onset of one sound is delayed relative to the onset of the other sound.

This is illustrated in Figure 2.3. This can be considered a model of a direct sound with a

single reflection. If two sounds arrive at the ears with a short delay of less than 20 ms

or so between them, the two sounds appear perceptually fused. It has also been seen

that the location of the fused sound appears to be dominated by the location of the lead
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Figure 2.3: Figure illustrating the precedence effect. Two sounds are played with a relative
delay with respect to each other a) Delay of tenths of a second leading to perception of two
separate audio events b) Delay of 5-20 ms leading to localization that is dominated by the
lead sound

sound i.e. the sound that was played first. This is called the “law of the first wave front”

or the “precedence effect”. As the delay increases beyond a certain threshold, the two

sounds become two audibly separate events. The precedence effect is considered to be a

major contributing factor behind robust auditory perception by humans in the presence

of reverberation.
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2.3 Models of binaural hearing

In this section, we will review a few important models of binaural interaction. Among

the most seminal theories were the coincidence-based model proposed by Jeffress [8] and

the equalization-cancellation model proposed by Durlach [9]. Most modern theories of

binaural interaction have their roots in the two models mentioned above. Colburn’s quan-

tification of the Jeffress hypothesis is also discussed briefly [10].

2.3.1 Coincidence-based model

Figure 2.4: Schematic diagram of Jeffress place mechanism from [11]. Boxes labelled with
crosses are multipliers that record coincidences between the neural activity of the two ears.

Jeffress postulated a mechanism that consisted of a number of central neural units that

recorded coincidences in neural firings from two peripheral auditory-nerve fibers, one

from each ear, with the same Characteristic Frequency (CF). He further postulated that the

neural signal coming from one of the two fibers is delayed by a small amount that is fixed

for a given fiber pair, as seen in Figure 2.4. Because of the synchrony in the response of

low-frequency fibers to low-frequency stimuli, a given binaural coincidence-counting unit
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at a particular frequency will produce maximal output when the external stimulus ITD at

that frequency is exactly compensated for by the internal delay of a fiber pair. Hence, the

external ITD of a simple stimulus could be inferred by determining the internal delay that

provides the greatest response over a range of frequencies. While the delay mechanism

was conceptualized by Jeffress and others in the form of the ladder-type delay, such a

structure is only one of several possible realizations. The important characteristic-delay

parameter of the ITD-sensitive units is represented by the difference in total delay incurred

by the neural signals from the left and right ears that are input to a particular coincidence-

counting unit. The short-term average of a set of such coincidence outputs at a particular

CF plotted as a function of their internal delay is an approximation to the short-term cross-

correlation functions of the neural signals arriving at the coincidence detectors.

2.3.2 The Equalization-Cancellation model

The Equalization-Cancellation (EC) model was first suggested by Kock [12] and was sub-

sequently developed extensively by Durlach [9]. The EC model assumes that the auditory

system transforms the signals arriving at the two ears so that the masker components are

“equalized” by imposing a delay and an amplitude change to the signal on one side, with

the goal of making the two signals equal to one another to the extent possible. Detection

of the target is achieved by “cancelling”, or subtracting the signals to the two ears after the

equalization operation. Quantitative predictions for the EC model are obtained by speci-

fying limits to the operations used to achieve the cancellation process, as well as sources

of internal noise.
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2.3.3 Jeffress-Colburn model

Colburn [10] reformulated the Jeffress hypothesis quantitatively using a relatively sim-

ple model of the auditory-nerve response to sound as Poisson processes, and a “binaural

displayer” consisting of a matrix of coincidence-counting units of the type postulated by

Jeffress. These units are specified by the CF of the auditory-nerve fibers that they receive

input from as well as their intrinsic internal delay. The overall response of an ensemble

of such units as a function of internal delay is a representation that is similar to the run-

ning interaural cross-correlation of the signals to the two ears, after the peripheral cochlear

analysis leading to the representation at the level of the auditory-nerve fibers [13].

2.4 Automatic Speech Recognition basics

Automatic Speech Recognition (ASR) refers to the process of using a computer to automat-

ically transcribe spoken words into text. The first speech recognition systems were only

able to recognize words spoken in isolation by a known speaker based on a concept called

dynamic time warping (DTW). These systems had models for entire words meaning that

every word in the ASR vocabulary needed to be known. Transcription was performed by

finding the word closest to the one that was spoken among all models.

The development of the Hidden Markov Model (HMM) significantly improved ASR

accuracy. An HMM is a first-order probabilistic characterization of a time-varying process

that allows for a maximum likelihood prediction of a system of state sequences given a

series of observations. In ASR, the series of observations is the sampled speech signal,

and the states are either words or some atomic unit of words (e.g., phonemes). Since all

words can now be represented by a small set of atomic sound units, this allows for huge
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vocabularies to be modeled efficiently.

2.4.1 Feature computation

Figure 2.5: Block diagram for MFCC processing.

The raw speech signal does not effectively present the information that is relevant to

speech recognition. For this reason, feature extraction methods are used to transform the

raw signal into a feature vector. This effectively provides a more compact and relevant rep-

resentation of the original signal. The most widely used feature set is the Mel-Frequency

Cepstral Coefficient (MFCC) features. As mentioned above, the use of MFCC features re-
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duces the dimensionality of the data being fed to the ASR engine. MFCC features also

reduce the variability across speakers and noise conditions. Figure 2.5 is a block diagram

showing the different stages of MFCC processing.

Figure 2.6: Mel-scale weighting functions.

The first step involves taking the short-time Fourier transform magnitude of the input

signal, typically using a Hamming window of 20-35 ms in duration. MFCC processing

achieves smoothing and dimensionality reduction by applying a set of frequency-selective

weighting functions to the magnitude spectrum. The weighting functions, as shown in

Figure 2.6, are typically triangular in shape and are spaced according to the perceptually-

motivated Mel scale. Each feature dimension is computed as the dot product of each

triangular weighting function with the Fourier transform magnitude, which effectively

accomplishes a form of bandpass filtering of the signals in each channel.

The dynamic range of a typical speech spectrum often spans several orders of mag-

nitude. As seen in Figure 2.5, a logarithmic non-linearity is applied to the signal post

bandpass-filtering. This shrinks the dynamic range of the observed spectrum, allowing

small deviations to be more easily captured by the acoustical model.

The final step in MFCC processing is the application of the Discrete Cosine Transform

(DCT), which can be thought of as a Fourier series expansion of the log of the magnitude

of the spectrum. The first 12 or so coefficients describe the shape of the vocal tract filter

which mediates the production of an ensemble of perceptually-distinct phonemes, while

the higher coefficients indicate the fundamental frequency of voicing. Feature values for

ASR are typically truncated to 12-14 cepstral coefficients.
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The DCT exhibits an energy compaction property such that the energy of its coefficients

are highly concentrated at low indices. Consequently, truncating the DCT causes relatively

little information in the signal to be lost.

2.4.2 Traditional ASR

Speech recognition is a special case of the more general Bayesian classification problem.

Given a sequence of observationsX , the ASR engine determines the most likely sequence

of phonemes (or words) Ŵ

Ŵ = argmax
W

Pr(W |X) (2.1)

Applying Bayes rule to Equation 2.1 reveals the two primary system components of a

speech recognition system, the acoustic model, and the language model,

Ŵ = argmax
W

Pr(X|W )Pr(W )

Pr(X)

= argmax
W

Pr(X|W )︸ ︷︷ ︸
Acoustical model

Pr(W )︸ ︷︷ ︸
Language model

(2.2)

Using a large number of example utterances from a given language, the language

model (LM) characterizes the probability of observing a given sequence of words in that

language. LMs are based on the notion of an n-gram, which models the probability of

a word or phoneme given the previous n − 1 words or phonemes. Usually, bigrams or

trigrams are used.

The acoustical model, on the other hand, characterizes the probability of observing a

particular manifestation of a speech sound in the feature space. In an ASR engine, the

audio stream is broken up into overlapping frames. Each of these frames is transformed

into a set of cepstral coefficients as described in Section 2.4.1. For different manifestations
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of a particular speech sound, clusters of cepstral coefficients are seen and it is this that

the acoustical model captures. Acoustical modeling allows the ASR system to make a

probabilistically-optimal decision as to what sound is most likely being made.

The HMM representation characterizes the incoming speech waveform as a doubly

stochastic process [14]. First, the sequence of phonemes that are produced is characterized

as a set of unobserved Markov states which presumably represent the various configura-

tions that the speech production mechanisms may take on. As is the case for all Markov

models, the transition probabilities depend only on the current state that is being occu-

pied. Each state transition causes a feature vector to be emitted that is observable, with the

probability density of the components of the feature vector depending on the identity of

the state transition. The task of the decoder is to infer the identity of the unobserved state

transitions. Gaussian mixture densities are commonly used for the phonetic models, in

part because the parameters of these densities can be estimated efficiently. HMMs using

gaussian mixtures for the phonetic models are frequently referred to as “HMM-GMM”

systems.

2.4.3 Deep Neural Networks for acoustical models

As mentioned earlier, HMM-GMM systems have been quite successful in the past in terms

of ASR performance. However, GMMs are statistically inefficient for modeling data that

lie on or near a non-linear manifold in the data space. On the other hand, neural networks

trained by backpropagating error derivatives can learn this sort of data much better. The

resources needed to train a complex neural net may have made it difficult to try in the

past. However, with the current advances in hardware, better training methodologies, and

(more than anything) the availability of large training databases, Deep Neural Networks

(DNNs) are becoming increasingly effective as a replacement for GMMs.

A two-stage training procedure is typically used for training the DNNs. In the first
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stage, a stack of generative models, each with one layer of latent variables, is used to ini-

tialize feature detectors one layer at a time. Restricted Bolzmann machines (RBMs), which

are a type of Markov Random Field, are usually used for this purpose. In the second stage,

each generative model is used to initialize one layer of hidden units in a DNN and then the

network is discriminatively tuned to predict target HMM states. The targets are obtained

using forced alignment with a baseline HMM-GMM system.

2.5 Brief description of relevant algorithms

This section briefly goes over two algorithms that have been extensively used in this study.

The Suppression of Slowly-varying components and the Falling edge of the power enve-

lope (SSF) algorithm performs steady-state suppression and has been shown to be very

effective in reverberant conditions. The Phase Difference Channel Weighting (PDCW) al-

gorithm helps with isolating a target talker in the presence of one or more interfering

talkers using ITD-based analysis done in the frequency domain.

2.5.1 Suppression of Slowly-varying components and the Falling

edge of the power envelope

The Suppression of Slowly-varying components and the Falling edge of the power en-

velope (SSF) algorithm [4, 15] was used in this study to achieve steady-state suppression.

The SSF algorithm is motivated by the precedence effect and by the modulation-frequency

characteristics of the human auditory system. A block diagram describing SSF process-

ing is shown in Figure 2.7. SSF processing is performed separately on each channel of the

binaural signal.
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Figure 2.7: Block diagram describing the SSF algorithm.

After performing pre-emphasis on the input signal, a Short-Time Fourier Transform

(STFT) of the signal is computed using a 40-channel gammatone filterbank. The center

frequencies of the gammatone filterbank are linearly spaced in Equivalent Rectangular

Bandwidth (ERB) [16] between 200 Hz and 8 kHz. In general, longer-duration window

sizes for STFT computation have been shown to be useful for noise compensation [17, 4].

The power P [m, l] corresponding to themth frame and the lth gammatone channel is given

by,

P [m, l] =
N−1∑
k=0

|X[m, k]Hl[k]|2, 0 ≤ l ≤ L− 1, (2.3)

where Hl[k] is the frequency response of the lth gammatone channel evaluated at the kth
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frequency index andX[m, k] is the signal spectrum at themth frame and the kth frequency

index. N is FFT size which was 1024.

The power P [m, l] is then lowpass filtered to obtain M [m, l].

