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ABSTRACT

The accuracy of speech recognition systems degrades when
operated in adverse acoustical environments. This paper
reviews various methods by which more detailed mathematical
descriptions of the effects of environmental degradation can
improve speech recognition accuracy using both “data-driven”
and “model-based” compensation strategies. Data-driven meth-
ods learn environmental characteristics through direct compari-
sons of speech recorded in the noisy environment with the
same speech recorded under optimal conditions. Model-based
methods use a mathematical model of the environment and
attempt to use samples of the degraded speech to estimate
model parameters. These general approaches to environmental
compensation are discussed in terms of recent research in envi-
ronmental robustness at CMU, and in terms of similar efforts at
other sites. These compensation algorithms are evaluated in a
series of experiments measuring recognition accuracy for
speech from the ARPA Wall Street Journal database that is cor-
rupted by artificially-added noise at various signal-to-noise
ratios (SNRs), and in more natural speech recognition tasks.

1. INTRODUCTION

The development of robust speech recognition systems that
maintain a high level of recognition accuracy in difficult and
dynamically-varying acoustical environments is becoming
increasingly important as speech technology is becoming a
more integral part of practical applications. Results of numer-
ous studies have demonstrated that even automatic speech rec-
ognition systems that are designed to be speaker independent
can perform very poorly when they are tested using a different
type of microphone or acoustical environment from the one
with which they were trained(g.[2, 1, 11, 23]), even in a rel-
atively quiet office environment. Applications such as speech
recognition over telephones, in automobiles, on a factory floor,
or outdoors demand an even greater degree of environmental
robustness.

Over the years the Carnegie Mellon University (CMU) robust
speech group has worked to improve speech recognition accu-
racy through the use of environmental compensation proce-
dures that modify either the feature vectors of incoming speech
or the internal statistics with which speech recognition systems
are trained. We have also explored complementary approaches
to robust recognition based on the use of arrays of multiple
microphones and on the use of physiologically-motivated

approaches to initial signal processing. This paper will review
the context that motivated some of our more recent approaches
to environmental compensation, and will compare the perfor-
mance of these approaches with previous techniques developed
at CMU and elsewhere.

2. BACKGROUND: EFFECTS OF
UNKNOWN NOISE AND FILTERING

There are many sources of acoustical distortion that can
degrade the accuracy of speech recognition systems. For many
speech recognition applications the two most important
sources of acoustical degradation ané&nown additive noise
(from sources such as machinery, ambient air flow, and speech
babble from background talkers) amaknown linear filtering
(from sources such as reverberation from surface reflections in
a room, and spectral shaping by microphones or by the vocal
tracts of individual speakers). Other sources of degradation of
recognition accuracy include transient interference to the
speech signal (such as the noises produced by doors slamming
or telephones ringing), nonlinear distortion (arising from
sources such as carbon-button microphones or the random
phase jitter in telephone systems), and “co-channel” interfer-
ence by individual competing talkers. Most research in robust
recognition has been directed toward compensation for the
effects of additive noise and linear filtering.

Research in robust speech recognition has been strongly influ-
enced by earlier work in speech enhancement. Two seminal
speech enhancement algorithms have proved to be especially
important in the development of strategies to cope with
unknown noise and filtering. The first technigsieectral sub-
traction, was introduced by Boll [6] to compensate for additive
noise. In general, spectral subtraction algorithms attempt to
estimate the power spectrum of additive noise in the absence of
speech, and then subtract that spectral estimate from the power
spectrum of the overall input (which normally includes the sum
of speech plus noise). The algorithm was later extended by
Beroutiet al.[5] and many others, primarily with the goal of
avoiding “musical noise” by “over-subtraction” of the noise
spectrum. The second major techniquspsctral normaliza-

tion, introduced by Stockhaset al.[24] to compensate for the
effects of unknown linear filtering. In general, spectral normal-
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ization algorithms first attempt to estimate the average power

spectra of speech in the training and testing domains, and then
apply the linear filter to the testing speech to “best” converts its

spectrum to that of the training speech. Improvements and

extensions of spectral subtraction and spectral normalization

algorithms continue to be introduced to this date.

2.1. A Model of the Environment
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Figure 1. A model of environmental distortion including the
effects of additive noise and linear filtering.

Figure 1 describes the implicit model for environmental degra-
dation used in many signal processing algorithms developed at
CMU and elsewhere. We assume that the “clean” speech signal
x[m] is first passed through a linear filtefm| whose out-

put is then corrupted by uncorrelated additive naigal] to
produce the degraded speech sigzjat] . We characterize the

power spectral densities (PSD) of the processes involved as

@)

We can also represent the corresponding effects of noise and
filtering on the input speech in the log-spectral or cepstral
domains as

P(®) = P (w)H(w)*+P, ()

z= x+q+log(l+e" XY

2

wherex, n, g, andz are the logarithms and inverse trans-
forms of the logs ofP, (w) P, (w) Pq(w) , an@(w)

respectively. This equation can be rewritten in the form of
®3)

wheref(x,n,q) is referred to as the “environment function”.

z=x+qg+r(xnq =x+f(x,n,q)

In the above equations, the vectarthat represent the
observed speech are considered to have been obtained by addi-
tive perturbations of the original speech featweghe envi-
ronment functionf (x,n,q) represents the effects of additive
noise and linear filtering on the feature vectors characterizing
the incoming speech. In general, our goal is to obtain an esti-
mate ofx, the representation of[ m| in the feature space,

from z, the corresponding representationzpim

Performing compensation in the cepstral domain (as opposed
to the spectral domain) has the advantage that a smaller num