M [m, l] = λM [m− 1, l] + (1− λ)P [m, l], (2.4)

Here λ is a forgetting factor that was adjusted for the bandwidth of the filter and experi-

mentally set to 0.4. Since SSF is designed to suppress the slowly-varying portions of the

power envelopes, the SSF processed power P̃ [m, l] is given by,

P̃ [m, l] = max(P [m, l]−M [m, l], c0M [m, l]), (2.5)

where c0 is a constant introduced to reduce spectral distortion. Since P̃ [m, l] is obtained

by subtracting the slowly varying power envelope from the original power signal, it is

essentially a highpass-filtered version of P [m, l], thus achieving steady-state suppression.

The value for c0 was experimentally set to 0.01.

For every frame in every gammatone filter band, a channel-weighting coefficientw[m, l]

is obtained by taking the ratio of the highpass filtered portion of P [m, l] to the original

quantity.

w[m, l] =
P̃ [m, l]

P [m, l]
, 0 ≤ l ≤ L− 1 (2.6)

Each channel-weighting coefficient corresponding to the lth gammatone channel is asso-

ciated with the response Hl[k] and so the spectral-weighting coefficient µ[m, k] is given

by

µ[m, k] =

∑L−1
l=0 w[m, l]|Hl[k]|∑L−1

l=0 |Hl[k]|
, 0 ≤ l ≤ L− 1, 0 ≤ k ≤ N/2 (2.7)

The final processed spectrum is then given as

X̃[m, k] = µ[m, k]X[m, k], 0 ≤ k ≤ N/2 (2.8)
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Using Hermitian symmetry, the rest of the frequency components are obtained and the

processed speech signal x̃[n] is re-synthesized using the overlap-add method.

The SSF algorithm is very effective in mitigating the effect of reverberation.

2.5.2 Phase Difference Channel Weighting

Figure 2.8: Block diagram describing the PDCW algorithm.

The Phase Difference Channel Weighting (PDCW) algorithm separates signals according

to ITD, in a crude approximation to human sound separation. PDCW estimates ITD indi-

rectly, computing interaural phase difference (IPD) information in the frequency domain
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and then dividing by frequency to produce estimated ITDs. Again, it is assumed that there

is no delay in the arrival of the target signal between the right and left channel.

A block diagram detailing the PDCW algorithm is seen in Figure 2.8. The PDCW algo-

rithm starts with applying a Short-Time Fourier Transform (STFT) to the input signals from

the left and right microphones xL[n] and xR[n]. Since the two signals are identical except

for a time delay, the phase difference between signals from the two microphones is calcu-

lated using the STFT phase. The frequency-dependent ITD d(k,m) for time-frequency bin

(k,m) is given by,

|d(k,m)| ≈ 1

|ωk|
min
r
|6 XR(k,m)− 6 XL(k,m)− 2πr| (2.9)

where XR(k,m) and XL(k,m) are the STFT of xR[n] and xL[n] respectively.

Components of the STFT are retained if they are within zero ITD by a threshold amount

τ in magnitude. A binary mask µ(k,m) is derived for the kth time frame and the mth

frequency channel using the ITD d(k,m) such that, µ(k,m) = 1 for components with ITD

less than the threshold magnitude and some very small quantity η otherwise.

µ(k,m) = 1, |d(k,m)| ≤ τ

= η, otherwise

(2.10)

While this mask provides a degree of signal separation by itself, recognition accuracy

improves when it is smoothed over frequency. This smoothing along frequency, called

“channel weighting” in the original algorithm, is performed using a gammatone weight-

ing function. PDCW provides substantial improvements in ASR accuracy in the presence

of interfering talkers, although its performance degrades sharply in the presence of rever-

beration [6].
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Effect of reverberation on PDCW

As mentioned above, the effectiveness of the PDCW algorithm sharply declines in the

presence of reverberation. There could be a number of reasons for the poor performance

of PDCW in the presence of reverberation. It could be that due to the room modes in

the presence of reverberation, the acoustic target might no longer be in the location of the

actual target. It might be necessary to find target location first for ITD-based analysis. On

the other hand, it could be that the presence of reverberation causes the ITD estimation to

be noisy. In order to investigate further, a short experiment was conducted.

PDCW was applied as described in Section 2.5.2 to speech signals for ASR experiments.

However, mask estimation was done using the clean version of the speech signals which

had no reverberation. The interfering talker was still present however. The hypothesis

was that if using the mask estimates from clean speech lead to an improvement in ASR

performance, that would mean that the location of the acoustic target is the same as the

original target location. That would mean that noisy ITD estimates would most likely be

the reason for poor ASR performance. The results obtained are shown in Figure 2.9.

Figure 2.9 compares PDCW using speech in a reverberant environment to PDCW run

with masks estimated from speech signals that had no reverberation (referred to as PD-

CWCleanMask in the figure). The ASR experiments were run using the RM1 database

and the Sphinx speech recognition engine. Results for the Delay and Sum algorithm have

also been plotted as a baseline. As seen, the use of masks derived from speech without

reverberation does lead to significant improvements in ASR performance. PDCW using

reverberant speech for mask estimation has Word Error Rate (WER) higher than the base-

line Delay and Sum algorithm consistently. However, the use of clean speech-based masks

alters this significantly especially at Signal-to-Interference Ratios (SIRs) of 10 and 20 dB

SIR. Due to the reverberation that is present, the WER is still considerably high even with

PDCWCleanMask. But the drop in error is significant enough to conclude that the acous-
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(a)

(b)

Figure 2.9: Word Error Rate as a function of Signal-to-Interference Ratio for an interfering
signal located 45 degrees off axis at various reverberation times using the RM1 database
and the Sphinx speech recognition engine: (a) 0.5 s (b) 1 s. The PDCW algorithm, using
reverberant speech for mask estimation is compared to the use of speech with no rever-
beration for mask estimation.
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tic target is the same and it is the ITD estimation that is causing the very high error rates.

The presence of reverberation produces reflections that are added to the direct response

in a fashion that leads to unpredictable phase changes, which essentially makes the ITD

estimation much less accurate. Further details about the algorithm are provided in [18].
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CHAPTER 3

EXPERIMENTAL CONFIGURATION

The primary goal of this work is to exploit techniques based on human binaural process-

ing to improve recognition of speech in complex acoustic environments, specifically in the

presence of multiple talkers and reverberation. To this end, a reverberant acoustic envi-

ronment that has interfering talkers present has been simulated for this work as described

in Section 3.2. A definition of the problem that we are attempting to solve is given in Sec-

tion 3.1. Section 3.3 describes how the performance of the various algorithms discussed

in this thesis are evaluated using ASR experiments.

3.1 Problem definition

Figure 3.1 depicts the microphone configuration used in this study. As seen, we con-

sider specifically a two-microphone configuration. These microphones are assumed to be

placed somewhere in a reverberant room. There is a target source present that is in front

of the two microphones in such a way that that the speech from the target arrives at the

two microphones simultaneously. In addition, an interfering source is also present that is

located at some angle φ with respect to the target source. In general, the problem can be
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Figure 3.1: Two-microphone configuration used in this study with an on-axis target source
and an off-axis interfering source.

expressed as separation of a target signal from all the other signals present in the given

acoustic environment, including both speech from the interfering source and reverberant

target components arising from reflections by the surfaces of and objects in the room.

3.2 Simulated Data

Most of the experiments performed in this study used simulated data. Data were sim-

ulated in accordance with the setup described in Section 3.1. A reverberant rectangular

room was simulated using the well known “Image Method” [19]. A room of dimensions

5m × 4m × 3m was assumed. The distance between the two microphones is 4 cm. The

target speaker is located 2m away from the microphones along the perpendicular bisector

of the line connecting the two microphones. An interfering speaker is located at an angle

of 45 degrees to one side and 2m away from the microphones. The sources and micro-

phones are all 1.1m above the floor. To simulate the interfering talker, speech from the

same database as the target speech was used. The interfering speech signal was mixed in

at various levels of Signal-to-Interference Ratio (SIR).
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3.3 Performance evaluation

3.3.1 Speech recognition engine

ASR experiments were conducted using the CMU SPHINX-III speech recognition system

and the Kaldi speech recognition toolkit. The DARPA Resource Management (RM1) and

Wall Street Journal (WSJ) databases [20] were used. The training set for RM1 consisted

of 1600 utterances and the test set consisted of 600 utterances. For WSJ, these numbers

were 7138 and 330 respectively. Features used were 13th order mel-frequency cepstral

coefficients.

The Kaldi speech recognition toolkit allows for DNN-based acoustical models to be

trained. Thus, preliminary ASR results were obtained using Sphinx and the RM1 database.

The reverberation times tested for the preliminary results were 0.5 s and 1 s. For each rever-

beration time, an interfering talker was mixed in at 0, 10 and 20 dB SIR. Experiments were

also conducted in the absence of an interferer. More detailed experiments were then per-

formed using GMM-based and DNN-based acoustical models trained using Kaldi. Clean

as well as multi-style training was used in most cases. These experiments used simulated

data using the WSJ database at reverberation times of 0.2 s to 1 s in steps of 0.2 s with an in-

terfering talker mixed in at 10 and 20 dB SIR. As before, experiments were also conducted

in the absence of an interferer.

3.3.2 Performance metric

The metric used to evaluate the effectiveness of the algorithms discussed in this thesis is

Word Error Rate (WER) in ASR experiments. WER is defined as the ratio of total insertions,
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deletions, and substitutions in the transcript generated by the ASR engine to the number

of words spoken by the target source.

WER =
(S +D + I)

N
(3.1)

where S is the number of substitutions, D is the number of deletions, I is the number

of insertions and N is the total number of words in the reference transcript. As seen in

Equation 3.1, WER can be greater than a hundred percent.

3.4 Effect of locations of microphones in the room

An observation made early on was that the ASR performance was significantly impacted

by the location of the microphones in the room. Because of the manner in which rever-

beration is simulated, it is possible that there are regions of constructive or destructive

interference in the room. These regions might therefore cause the signal to be consider-

ably altered leading to differences in ASR performance based on location alone. In order

to test the efficacy of the algorithm under test independent of location or any other exter-

nal factors, data were simulated such that several different room locations were utilized

for the microphones.

To determine how many microphone locations were necessary in order to ensure that

the room location does not play a major role in determining the performance of an algo-

rithm under test, an experiment was conducted. Test data were generated using M dif-

ferent locations for each trial and ASR experiments were conducted. For each value ofM ,

there wereN trials to see how much the WER changed for each trial using the same num-

ber of locations. It is to be noted that the entire setup as described in Figure 3.1 was moved

with the relative positions of the target, interferer and microphones kept unchanged.
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Experiments were conducted using the Delay-and-Sum algorithm. The Sphinx speech

recognition engine was used for the experiments. The database used for these experiments

was RM1. The value of M used varied between 5-30 locations in steps of 5. A total of 10

trials were run for each value of M . The aim was to find out the value of M for which the

WER across all the trials remains reasonably similar. The results obtained are shown in

Figure 3.4. The WER is plotted in Figure 3.4 as a function of the variable M . The mean

WER for each value of M as well as the standard error of the mean is also shown.

Figure 3.2: Word Error Rate as a function of the number of room locations used for testing
the Delay-and-Sum algorithm. A total of 10 trials were run for a given number of room
locations used. The average WER as well as the standard error of the mean is also shown.

As expected, when fewer room locations were sampled, the WER varied quite a bit

from trial to trial. The standard deviation of the WER across the 10 trials performed keeps

decreasing as the number of locations is increased. The value of M = 25 was selected

based on these results.
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CHAPTER 4

ITD-BASED BINAURAL PROCESSING

USING SIGNAL ENVELOPES

In this chapter we introduce and discuss an algorithmic approach that is based on the

concept of exploiting correlations across the sensors (which in this case consists of two

microphones). Signal components originating from the same source tend to be mutually

coherent. As seen in Figure 2.1, the sound emanating from Source A arrives at both ears at

the same time thus leading to an ITD of 0. However, sounds emanating from Source B will

have a non-zero ITD that can be computed. In the specific experimental setup described

in Figure 3.1, signals originating from the target source will ideally be perfectly coherent

across the two microphones, with ITD equal to 0. On the other hand, the interferer that

is off to one side will arrive at the left microphone before the right microphone leading

to an inter-microphone delay time. This delay between the signals can be computed. For

the target signal given by r(t) and an interferer signal given by i(t) as shown in Figure 4.1,

the interferer i(t) travels extra distance to arrive at the right ear. If the signal from the

interferer arrives with an azimuth angle of θ radians and the distance between the two

sensors is d meters, this extra distance traveled is dsinθ. Thus, the time delay τ between

the two sensors is,

27



	

𝑖(𝑡) 

𝜃	 𝜃	

𝑥'(𝑡)
(t) 

𝑟(𝑡) 

𝑥)(𝑡)
(t) 

	

	
𝑑	

∆𝑖	

Figure 4.1: Experimental setup used in this study.

τ =
d sin θ

c
(4.1)

where c is the speed of sound.

As discussed in Chapter 2.1, the reliability of ITD cues is dependent on frequency. At

low frequencies, ITD-based cues reliably predict the location of a sound source. This is

not the case at higher frequencies, typically greater than 1500 Hz. At higher frequencies,

amplitude envelopes are likely to be the cue that is utilized for the computation of ITD-

based cues for localization. The importance of amplitude envelopes was discussed in [21],

among other sources. This study found that the detectability of ITDs in the envelope of

a high frequency carrier was about the same as a pure tone with the frequency of the

envelope. Among human subjects, it was the ITD of the envelope rather than that of the

fine structure that determined how subjects performed in the lateralization tasks.
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Several models of binaural interaction in the human auditory system are discussed

in Chapter 2. Several of these models are based on the cross-correlation of the signals

to the two ears typically preceded by processing in the auditory periphery. This mecha-

nism has a physiological correlate as seen by the presence of cells in the superior olivary

complex and the inferior colliculus of the brainstem (e.g. [22]) that are sensitive to sig-

nals presented with a specific ITD. In this chapter, we present a new method that uses

a simple interaural cross-correlation-based weighting using speech envelopes to isolate

the target signal based on ITD [23]. ITD is computed using the interaural (or, more accu-

rately, inter-microphone) cross-correlation of the signals. As mentioned in Chapter 3, the

specific experimental conditions addressed in this work are a combination of noise and

reverberation. ITD estimation is especially compromised in the presence of reverberation.

The reverberant field blurs the ITD estimates significantly making localization much more

difficult in reverberant environments.

The “precedence effect” ([24, 25, 26]), as discussed in Chapter 2, is considered to be

one of the important mechanisms mediating human auditory perception in the presence of

reverberation. The precedence effect describes the phenomenon by which directional cues

due to the first-arriving wavefront (corresponding to the direct sound), are given greater

perceptual weighting than those cues that arise as a consequence of subsequent reflected

sounds. The precedence effect is thought to have an underlying inhibitory mechanism that

suppresses echoes at either the monaural level [27] or binaural level [28]. Considering the

monaural approach, a reasonable way to overcome the effects of reverberation would be

to boost these initial wavefronts. This can also be achieved by suppressing the steady state

components of a signal.

The algorithm described in this chapter presents a combination of the concepts of

precedence-effect-based processing and ITD analysis to improve recognition accuracy in

environments containing reverberation and interfering talkers. A novel method for ITD

analysis is introduced, called the Interaural Cross-correlation-based Weighting (ICW) al-
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gorithm. In addition, cross-correlation-based weighting using the ICW algorithm is pre-

ceded by suppression of reverberant components of speech using steady state suppres-

sion. The SSF algorithm proposed by C. Kim ([4, 15]) as described in Section 2.5.1 was

used to achieve this.

4.1 Motivation based on auditory processing

Interaural cross-correlation is commonly used in binaural processing to compute the de-

lay between the signal at the two ears, producing an estimate of the ITD. The ICW algo-

rithm uses this principle for ITD-based processing. The ICW algorithm roughly follows

the manner in which binaural signals are processed by the human auditory system.

A crude model of the auditory-nerve response to sounds starts with bandpass filter-

ing of the input signal (modeling the frequency selectivity of the cochlea), followed by

half-wave rectification and then by a lowpass filter. The auditory-nerve response roughly

follows the fine structure of the signal at low frequencies and the envelope of the signal

at high frequencies [3, 11, 13]. ITD analysis is based on the cross-correlation of auditory-

nerve responses. Hence, the human auditory system is especially sensitive to fine-structure

ITD cues at low frequencies and envelope ITD cues at high frequencies. The ICW algo-

rithm uses this concept to reject components of the input signal that appear to produce

large envelope ITDs that are unlikely to represent target components. Moreover, signal

envelopes have been shown to be a better measure in detecting the direct sound [27, 29].
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Figure 4.2: Block diagram describing the ICW algorithm.
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4.2 Structure of the ICW algorithm

Figure 4.2 shows a block diagram of the ICW algorithm. As mentioned in Section 3.1, it is

assumed that there is no delay in the arrival of the target signal between the right and left

channel denoted by xR[n] and xL[n] respectively.

4.2.1 Bandpass Filtering

The signals xR[n] and xL[n] are first bandpass filtered by a bank of 40 gammatone filters

using a modified version of the implementation in Malcolm Slaney’s Auditory Toolbox

[30]. The center frequencies of the filters are linearly spaced according to their equivalent

rectangular bandwidth (ERB) [16] between 100 Hz and 8 kHz. The use of gammatone

filters is physiologically motivated, as they mimic the form of frequency analysis in the

peripheral auditory system. The frequency response of gammatone filters is shown in

Figure 4.3

In order to ensure that there is no delay across the different frequency channels, zero-

phase filtering was performed. A zero-phase filter has no phase distortion and for a real

impulse response h(n), it satisfies,

h(n) = h(−n)

Zero-phase filtering was achieved using forward-backward filtering. A signal is first

filtered normally using an impulse response h(n). The output of the first filtering opera-

tion is then filtered again using the flipped version of the original filter i.e. h(−n). Thus

the effective filtering operation has the impulse response of,
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Figure 4.3: Frequency response of gammatone filters used in this study. This was gener-
ated using Malcolm Slaney’s Auditory Toolbox.

he(n) = h(n) ∗ h(−n) (4.2)

As seen this effective filter he is zero phase. In the frequency domain,

He(e
jωt) = H(e−jωt)H∗(e−jωt)

= |H(ejωt)|2
(4.3)

Thus, effectively,He(e
jωt) squares the amplitude response and zeros the phase response

of the original filter H(ejωt). Since this leads to an effective reduction in bandwidth, the

bandwidths of the original gammatone filters are modified to roughly compensate for this.
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4.2.2 Envelope extraction

After the peripheral bandpass filtering, the envelopes eL,l[n] and eR,l[n] of the signals are

extracted. Here, eL,l[n] refers to the envelope of the signal from the left microphone and

the lth gammatone filter channel and eR,l[n] is the envelope of the signal from the right

microphone and the lth gammatone filter channel. The Hilbert transform was used for

envelope extraction.

The analytic signal corresponding to the left microphone signal xL,l[n] is given by,

xaL,l[n] = xL,l[n] + jH(xL,l[n]) (4.4)

whereH(xL,l[n]) is the Hilbert transform of xL,l[n]. The analytic signal is a complex valued

signal with no negative frequency components. The real and complex parts of the analytic

signal are related by the Hilbert transform. The instantaneous envelope of the signal xL,l[n]

can be computed using the analytic signal.

eL,l[n] = |xaL,l[n]|

= |xL,l[n] + jH(xL,l[n])|
(4.5)

The Hilbert transform basically introduces a phase shift of 90◦ in the original signal.

The microphone signal on the right xR,l[n] is also processed in exactly the same manner

to give the envelope eR,l[n].

4.2.3 Cross-correlation and computation of a weight matrix

Once the signal envelopes are computed, they are divided into frames by windowing.

Thereafter, cross-correlation across the right and left microphone signals is performed.
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The normalized cross-correlation of the envelope signals eR,l[n] and eL,l[n] is given by,

ρl[m] =

∑
Nw
eL,l[n;m]eR,l[n;m]√∑

Nw
eL,l[n;m]2

√∑
Nw
eR,l[n;m]2

(4.6)

where ρl[m] refers to the normalized cross-correlation of themth frame and lth gammatone

channel, eL,l[n;m] and eR,l[n;m] are the envelope signals corresponding to the mth frame

and lth gammatone channel for the left and right channels respectively. The window size

Nw was set to 75 ms and the time between frames for ICW was 10 ms. Rectangular win-

dows were used.

As discussed in Chapter 3, the microphone arrangement is such that the target signal

produces zero delay between the right and left microphones. For this reason, normalized

cross-correlation was performed only for a delay of zero corresponding to the target delay.

This cross-correlation computation would lead to a ρl[m] = 1 if the two signals are iden-

tical, as would be the case ideally. In the presence of noise and reverberation, the value

of ρl[m] is indicative of the degree of mismatch between the right and left channels. The

differences between the two signals are caused due to the reverberated signal as well as

the interfering talker. The closer the value of ρl[m] is to 1, the lower the effect of reverbera-

tion and interfering talkers on that portion of the signal. Thus the value of ρl[m] is used in

order to separate the portions of the signals that are severely affected by the reverberant

field and the interfering noise by the use of a weight matrix.

Based on ρl[m], the weight computation was given by,

wl[m] = ρl[m]a (4.7)

The nonlinearity a is introduced to cause a sharp decay of wl as a function of ρl and it was

experimentally set to 3. The weights computed are applied as given below:

Yl[n;m] = wl[m]x̄[n;m] (4.8)
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Figure 4.4: Overall block diagram of processing using steady-state suppression and inter-
aural cross-correlation based weighting.

where Yl[n;m] is the short-time signal corresponding to themth frame and lth gammatone

channel and x̄[n;m] is the average of short-time signals xR,l[n;m] and xL,l[n;m] correspond-

ing to the mth frame and lth gammatone channel. To resynthesize speech, all l channels

are then combined.

4.3 Experimental Results

The ICW algorithm was used in conjunction with the SSF algorithm in this study. The

SSF algorithm leads to significant improvements in the presence of reverberation which

in turn, leads to better ITD-based weighting. The overall block diagram is shown in Fig-

ure 4.4. Steady-state suppression, described in Section 2.5.1, is performed monaurally, and

subsequently a weight that is based on interaural cross-correlation is applied to the sig-

nal, as described in Section 4.2. All experiments were conducted using simulated data as

described in Chapter 3.

Preliminary results were obtained using the CMU Sphinx speech recognition system.

The RM1 database was used for the preliminary experiments and reverberation times of

0.5 s and 1 s were used for this purpose. An interfering talker was mixed in at 0 dB, 10 dB

and 20 dB SIR. The absence of an interfering talker was also included as one of the con-
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(a)

(b)

Figure 4.5: Word Error Rate as a function of Signal-to-Interference Ratio for an interfering
signal located 45 degrees off axis at various reverberation times using the RM1 database
and the CMU Sphinx speech recognition system using clean training data: (a) 0.5 s (b) 1 s.
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(a)

(b)

(c)

Figure 4.6: Word Error Rate as a function of Signal-to-Interference Ratio for an interfering
signal located 45 degrees off axis at various reverberation times using the WSJ database
and a GMM-based acoustic model trained using the Kaldi speech recognition toolkit using
clean training data: (a) 0.2 s (b) 0.4 s (c) 0.6s.
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(a)

(b)

Figure 4.7: Word Error Rate as a function of Signal-to-Interference Ratio for an interfering
signal located 45 degrees off axis at various reverberation times using the WSJ database
and a GMM-based acoustic model trained using the Kaldi speech recognition toolkit using
clean training data: (a) 0.8 s (b) 1 s.
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WER for RT60 = 0.2s 10 dB 20 dB ∞ dB
Delay and Sum 47.88% 21.07% 10.42%
ICW 48.23% 21.09% 10.63%
SSF 45.32% 16.08% 7.88%
SSF+ICW 41.98% 14.89% 7.81%

WER for RT60 = 0.4s 10 dB 20 dB ∞ dB
Delay and Sum 75% 51.49% 41.01%
ICW 75.68% 51.88% 41.71%
SSF 56.38% 26.1% 18.94%
SSF+ICW 53.8% 25.48% 17.78%

WER for RT60 = 0.6s 10 dB 20 dB ∞ dB
Delay and Sum 87.56% 73.12% 65.37%
ICW 88.03% 74.41% 67.07%
SSF 68.17% 42.54% 35.49%
SSF+ICW 66.6% 41.83% 34.9%

WER for RT60 = 0.8s 10 dB 20 dB ∞ dB
Delay and Sum 90.86% 82.63% 76.82%
ICW 90.83% 83.62% 77.88%
SSF 76.42% 54.98% 48.42%
SSF+ICW 75.96% 54.01% 49.04%

WER for RT60 = 1s 10 dB 20 dB ∞ dB
Delay and Sum 93.27% 86.34% 83.62%
ICW 93.95% 87.17% 83.64%
SSF 83.41% 65.44% 60.58%
SSF+ICW 82.29% 62.94% 57.82%

Table 4.1: Word Error Rate as a function of Signal-to-Interference Ratio for an interfering
signal located 45 degrees off axis at reverberation times of 0.2 s, 0.4 s, 0.6 s, 0.8 s and 1 s
using the WSJ database and a DNN-based acoustic model trained using the Kaldi speech
recognition toolkit using clean training data.
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(a)

(b)

Figure 4.8: Word Error Rate as a function of reverberation time at various Signal-to-
Interference Ratios using the WSJ database and a DNN-based acoustic model obtained
using multi-style training using the Kaldi speech recognition toolkit: (a) 10dB (b) 20dB.
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ditions. More detailed experiments were later conducted for reverberation times of 0.2 s

to 1 s in steps of 0.2 s using the Kaldi speech recognition toolkit and the WSJ database. In

this case, an interfering talker was mixed in at signal-to-interference ratios (SIRs) of 10 dB

and 20 dB. Experiments were also conducted in the absence of an interfering talker. These

experiments were conducted using both GMM-based and DNN-based acoustic models

trained using Kaldi. Clean as well as multi-style training were used. In cases where SSF

was used in the test algorithm, the training data also was processed using the SSF algo-

rithm.

For multi-style training, the training data contained roughly equal number of utter-

ances with simulated reverberation times of 0.25, 0.5 and 0.75 s. The location of the mi-

crophone setup was randomized for each utterance. The training data utterances did not

contain any interfering talkers. Results were reported using the test data at 10 and 20 dB

SIR for reverberation times of 0.2 s to 1 s in steps of 0.2 s.

Figures 4.5, 4.6, 4.7, 4.8 and Table 4.1 show the results obtained using baseline Delay-

and-Sum processing, the SSF algorithm alone, the ICW algorithm alone, and the combi-

nation of the SSF and ICW algorithms. The performance of the SSF+ICW algorithm is

compared to that of SSF alone (monaurally) and ICW alone. The results of the Delay-and-

Sum algorithm serve as baseline.

As seen in Figure 4.5, the ICW algorithm applied by itself does not provide any im-

provement in performance compared to baseline Delay-and-Sum processing. Neverthe-

less, the addition of ICW to SSF does lead to a reduction in WER compared to performance

obtained using SSF alone as seen in Figure 4.5. While the WER remains the same for 0 dB

SIR, for all the other conditions, the addition of ICW to SSF decreases the relative WER by

up to 17%. There is a consistent improvement in WER for 10 dB and 20 dB SIR and in the

absence of an interfering talker. The inclusion of envelope ITD cues and their coherence

across binaural signals helps reduce the effects of both interfering noise and reverberation.

These trends remain consistent even with the use of the Kaldi speech recognition sys-
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tem as seen in Figures 4.6, 4.7 and Table 4.1. While the absolute numbers vary quite a bit,

as expected, an improvement is seen in WER. In case of the GMM-based acoustic model

using the WSJ database, the relative improvements in WER remain more or less constant

across SIR in the case of lower reverberation times as seen in Figure 4.6a. As reverberation

increases, the improvements in the presence of higher noise diminish. The WER in these

cases is quite high to begin with even after the application of SSF which would explain the

lower improvements. The results for the DNN-based acoustic model are similar. Table 4.1

shows results for the Kaldi DNN-based acoustic model for reverberation times of 0.2 s to

1 s. The lowest WER for each SIR condition is highlighted. Clean training was used for

these results.

The combination of SSF and ICW algorithms leads to an improvement in WER com-

pared to using SSF alone as seen in Table 4.1. Lower improvements are seen in cases where

the WER is already quite low or in noisier conditions when the WER is very high.

Similar trends are seen for the results obtained using multi-style training in Figure 4.8.

As expected, the WER gets significantly better with the use of multi-style training for all

the algorithms. However, the use of ICW in conjunction with SSF still gives the best per-

formance across different reverberation times. In fact, the relative improvement seen by

the addition of ICW to SSF compared to using SSF alone remains fairly consistent across

reverberation times and SIR.

4.4 Conclusions

The ICW algorithm weighs the contributions of different frames of speech according to

the extent to which the amplitude envelopes in sub-band frequencies are correlated across

two microphones, which should serve as a measure of the extent to which the signals are

locally unaffected by the effects of reverberation. The use of the ICW algorithm in combi-

43



nation with the SSF algorithm leads to improvements in WER in the presence of reverber-

ation and interfering noise. Using signal envelopes for ITD-based processing does lead to

better speech recognition. Relative improvements with ICW seem best in the presence of

moderate to high reverberation and moderate interfering noise while using clean traning

data. In the case of multi-style training, the improvements with ICW remain more or less

similar across different reverberation times and interfering noise levels.
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CHAPTER 5

BINAURAL PROCESSING USING

INTER-MICROPHONE COHERENCE

The goal of coherence-based processing is to place greater emphasis on signal components

that appear to be coherent across microphones. The ICW algorithm discussed in Chapter 4

uses across-microphone ITD-based processing to compute a weight matrix. This goal of

this weight matrix is to separate portions of the signal that are not coherent and thus

presumably, do not originate from the target source. No assumptions are made about

the nature of the microphone signals or the noise that may be present in the room. In this

section, a different method of coherence-based processing is discussed that is based on a

model of reverberated and noisy speech.

In the presence of multiple microphones, where spatial information is available, one

proposed approach to mitigate the effects of reverberation and noise is to be able to char-

acterize each portion of the speech signal as dominated by coherent or diffuse energy. A

technique proposed in [31] uses spectral subtraction initially for suppression of late rever-

berations followed by coherence-based processing.

Other model-based approaches may also be used to determine the degree of coher-

ence between the two microphone signals [32, 33]. In such a case, models of coherence for
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a coherent sound field versus a diffuse sound field are developed. For a given signal, it

is useful to understand how coherent or diffuse different portions of the signal are. With

this knowledge it is possible to apply a mask to the input signal that suppresses regions

where the ratio of coherent-to-diffuse energy is low. The Coherent-to-Diffuse Ratio-based

Weighting (CDRW) described in Section 5.1, uses this principle to reject regions of the

speech signal that are not coherent. This technique, in conjunction with steady state sup-

pression, is used to improve ASR in the presence of reverberation and interfering talkers.

5.1 Interaural coherence-based processing

One of the earliest approaches using interaural coherence was proposed by Allen et al. [34]

where different gain factors were applied to different parts of the signal to suppress com-

ponents that were mainly reverberant. The computation of the gain factors was performed

by determining the diffuseness of the sound field between the microphones. Several vari-

ations of this technique were proposed including binaural application of the gain factors

as well as the inclusion of head related transfer functions [35]. Westermann et al. [36] also

extended the concepts introduced in [34] to make use of interaural coherence histograms

for binaural dereverberation.

There are several possible approaches for computation of gain or weights that best

eliminate reverberation and noise. In this work, we make use of the Coherent-to-Diffuse

Ratio (CDR) for weight computation. As the name suggests, this metric provides an esti-

mate of the extent to which a particular portion of the signal is affected by the reverber-

ation or noise present. We use the method proposed by Jeub et al. [32] for deriving the

Coherent-to-Diffuse Ratio (CDR).
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5.2 Structure of the CDRW algorithm

STFT STFT

Auto-PSD 
Computation

Auto-PSD 
computation

Cross-PSD 
Computation

Coherence 
estimation

CDR 
estimation

ISTFT

+

⌦

Input Signal

Processed signal

Ratio Mask

Figure 5.1: Block diagram describing the CDRW algorithm.
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Figure 5.2: Diagram depicting the microphone setup used. Signals xR(t) and xL(t) are the
right and left microphones respectively that capture sounds coming from the target r(t)
and the interferer i(t) in a reverberant room.

A block diagram describing the Coherent-to-Diffuse Ratio-based Weighting algorithm

(CDRW) used in this work is shown in Figure 5.1.

5.2.1 Coherence function

Consider two signals from the microphones xR(t) and xL(t) as seen in Figure 5.2. The

coherence function is a statistic commonly used to measure how correlated two signals

are. The complex interaural coherence ΓxRxL(ω) between the signals xR(t) and xL(t) is

given by

ΓxRxL(ω) =
ΦxRxL(ω)√

ΦxRxR(ω)ΦxLxL(ω)
(5.1)
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Figure 5.3: Portion of a sphere with radius r.

where ΦxRxL(ω) denotes the Cross-Power Spectral Density (Cross-PSD) of xR(t) and xL(t)

and ΦxRxR(ω) and ΦxLxL(ω) denote the Auto-PSDs of xR(t) and xL(t) respectively. The

Auto-PSD and Cross-PSD functions can be estimated using recursive averaging.

5.2.2 Coherence in a diffuse field

In the case of a diffuse field, as is caused by reverberation, the spherically-isotropic in-

teraural coherence can be calculated by integrating all the plane waves originating from

a surface area over the whole surface area of a sphere [37]. For a spherical surface as

shown in Figure 5.3, it is assumed that the microphones are placed on the x-axis. It is also

assumed that the distance d between the microphones is much smaller than the radius

r. Azimuth φ and elevation θ are also shown in Figure 5.3. On the given surface of the

sphere, an infinitesimal area is given by dA = r2sinφdφdθ.

The coherence between two signals can be computed by integrating over all plane

waves originating from some small surface area A.
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ΓD(ω) =

∮
A

ΦxRxL(ω)dA∮
A

√
ΦxRxR(ω)ΦxLxL(ω)dA

(5.2)

Consider first the case of a single plane wave originating from some angle φ. A simpli-

fied 2-D illustration is shown in Figure 5.2.

As seen in Equation 4.1, this leads to a delay between the signal reaching the two sen-

sors. This delay τ owing to path difference is

τ =
dcosφ

c
(5.3)

where d is the distance between the two sensors and c is the speed of sound. Thus the

cross-power spectral density is,

ΦxRxL(ω) = ΦxRxR(ω)e
−jωdcosφ

c (5.4)

Given the isotropic assumption, the power spectral densities are independent of loca-

tion.

ΦxLxL(ω) = ΦxRxR(ω) (5.5)

The spatial coherence of the isotropic diffuse field can now be calculated by integrating

over all plane waves as seen in Equation 5.2.

ΓD(ω) =

∮
A

ΦxRxR(ω)e
−jωdcosφ

c dA∮
A

ΦxRxR(ω)dA

=
1

A

∮
A

e
jωdcosφ

c dA

The area A on the surface of the sphere is A = 4πr2 and the integral can be computed

over φ ∈ [0, π] and θ ∈ [0, 2π).
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ΓD(ω) =
1

4πr2

∫ 2π

0

∫ π

0

e
−jωdcosφ

c r2sinφdφdθ

=
1

4π

∫ 2π

0

∫ π

0

e
−jωdcosφ

c sinφdφdθ

(5.6)

Substituting g = ωdcosφ
c

,

ΓD(ω) =
c

2ωd

∫ ωd
c

−ωd
c

e−jgdg

=
sin(ωd/c)

ωd/c

= sinc(
ωd

c
)

(5.7)

In the case of a coherent source with the signal arriving at some angle φ, the two signals

only differ by a delay term and the interaural coherence is given by,

ΓCxRxL(ω) = e−
(
jωdcosφ

c

)
(5.8)

5.2.3 Coherent-to-Diffuse Ratio

The Coherent-to-Diffuse Ratio (CDR) is defined as the ratio of the coherent energy to the

diffuse energy in a given environment. The expression for CDR in Equation 5.16 was

derived by Jeub and his colleagues [32].

CDR(ω) =
ΦC(ω)

ΦD(ω)
(5.9)

where ΦC(ω) and ΦD(ω) denote the auto-PSD corresponding to a coherent and diffuse

source respectively.
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In the case of a diffuse field, the noise signals at both microphones are assumed to

have equal power spectral density denoted by ΦD(ω). Using the relationship as seen in

Equation 5.1, the cross-PSD can be derived as,

ΦxLxR(ω) = ΦD(ω)sinc(
ωd

c
)

Similarly, for a coherent source, the auto-PSD is ΦC(ω). Again, using Equation 5.1, the

cross-PSD can be derived as,

ΦxLxR(ω) = ΦC(ω)e−
(
jωdcosφ

c

)
Thus, in an environment involving a mix of diffuse and coherent sources, the interaural

coherence can be given as a ratio of the the total cross-PSD to the total auto-PSD of the

coherent and diffuse sounds.

ΓC+D
xLxR

(ω) =
ΦD(ω)sinc(ωd

c
) + ΦC(ω)e−

(
jωdcosφ

c

)
ΦC(ω) + ΦD(ω)

(5.10)

Assuming the coherent source is located such that there is no delay between the two

microphones i.e. φ = π/2,

ΓC+D
xLxR

(ω) =
ΦD(ω)sinc(ωd

c
) + ΦC(ω)

ΦC(ω) + ΦD(ω)
(5.11)

Substituting Equation 5.9 into Equation 5.11,

ΓC+D
xLxR

(ω) =
sinc(ωd

c
) + CDR(ω)

CDR(ω) + 1
(5.12)

An expression for the CDR can be obtained by rearranging the terms in Equation 5.12.

CDR(ω) =
sinc(ωd

c
)− ΓC+D

xLxR
(ω)

ΓC+D
xLxR

(ω)− 1
(5.13)
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The real-valued CDR can be given by,

CDR(ω) =
sinc(ωd

c
)−Re{ΓC+D

xLxR
(ω)}

Re{ΓC+D
xLxR

(ω)} − 1
(5.14)

To make sure that value of the CDR remains greater than 0,

CDR(ω) = max

(
0,
sinc

(
ωd
c

)
−Re{Γ(C+D)

xRxL (ω)}
Re{Γ(C+D)

xRxL (ω)} − 1

)
(5.15)

where d is the distance between the two microphones, c is the speed of sound and Γ
(C+D)
xRxL (ω)

is the interaural coherence for a mixed (coherent+diffuse) source.

For the mth frame and kth frequency index, this can be expressed as,

CDR[m, k] = max

(
0,
sinc

(
2πkfsd
Nc

)
−Re{ΓC+D

xRxL
[m, k]}

Re{ΓC+D
xRxL

[m, k]} − 1

)
(5.16)

The quantity of ΓC+D
xRxL

[m, k] is estimated using recursive smoothing.

5.2.4 Mask estimation

Equation 5.16, as derived in [32], is useful in separating portions of the signal STFT that are

dominated by the diffuse noise and therefore need to be suppressed. In order to convert

the CDR quantity into a ratio mask, we use the classical Wiener filter.

For a signal x[n] corrupted by noise s[n], the resulting noisy signal is given by y[n].

y[n] = x[n] + s[n] (5.17)

Wiener filtering produces a minimum mean-squared error estimate of the clean signal x[n]

from y[n]. For the output of the Wiener filter denoted by of x̂[n], the error e[k] is expressed

as,
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e[k] = x̂[n]− x[n]

The Wiener filter thus aims to minimize the mean square error E[|e[k]|2]. The transfer

function of a Wiener filter is given by,

Hw(ω) =
φxy(ω)

φyy(ω)
(5.18)

where φxy(ω) is the cross power spectral density between the signal x[n] and the noisy

signal y[n] and φyy(ω) is the auto power spectral density of the noisy signal y[n].

Considering Equation 5.17 and assuming that x[n] and s[n] are not correlated,

φyy(ω) = φxx(ω) + φss(ω)

and

φxy(ω) = φxx(ω)

Substituting the expressions for φxy(ω) and φyy(ω) into Equation 5.18,

Hw(ω) =
φxy(ω)

φyy(ω)

=
φxx(ω)

φxx(ω) + φss(ω)

(5.19)

We can define a frequency-dependent Signal-to-Noise-Ratio as SNR(ω) = φxx(ω)
φss(ω)

.

Hw(ω) =
SNR(ω)

SNR(ω) + 1
(5.20)

Thus, the Wiener filter transfer function can be expressed in terms of SNR(ω). In place

of SNR(ω), we useCDR(ω) in this study to produce a ratio maskRM(ω). CDR is an SNR-

like measure in the sense that it provides a ratio of the coherent-to-diffuse power which
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effectively is like the ratio of desired signal to noise power.

RM(ω) =
CDR(ω)

CDR(ω) + 1
(5.21)

For the mth frame and kth frequency index, this can be expressed as,

RM [m, k] =
CDR[m, k]

CDR[m, k] + 1
(5.22)

The ratio mask is applied to the STFT of the mean of the two microphone inputs and

an Inverse STFT (ISTFT) is then performed to obtain the processed waveform. In this

study, the combination of CDRW and SSF gave the best performance in terms of ASR. An

example of the spectrograms of the original waveform and the waveform after processing

using the SSF+CDRW algorithm is shown in Figure 5.4.

5.3 Experimental Results

Experiments were conducted for reverberation times of 0.2 s to 1 s in steps of 0.2 s us-

ing the Kaldi speech recognition toolkit [38] and the WSJ database [39]. All experiments

were conducted using simulated data. An interfering talker was mixed in at 10 dB and

20 dB. Experiments were also conducted in the absence of an interfering talker. These ex-

periments were conducted using both GMM-based and a DNN-based acoustical model

trained using Kaldi. The DNN-based model used alignments generated using the GMM-

based models. The DNN-based model has two hidden layers. Clean as well as multi-style

training was performed. Training data underwent processing identical to the test data.

In the case of multi-style training, the training data contained roughly equal number

of utterances with simulated reverberation times of 0.25, 0.5 and 0.75 s. The location of the

microphone setup was randomized for each utterance. The training data utterances did
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Figure 5.4: SSF+CDRW processing on WSJ utterance at reverberation time of RT60 = 0.6s
in the absence of any interferer (a) Original spectrogram (b) Spectrogram after SSF+CDRW
processing.
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Figure 5.5: A block diagram of SSF+CDRW processing. SSF is performed monaurally on
the signals from the right and left sensor after which CDRW is applied.

not contain any interfering talkers. Results were reported using the test data at 10 and 20

dB SIR for reverberation times of 0.2 s to 1 s in steps of 0.2 s.

Results obtained using steady-state suppression alone (monaurally) are compared to

results using the method introduced in this chapter which includes the CDRW algorithm

and SSF processing followed by CDRW. A block diagram for how SSF+CDRW processing

was performed is shown in Figure 5.5. As seen, the SSF algorithm is performed monau-

rally for the right and left microphone. The CDRW algorithm is then applied to the output

of the SSF algorithm. This is done for reverberant and noisy environments. In the case of

low reverberation times as seen in Figure 5.6a, using the Kaldi GMM-based model, the

CDRW algorithm alone performs pretty well and has the lowest WER at 10 dB SIR and in

the absence of an interferer. The SSF+CDRW method does not help in this case. In fact,

the combination of SSF+CDRW leads to WER that is worse than using just Delay and Sum

at reverberation time of 0.2 s. As the reverberation time increases, the improvements due
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(a)

(b)

(c)

Figure 5.6: Word Error Rate as a function of the Signal-to-Interference Ratio for an in-
terfering signal located 45 degrees off axis at various reverberation times using the WSJ
database and a GMM-based acoustic model trained using the Kaldi speech recognition
toolkit using clean training data: (a) 0.2 s (b) 0.4 s (c) 0.6s.
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(a)

(b)

Figure 5.7: Word Error Rate as a function of Signal-to-Interference Ratio for an interfering
signal located 45 degrees off axis at various reverberation times using the WSJ database
and a GMM-based acoustic model trained using the Kaldi speech recognition toolkit using
clean training data: (a) 0.8 s (b) 1 s.
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(a)

(b)

(c)

Figure 5.8: Word Error Rate as a function of Signal-to-Interference Ratio for an interfering
signal located 45 degrees off axis at various reverberation times using the WSJ database
and a DNN-based acoustic model trained using the Kaldi speech recognition toolkit using
clean training data: (a) 0.2 s (b) 0.4 s (c) 0.6s.
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(a)

(b)

Figure 5.9: Word Error Rate as a function of Signal-to-Interference Ratio for an interfering
signal located 45 degrees off axis at various reverberation times using the WSJ database
and a DNN-based acoustic model trained using the Kaldi speech recognition toolkit using
clean training data: (a) 0.8 s (b) 1 s.
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(a)

(b)

Figure 5.10: Word Error Rate as a function of reverberation time at various SIRs for the
WSJ database and a DNN-based acoustic model obtained using multi-style training using
the Kaldi speech recognition toolkit: (a) 10dB (b) 20dB.
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to SSF+CDRW are seen. The CDRW algorithm leads to lower WER compared to SSF at

reverberation times of 0.4 s, 0.6 s, 0.8 s and 1 s and at these conditions the combination

of SSF+CDRW algorithms leads to the lowest WER. At reverberation time of 0.6 s, there

is a relative improvement in WER of nearly 29% at∞ dB which is very significant. These

trends continue as the reverberation gets worse.

The results using the DNN-based models trained using the Kaldi speech recognition

toolkit and clean training data are seen in Figures 5.8 and 5.9. While the CDRW algo-

rithm leads to better performance compared to SSF as seen in Figures 5.6 and 5.7 using

the GMM-based model, this is no longer the case while using the DNN-based model as

seen in Figures 5.8 and 5.9. At lower reverberation times, the improvements in WER us-

ing CDRW are limited. For higher reverberation times, even though the CDRW algorithm

does much better than the baseline Delay and Sum system, it still does not do better than

the SSF algorithm. The combination of SSF and CDRW algorithms gives the best perfor-

mance for reverberation times of greater than 0.2 s. In fact, for a reverberation time of 0.6

s, a relative improvement in WER of over 40% is seen at ∞ dB. This stays consistent at

reverberation times of 0.8 and 1 s as well.

Overall, the combination of SSF+CDRW algorithm does not lead to an improvement

in WER at low reverberation times close to 0.2 s. However, as the reverberation increases,

the improvements increase significantly and stay consistent even for reverberation time of

1 s.

The results using multi-style training with the Kaldi speech recognition toolkit are seen

in Figure 5.10. At 10 dB SIR, the CDRW algorithm leads to lower error than the SSF algo-

rithm for low to moderate reverberation. However, at reverbertiom times of 0.6 s or higher,

the CDRW algorithm leads to much higher WER compared to SSF. The combination of SSF

with CDRW leads to the lowest WER across the board. This is true for both the interfering

noise levels that were tested. The relative improvement in WER seen by the addition of

CDRW to SSF is greater at lower reverberation times, however.
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5.4 Effect of inter-microphone distance

The CDR metric depends, among other factors, on the inter-microphone distance. In par-

ticular, as seen in Equation 5.7, inter-microphone distance plays a role in the determining

the coherence in the spatially isotropic case, which in turn leads to the computation of the

CDR metric. In order to study the effect of changing inter-microphone distance on the

results, further experiments were conducted.

For these experiments, a new training set was generated that not only had utterances at

reverberation times of 0.25, 0.5 and 0.75 s, but also had roughly equal utterances simulated

at inter-microphone distances of 2.5, 5 and 7.5 cms. Test data had utterances simulated

with inter-microphone distances of 2, 4, 6, 8, 10 and 12 cms. Test data with an interfer-

ing talker mixed in at 20 dB SIR was used for these experiments. A DNN-based model

was trained using the Kaldi speech recognition toolkit. The results obtained are seen in

Figure 5.11.

At the reverberation time of 0.2 s, as seen in Figure 5.11, the WER using the CDRW

algorithm and by extension the SSF+CDRW algorithm drops with the increase in inter-

microphone distance. Since the inter-microphone distance indirectly determines the range

of frequencies over which the CDR metric is effective, this is not surprising. As seen in

Equation 5.7, the frequency up to which the diffuse field is highly coherent is inversely

proportional to the inter-microphone distance d. This would mean that at higher inter-

microphone distances, the CDRW algorithm is effective for the most part of the signal.

However, for the greater reverberation times of 0.6 s and over, the WER using the

CDRW algorithm no longer decreases with increasing inter-microphone distance. The

WER using the SSF+CDRW algorithm remains more or less the same across inter-microphone

distance for reverberation times of 0.6 s and above. This could be because spatial aliasing

leads to greater (worse) WER which becomes more prominent as the reverberation in-
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(a)

(b)

(c)

Figure 5.11: Word Error Rate as a function of inter-microphone distance at various re-
verberation times. The WSJ database and a DNN-based acoustic model obtained using
multi-style training using reverberated speech simulated using different inter-microphone
distances was used: (a) 0.2s (b) 0.4s (c) 0.6s.
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creases. Results for reverberation times greater than 0.6 s are not shown but follow trends

that are very similar to Figure 5.11c.

5.5 Conclusions

In this chapter we introduce a novel method that provides better speech recognition ac-

curacy in reverberant and noisy conditions. The approach uses CDR to derive a weight

matrix that suppresses portions of the signal dominated by noise and reverberation. This

method by itself and in combination with the SSF algorithm has been tested in this chapter.

The combination of the SSF and CDRW algorithms leads to improvements of up to 42%

relative in WER using the DNN-based acoustical models in Kaldi obtained using clean

training. It is to be noted that neither the SSF nor the CDRW algorithms actively sup-

press the interfering signal, which is why the relative improvements obtained using the

SSF and CDRW algorithms individually and in combination is greater in the absence of

an interferer across different reverberation times.
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CHAPTER 6

COHERENCE ACROSS FREQUENCY

Chapters 4 and 5 introduce methods to mitigate the effect of reverberation and interfering

noise using coherence across the microphone signals. In addition to looking at coherence

across the signals at the two sensors, it is also possible to leverage coherence seen in other

domains within the same signals. Signals that arrive at the two microphones at the same

time normally exhibit coherence in arrival time over a range of frequencies. It can be bene-

ficial to capture this coherence in order to isolate signals coming from a source of interest.

One way to do this is to perform cross-correlation over some range of frequencies,

which is the approach we adopt in this work. One of the earliest models of binaural hear-

ing was proposed by Sayers and Cherry [40], which related the lateralization of binaural

signals to their interaural cross-correlation. In binaural speech processing, a popular ap-

proach towards isolating target sounds in adverse environments is the grouping of sources

according to common source location. This usually entails the use of interaural time dif-

ference (ITD) and interaural intensity difference (IID) as discussed in Chapters 4 and 5.

Models that describe how these cues are used to lateralize sound sources are reviewed in

[41, 42], among other sources.

Straightness weighting refers to a hypothesis that greater emphasis in auditory lateral-

ization is given to the contributions of ITDs that are consistent over a range of frequencies
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[43, 44, 45]. This was motivated by the fact that sounds emitted by point sources produced

ITDs that are consistent over a range of frequencies. Hence, the existence of a “straight”

maximum of the interaural cross-correlation function over a range of frequencies could

be used to identify the correct ITD. In this chapter, we introduce a new method based on

this concept called the Cross-Correlation across Frequency algorithm (CCF) . In essence,

this method aims at boosting regions of coherence across frequency, and it also provides

smoothing over a limited range of frequencies.

The CCF algorithm is inherently monaural. Since we are using binaural signals, an

intermediate step with ITD-based processing is performed using the PDCW algorithm

that was discussed in Section 2.5.2. For reverberant input signals it is useful to first perform

steady-state suppression to help reduce the effect of reverberation. The SSF algorithm is

applied initially to both microphone signals to achieve this. The SSF algorithm is described

in detail in Section 2.5.1.

6.1 Structure of the CCF algorithm

A block diagram describing CCF processing is shown in Figure 6.1.

6.1.1 Bandpass filtering

The CCF algorithm roughly mimics the manner in which speech is believed to be pro-

cessed in the human auditory system. The peripheral auditory system is modeled by a

bank of bandpass filters. We use a modified zero-phase implementation of the gamma-

tone filters in Slaney’s Auditory Toolbox [30]. The center frequencies of the filters are

linearly spaced according to the ERB scale [16]. Gammatone filters are used because they
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Figure 6.1: Block diagram describing the CCF algorithm.

approximate the frequency response of the peripheral auditory system. The frequency

response of gammatone filters used is shown in Figure 6.2.

The impulse responses are obtained by computing the autocorrelation function of the

original gammatone filters, which are adjusted to compensate roughly for the reduction

in bandwidth produced by squaring the magnitude of the frequency response when per-

forming the autocorrelation operation. This has been described in Section 4.2.1. Thus the

effective filtering operation has the impulse response of
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Figure 6.2: Frequency response of gammatone filters used in this study. This was gener-
ated using Malcolm Slaney’s Auditory Toolbox.

he(n) = h(n) ∗ h(−n) (6.1)

where h(n) is the original gammatone filter impulse response and he(n) is the effective

impulse response.

6.1.2 Satellite filters

Leveraging coherence in frequency requires that the outputs of a band of frequencies be

considered. For the CCF algorithm, we look at a range of secondary channels on either

side in frequency of the center frequency of the bandpass filters discussed in the previous

section. Thus, for each of the primary gammatone filters used in conventional auditory

processing, a secondary set of satellite filters is designed. The total span of these satellite
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filters determines the range of frequencies over which CCF will be performed.

In other words, a total of N groups of bandpass filters is employed, each with one

“center” band andm/2 satellite bands on either side of the center band in frequency, where

m represents the total number of satellite bands. Since the satellite bands are symmetric

about the center band, m is always even. These N filter groups are denoted by “Filter

Group 1”, “Filter Group 2” ....“Filter Group N” in Figure 6.1. Each of these filter groups

consists of one center band and the corresponding satellite bands. The center frequency

of the lth pair of satellite filters on each side of the filter group center band is given by,

CB ± s× αm
2
+1−l, 1 ≤ l ≤ m/2 (6.2)

where CB is the center band frequency for a given filter group, s is a parameter that de-

termines the span of the frequencies on either side of the center band frequency and α is

a parameter that controls the spacing between the satellite filters.

In this study, αwas set to 0.7 which produces more closely spaced satellite filters closer

to the center band and wider spacing away from the center band. This is physiologically

motivated since it models the basilar membrane response. N was set to 20 and m was set

to 6. The span parameter s was set to 2500 Hz. The values for the parameters mentioned

above were determined experimentally.

Given the input signal x[n], the filter outputs for a given filter group are given by

xkp[n] = x[n] ∗ hkp[n] (6.3)

where xkp[n] is the filter output of the kth band of the pth filter group, with x[n] as input.

Here k ranges from 1 to m + 1 (comprising of m satellite bands and 1 center band) and p

ranges from 1 to N .
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6.1.3 Auditory-nerve-based processing

Bandpass filtering is followed by a rough model of auditory-nerve processing, which in-

cludes half-wave rectification of the filter outputs. Following earlier work in “polyaural”

processing with multiple microphones [46], the filter outputs are also negated and simi-

larly half-wave rectified. While this component of the processing is non-physiological, it

enables the entire signal to be reconstructed, including positive and negative portions.

x+kp[n] = max(0, xkp[n])

x−kp[n] = max(0,−xkp[n])

(6.4)

6.1.4 Cross-Correlation across frequency channels

Cross-correlation across frequency is then computed within each individual filter group.

Xfcorr+p[n] =

(
m+1∏
k=1

x+kp[n]

) 1
m+1

Xfcorr−p[n] =

(
m+1∏
k=1

x−kp[n]

) 1
m+1

(6.5)

where x+kp[n] and x−kp[n] are the positive and negative half-wave-rectified portions of the

signals xkp[n], andXfcorr+p[n] andXfcorr−p[n] denote the cross-correlation across frequency

of x+kp[n] and x−kp[n] for the pth filter group.

Xfcorr+p[n] is combined with −Xfcorr−p[n] to produce the complete cross-correlation
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across frequency for the pth filter group, Xfcorrp [n]:

Xfcorrp [n] = Xfcorr+p[n] + (−Xfcorr−p[n]) (6.6)

In order to limit any distortion that may have taken place, the signal is bandpass fil-

tered again to achieve smoothing. To resynthesize speech, all the filter groups are then

combined.

y[n] =
N∑
p=1

X̃fcorrp [n] (6.7)

where X̃fcorrp [n] is the smoothed version of Xfcorrp [n].

6.2 Experimental Results

6.2.1 Experiments using simulated data

ASR performance using the CCF algorithm was tested using several combinations with al-

gorithms for steady-state suppression and ITD-based analysis. An overall block diagram

depicting the combinations used is shown in Figure 6.3. Preliminary results were obtained

using the RM1 database using the Sphinx speech recognition system. Reverberation times

of 0, 0.5 and 1 s were tested as part of the preliminary experiments. The data were simu-

lated and an interfering talker was mixed in at 0, 10 and 20 dB SIR. Experiments were also

conducted in the absence of an interfering talker. These results are tabulated in Table 6.1

and plotted in Figure 6.4.

Consider first the performance of the older compensation algorithms, PDCW and SSF,

as described in Table 6.1. We note that PDCW provides excellent compensation for noise
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Figure 6.3: Block diagram describing the overall combination of algorithms used in con-
junction with the CCF algorithm.
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RM1
WER for RT60 = 0 0 dB 10 dB 20 dB ∞ dB
Delay and Sum 80.78% 32.01% 12.72% 6.54%
PDCW 23.01% 11.48% 8.15% 6.51%
PDCW+CCF 18.19% 11.48% 8.49% 7.48%
SSF 80.34% 31.31% 12.99% 6.82%
SSF+PDCW 25.43% 11.27% 7.78% 6.87%
SSF+PDCW+CCF 20.98% 12.21% 9.37% 8.51%

RM1
WER for RT60 = 0.5s 0 dB 10 dB 20 dB Clean
Delay and Sum 95.95% 85.96% 66.44% 56.92%
PDCW 95.36% 86.64% 73.31% 66.63%
PDCW+CCF 94.56% 82.14% 68.53% 63.75%
SSF 97.14% 63.93% 35.03% 25.97%
SSF+PDCW 92.52% 61.64% 39.42% 32.27%
SSF+PDCW+CCF 84.65% 48.77% 32.53% 26.15%

RM1
WER for RT60 = 1s 0 dB 10 dB 20 dB Clean
Delay and Sum 96.04% 92.5% 86.12% 82.52%
PDCW 96.08% 93.32% 89.08% 85.54%
PDCW+CCF 96.79% 93.84% 87.27% 84.18%
SSF 96.51% 78.96% 59.1% 52.17%
SSF+PDCW 94.75% 79.02% 63.63% 57.65%
SSF+PDCW+CCF 92.59% 68.2% 53.27% 46.78%

Table 6.1: Comparison of algorithms with respect to Word Error Rate as a function of
Signal-to-Interference Ratio for reverberation times of 0, 0.5 and 1 s for the RM1 database
using the CMU Sphinx speech recognition engine using clean training data (Lowest WER
for each condition highlighted)
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WSJ
WER for RT60 = 0 10 dB 20 dB ∞ dB
Delay and Sum 43.43% 19.75% 5.25%
PDCW 10.48% 6.86% 5.4%
PDCW+CCF 11.9% 8.91% 7.85%
SSF 47.56% 20.94% 8.13%
SSF+PDCW 11.68% 8.74% 8.14%
SSF+PDCW+CCF 14.03% 10.52% 9.9%

WSJ
WER for RT60 = 0.2s 10 dB 20 dB ∞ dB
Delay and Sum 54.6% 25.09% 13.66%
PDCW 58.4% 37.18% 30.6%
SSF 54.96% 23.71% 12.03%
SSF+PDCW 34.73% 19.13% 15.75%
SSF+PDCW+CCF 36.61% 20.53% 16.36%

WSJ
WER for RT60 = 0.4s 10 dB 20 dB ∞ dB
Delay and Sum 82.5% 62.38% 52.74%
PDCW 91.8% 86.03% 81.06%
SSF 65.93% 34.69% 25.65%
SSF+PDCW 61.55% 39.9% 34.07%
SSF+PDCW+CCF 56.88% 37.4% 29.14%

WSJ
WER for RT60 = 0.6s 10 dB 20 dB ∞ dB
Delay and Sum 91.86% 84.64% 81.49%
PDCW 94.51% 93.09% 91.01%
SSF 77.04% 53.84% 47.23%
SSF+PDCW 78.74% 62.66% 59.09%
SSF+PDCW+CCF 69.46% 51.37% 44.87%

Table 6.2: Comparison of algorithms with respect to Word Error Rate as a function of
Signal-to-Interference Ratio for reverberation times of 0, 0.2, 0.4 and 0.6 s for the WSJ
database using GMM-based models trained using the Kaldi speech recognition toolkit
using clean training data (Lowest WER for each condition highlighted)
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WSJ
WER for RT60 = 0.8s 10 dB 20 dB ∞ dB
Delay and Sum 94.81% 91.8% 88.74%
PDCW 95.33% 94.84% 93.2%
SSF 85.75% 68.17% 64.47%
SSF+PDCW 86.96% 76.13% 72.65%
SSF+PDCW+CCF 78.31% 64.09% 58.7%

WSJ
WER for RT60 = 1s 10 dB 20 dB ∞ dB
Delay and Sum 95.11% 93.44% 90.94%
PDCW 95.55% 95.05% 94.06%
SSF 89.63% 77.97% 74.99%
SSF+PDCW 90.9% 83.73% 82.31%
SSF+PDCW+CCF 84.83% 72.91% 67.79%

Table 6.3: Comparison of algorithms with respect to Word Error Rate as a function of
Signal-to-Interference Ratio for reverberation times of 0.8 and 1 s for the WSJ database
using GMM-based models trained using the Kaldi speech recognition toolkit using clean
training data(Lowest WER for each condition highlighted)

in the absence of reverberation, but PDCW becomes less effective as the RT60 is increased

from 0 to 1 seconds. SSF, in contrast, provides a good improvement in recognition accuracy

in the presence of reverberation but its effectiveness is limited by the presence of interfer-

ing noise sources. Adding CCF to PDCW and SSF provides an even further improvement

in WER, especially at low and moderate Signal-to-Interference Ratios (SIRs).

In the absence of reverberation, the PDCW algorithm provides signal separation as

described in Chapter 2. The addition of CCF provides significant improvement of 20%

relative in WER at 0 dB SIR. However, as the conditions get cleaner, applying CCF no

longer leads to any improvements and in fact, the addition of CCF leads to much higher

WER in the absence of reverberation and interfering talkers.

Some form of steady state suppression as performed by the SSF algorithm is required to

achieve improvements in ASR in reverberant environments. In the presence of reverbera-

tion, the contribution of PDCW to ASR improvement is limited. However, in combination
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WSJ
WER for RT60 = 0 10 dB 20 dB ∞ dB
Delay and Sum 30.77% 9.73% 3.16%
PDCW 6.52% 4.39% 3.19%
PDCW+CCF 8.61% 5.83% 4.63%
SSF 37.19% 11.34% 4.09%
SSF+PDCW 7.23% 5.34% 4.3%
SSF+PDCW+CCF 8.8% 6.87% 5.7%

WSJ
WER for RT60 = 0.2s 10 dB 20 dB ∞ dB
Delay and Sum 47.88% 21.07% 10.42%
PDCW 47.66% 31.01% 25.44%
SSF 45.32% 16.08% 7.88%
SSF+PDCW 25.67% 14.46% 12.72%
SSF+PDCW+CCF 28.84% 16.03% 12.55%

WSJ
WER for RT60 = 0.4s 10 dB 20 dB ∞ dB
Delay and Sum 75% 51.49% 41.01%
PDCW 83.41% 70.73% 63.4%
SSF 56.38% 26.1% 18.94%
SSF+PDCW 50.85% 31.23% 27.24%
SSF+PDCW+CCF 51.62% 32.79% 23.82%

WSJ
WER for RT60 = 0.6s 10 dB 20 dB ∞ dB
Delay and Sum 87.56% 73.12% 65.37%
PDCW 92.12% 85.3% 81.8%
SSF 68.17% 42.54% 35.37%
SSF+PDCW 68.13% 47.36% 43.41%
SSF+PDCW+CCF 65.42% 46.12% 38.18%

Table 6.4: Comparison of algorithms with respect to Word Error Rate as a function of
Signal-to-Interference Ratio for reverberation times of 0, 0.2, 0.4 and 0.6 s for the WSJ
database using DNN-based models trained using the Kaldi speech recognition toolkit us-
ing clean training data(Lowest WER for each condition highlighted)
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WSJ
WER for RT60 = 0.8s 10 dB 20 dB ∞ dB
Delay and Sum 90.86% 82.63% 76.82%
PDCW 93.31% 89.78% 86.83%
SSF 76.42% 54.98% 48.42%
SSF+PDCW 77.15% 63.05% 58.3%
SSF+PDCW+CCF 74.03% 57.95% 50.83%

WSJ
WER for RT60 = 1s 10 dB 20 dB ∞ dB
Delay and Sum 93.27% 86.34% 83.62%
PDCW 93.91% 90.77% 88.6%
SSF 83.41% 65.44% 60.58%
SSF+PDCW 84.85% 70.8% 66.15%
SSF+PDCW+CCF 81.45% 66.78% 59.33%

Table 6.5: Comparison of algorithms with respect to Word Error Rate as a function of
Signal-to-Interference Ratio for reverberation times of 0.8 and 1 s for the WSJ database
using DNN-based models trained using the Kaldi speech recognition toolkit using clean
training data(Lowest WER for each condition highlighted)

with SSF and CCF, the improvements are significant. This is especially the case at moder-

ate SIRs. The use of SSF+PDCW+CCF provides a relative improvement of nearly 21% at

10 dB compared to using SSF+PDCW for the 0.5 s reverberation-time case for RM1. These

trends are quite consistent and hold even at the reverberation time of 1 s.

The experiments described above were repeated using the Kaldi speech recognition

toolkit [38] and the WSJ database [39]. Experiments were conducted for reverberation

times of 0.2 s to 1 s in steps of 0.2 s. These experiments were conducted using simu-

lated data. An interfering talker was mixed in at 10 dB and 20 dB. Experiments were also

conducted in the absence of an interfering talker. These experiments were conducted us-

ing both a GMM-based model and a DNN-based acoustical model trained using Kaldi.

The DNN-based model used alignments generated using the GMM-based model. The

DNN-based model has 2 hidden layers. Clean speech was used for training. Training

data underwent SSF or CCF processing or both if that was part the test condition. Results
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obtained from the GMM-based model are tabulated in Table 6.2 and 6.3. Some of the re-

sults specifically pertaining to the effect of the CCF algorithm are plotted in Figures 6.5

and 6.6.

As seen in Tables 6.2 and 6.3, the addition of the CCF algorithm doesn’t help much at

lower reverberation times. In fact, at reverberations times of 0 and 0.2 s, the baseline PDCW

and SSF systems and their combination gives the best performance in terms of WER. As

discussed in Chapter 2, the PDCW algorithm leads to significant gains in the absence of

reverberation. Because of this, at the low reverberation time of 0.2 s, the combination of

SSF+PDCW seems to give very good gains in WER. As the reverberation time increases,

the effect of CCF becomes increasingly significant. At reverberation times of 0.6 s and

higher, the combination of SSF+PDCW+CCF consistently has the lowest error.

Using DNN-based acoustical models gives slightly different results. As was the case

with the GMM-based models, in the absence of reverberation, the addition of CCF does

not lead to any improvements. The trends remain more or less the same as the GMM-based

model at 0.2 and 0.4 s. However, at higher reverberation times, while the addition of the

CCF algorithm does do better than using SSF+PDCW alone, sometimes the SSF algorithm

by itself outperforms SSF+PDCW+CCF. In the presence of high reverberation and lower

SIR, the addition of the CCF algorithm does lead to the best performing system in terms of

WER. However, the baseline SSF system performs better at higher SIRs. However, the gap

between the WER for the SSF system alone compared to SSF+PDCW+CCF does decrease

as the reverberation time increases. While only reverberation times of up to 1 s have been

tested here, it seems likely that the combination system of SSF+PDCW+CCF would lead

to the lowest WERs for higher reverberation times.

The addition of the CCF algorithm to SSF and PDCW seems to give maximum gains

in conditions where the mismatch between the training and test data are large. For this

reason, multi-style training does not lead to any gains in WER and in fact, leads to poorer

performance in terms of WER. Multi-style training results have not been reported.
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6.2.2 Experiments using real reverberant data

In order to determine if the results obtained using simulated data can be generalized,

experiments were also conducted using real reverberant data. The REVERB challenge

database was used for this purpose [47]. The real reverberant data in the REVERB chal-

lenge consisted of utterances from the MC-WSJ-AV corpus which has utterances spoken

in a noisy and reverberant room. Data collection took place in a room which had a rever-

beration time of about 0.7 s. The room contained two eight-element circular microphone

arrays using which, the data were collected. The speakers were reading out sentences from

the WSJCAM0 corpus [48]. While a number of different recording conditions existed, we

used the first channel from one of the microphone arrays recorded in the stationary con-

dition. The stationary condition referred to the condition where a speaker was asked to

read a sentence from the WSJCAM0 corpus while stationary in the recording room. A tri-

phone acoustical model which uses Linear Discriminant Analysis (LDA) and Maximum

Likelihood Linear Transform (MLLT) feature transforms was trained using Kaldi. Clean

training data were used for acoustical model training. The training data underwent pro-

cessing that was identical to the test condition. The language model used was built using

the WSJCAM0 database with a vocabulary of 5k words. In order to reduce the effect of

the reverberant environment on the speech signals, SSF processing was performed as an

initial step. The results obtained are tabulated in Table 6.6 and plotted in Figure 6.9.

As seen in Table 6.6 and Figure 6.9, the combination of SSF and CCF leads to large

gains in recognition accuracy compared to using SSF alone. The relative improvement is

over 18%, highlighting the efficacy of the CCF algorithm.
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Algorithm WER(%)
Unprocessed 89.94%
SSF 59.89%
SSF+CCF 48.68%

Table 6.6: Word Error Rate for algorithms tested using the REVERB challenge dataset.
Only results using real reverberant data are reported here.

6.3 Conclusions

In this chapter we introduce a technique that uses coherence in the frequency domain

to mitigate the effects of reverberation and noise. The CCF algorithm effectively boosts

regions of coherence in frequency, the underlying assumption being that sounds com-

ing from the same source will exhibit coherence in frequency. The CCF algorithm has

been used in conjunction with the SSF and PDCW algorithms. This combination has been

shown to lead to better performance in terms of WER under some conditions. In the pres-

ence of moderate to high reverberation, the improvements provided by the use of the CCF

algorithms are observed primarily while using GMM-based models. These improvements

diminish somewhat when DNN-based models are employed. Improvements using the

CCF algorithm were also demonstrated with the use of real data.
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(a)

(b)

(c)

Figure 6.4: Word Error Rate evaluated using the CMU Sphinx speech recognition engine
using clean training data for the RM1 database as a function of Signal-to-Interference Ratio
for an interfering signal located 45 degrees off axis at reverberation times (a) 0 s, (b) 0.5 s,
(c) 1 s.
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(a)

(b)

(c)

Figure 6.5: Word Error Rate evaluated using GMM-based models trained with the Kaldi
speech recognition toolkit using clean training data for the WSJ database as a function of
Signal-to-Interference Ratio for an interfering signal located 45 degrees off axis at rever-
beration times (a) 0 s, (b) 0.2 s, (c) 0.4 s.
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(a)

(b)

(c)

Figure 6.6: Word Error Rate evaluated using GMM-based models trained with the Kaldi
speech recognition toolkit using clean training data for the WSJ database as a function of
Signal-to-Interference Ratio for an interfering signal located 45 degrees off axis at rever-
beration times (a) 0.6 s, (b) 0.8 s, (c) 1 s. 85



(a)

(b)

(c)

Figure 6.7: Word Error Rate evaluated using DNN-based models trained with the Kaldi
speech recognition toolkit using clean training data for the WSJ database as a function of
Signal-to-Interference Ratio for an interfering signal located 45 degrees off axis at rever-
beration times (a) 0 s, (b) 0.2 s, (c) 0.4 s.
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(a)

(b)

(c)

Figure 6.8: Word Error Rate evaluated using DNN-based models trained with the Kaldi
speech recognition toolkit using clean training data for the WSJ database as a function of
Signal-to-Interference Ratio for an interfering signal located 45 degrees off axis at rever-
beration times (a) 0.6 s, (b) 0.8 s, (c) 1 s. 87



Figure 6.9: Results using the REVERB challenge database. The SSF and SSF+CCF algo-
rithms are compared to the unprocessed signal.
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CHAPTER 7

GENERAL DISCUSSION

In this chapter we briefly compare the algorithms introduced in Chapters 4, 5 and 6. Our

specific aim is to achieve better ASR performance in the presence of reverberation and

noise. For this purpose we examine the relative improvements seen in terms of ASR per-

formance. The combination of SSF+ICW and SSF+CDRW are compared to (monaural) SSF

processing. For the CCF algorithm, SSF+PDCW+CCF is compared to SSF+PDCW. Results

using DNN-based models obtained by clean training as well as multi-style training are dis-

cussed here. The relative decreases in WER, averaged across all SIRs for different types of

clean and multi-style training, are shown in Figures 7.1 and 7.2.

As seen in Figures 7.1 and 7.2, all improvements seen using the ICW, CDRW and CCF

algorithm seem significant. Of the three techniques, the CDRW algorithm provides the

best improvement in terms of ASR performance in the presence of reverberation and noise.

The CDRW algorithm aims at suppressing regions of low coherence using the CDR met-

ric. Thus, the gains using CDRW increase as the reverberation increases while using clean

training, and the degree of mismatch between the training and test data also plays a sig-

nificant role. As seen in Figure 7.2, while using multi-style training, the gains using the

CDRW algorithm are greater at lower reverberation times. This probably has to do with

the fact that most of the training data had moderate to high reverberation. Using clean
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Figure 7.1: Comparison of the ICW, CDRW and CCF algorithms using clean training. Rela-
tive improvement in Word Error Rate averaged over all Signal-to-Interference Ratios, plot-
ted as a function of reverberation time. Positive bars indicate better ASR performance.
SSF (monaural) serves as baseline for SSF+ICW and SSF+CDRW while SSF+PDCW+CCF
is compared to SSF+PDCW.

training, the CCF algorithm also gives greater gains at higher reverebration. Both the

CDRW and CCF algorithms produce an increase in WER at low reverberation times using

clean training as seen at RT60 = 0.2 s in Figure 7.1.

The Signal-to-Interference Ratio also plays a big part in ASR performance which may

not be conveyed completely through Figures 7.1 and 7.2. For this reason, Figures 7.3, 7.4

and 7.5 are also provided here. Figure 7.3 shows the average improvements in WER ob-

served using the SSF+ICW, SSF+CDRW and SSF+PDCW+CCF algorithms at 10 dB SIR

and Figure 7.4 provides the same information for reverberated speech with no noise. Both

use models trained using clean training data. Figure 7.5 shows the results using multi-
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Figure 7.2: Comparison of the ICW and CDRW algorithms using multi-style training.
Relative improvement in Word Error Rate averaged over all Signal-to-Interference Ratios,
plotted as a function of reverberation time. Positive bars indicate better ASR performance.
SSF (monaural) serves as baseline for SSF+ICW and SSF+CDRW while SSF+PDCW+CCF
is compared to SSF+PDCW.

style training with the test data at 20 dB SIR.

As seen in Figures 7.3 and 7.4, the CDRW algorithm performs much better in the ab-

sence of an interfering talker. This is true for the CCF algorithm as well. Nevertheless,

the performance of the CCF algorithm in the presence of an interfering talker at 10 dB is

degraded significantly. In general, the CCF algorithm leads to greater improvements in

WER in the presence of greater reverberation and at greater SIRs with SSF+PDCW as the

baseline. The ICW algorithm, on the other hand, provides better improvements at low re-

verberation times. Improvements seen remain more or less similar across different values

of SIR for the ICW algorithm.

Figure 7.5, which depicts data obtained using multi-style training, shows slightly dif-

ferent trends. In the case of the ICW algorithm, the improvements remain more or less

constant across reverberation times at 20 dB SIR, with a slight dip at higher reverberation
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Figure 7.3: Comparison of the ICW, CDRW and CCF algorithms using clean training. Rel-
ative improvement in Word Error Rate at 10 dB SIR, plotted as a function of reverberation
time. Positive bars indicate better ASR performance. Baselines are the same as Figures 7.1
and 7.2.

times. The results obtained using the CDRW algorithm show a much bigger difference.

The addition of the CDRW algorithm to SSF leads to much greater improvements at lower

reverberation times compared to using SSF alone. Even at reverberation time of 1 s, the

relative improvement due to CDRW is over 5% relative. As mentioned before, the fact that

the models were trained using moderate to high reverberation may have played a part in

these trends.

Given the very significant improvements due to CDRW and CCF, we also attempted

to combine both of them along with SSF. However, the combination of CDRW with CCF

performed no better than the performance observed using SSF with CDRW alone. We have

seen before that the CCF algorithm does not lead to improvements at low reverberation
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Figure 7.4: Comparison of the ICW, CDRW and CCF algorithms using clean training. Rel-
ative improvement in Word Error Rate at∞ dB SIR, plotted as a function of reverberation
time. Positive bars indicate better ASR performance. Baselines are the same as Figures 7.1
and 7.2.

times. It is possible that the addition of CCF to CDRW plus SSF does not provide further

benefit because the impact of reverberation had already been suppressed sufficiently by

the combination of SSF and CDRW.

93



Figure 7.5: Comparison of the ICW and CDRW algorithms using multi-style training. Rel-
ative improvement in Word Error Rate at 20 dB SIR, plotted as a function of reverberation
time. Positive bars indicate better ASR performance. Baselines are the same as Figures 7.1
and 7.2.
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CHAPTER 8

SUMMARY AND CONCLUSIONS

In this thesis we address the problem of robust ASR in the presence of noise and reverbera-

tion. As listening environments go, this is a fairly common environment in which accurate

ASR is necessary. This is especially true considering the widespread use of smart devices,

most of which have a voice interface. In order to leverage our knowledge of the human

auditory system, we develop techniques in this thesis that have their basis in how our ears

achieve noise robustness in noisy or reverberant environments.

Three different techniques are discussed in this thesis to achieve better ASR accuracy in

reverberant and noisy environments. This thesis deals specifically with binaural signals,

and all three methods exploit coherence inherent in signals that originate from the same

source in some way. In Chapter 4, we exploit coherence across the two microphones using

the Interaural Cross-correlation-based Weighting (ICW). The ICW technique uses signal

envelopes to perform cross-correlation across the two sensor signals. The human auditory

system performs ITD analysis at higher frequencies using signal envelopes, and the ICW

algorithm roughly follows this mechanism for binaural signal processing as well. The ICW

algorithm lead to consistently better performance in preliminary studies using the RM1

database and the Sphinx speech recognition engine as well as in more detailed studies

conducted using the WSJ database and the Kaldi speech recognition toolkit. In general,

95



the ICW algorithm provides greater improvements at lower levels of reverberation.

In Chapter 5, we exploit coherence across the two sensor signals once again. In con-

trast to the ICW algorithm, which made no assumptions about the listening environment,

a model-based method is described in this chapter. Specifically, the Coherence-to-Diffuse

Ratio-based Weighting (CDRW) method uses a model for coherence in a diffuse field ver-

sus in a coherent field to compute the Coherent-to-Diffuse Ratio (CDR) metric for each

time-frequency bin of the STFT of the input signals. This is then used as a weight in order

to suppress regions with low CDR. The CDRW algorithm was also tested in conditions

similar to the ICW algorithm and it showed very significant gains (over 40% relative) es-

pecially for conditions of moderate reverberation using clean training. Using multi-style

training, these trends were different with better performance at lower reverberation times.

Across training styles, the CDRW algorithm leads to significant improvements.

Chapter 6 describes a technique that uses coherence in frequency of signals that orig-

inates from the same source. This method is called Cross-Correlation across Frequency

(CCF) and it is roughly based on the concept of “straightness weighting,” which hypoth-

esizes that greater emphasis is given to ITDs that are consistent in frequency over some

limited range in terms of auditory perception. Unlike the ICW and CDRW algorithms, the

CCF algorithm is not binaural in nature. Therefore, an intermediate binaural processing

step is required before the application of CCF. The CCF algorithm then performs cross-

correlation across a small range of frequencies around a center band of interest. The ap-

plication of CCF provides gains especially in the the presence of high reverberation using

clean training. Multi-style training results for CCF were not obtained.
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8.1 Future work

There exist several opportunities for further investigation in the techniques discussed as

part of this thesis. Of all the algorithms discussed, the CDRW algorithm definitely pro-

vides the greatest improvement in error rate under many conditions. Nevertheless, the

way the CDRW algorithm is currently implemented does not actively suppress interfer-

ing talkers from a known location. In order to this, we need to update the generalized

complex coherence function and take into account every known source. This will most

likely lead to better performance of CDRW processing even at low SIRs.

Several techniques discussed in this thesis produce a weight matrix or mask as their

output. It is hypothesized that these masks boost the regions where the target signal is

dominant and effectively attenuate portions of the signal dominated by noise. Using the

various features we have at our disposal, including features based on the techniques dis-

cussed in Chapters 4, 5 and 6, it is possible to learn a mask that is as close as possible to

the Ideal Ratio Mask (IRM). This now reduces to a supervised learning problem.

For some time now, the use of deep-learning techniques for supervised classification

problems has been shown to be very effective [49, 50]. Neural networks can model com-

plex non-linear relationships which makes them very useful for tasks like mask estimation

using multiple features. For this reason, deep-learning-based approaches can be used to-

wards developing IRMs from a suite of complementary features derived from binaural

speech signals.

One possible technique involves the use of a Deep Neural Net (DNN) for mask estima-

tion similar to those seen in [49, 50]. A feature set that is a combination of features obtained

from SSF, CDRW, CCF, ICW and other techniques discussed in this thesis in conjunction

with standard features such as PNCC, RASTA-PLP [51, 52] may be used.
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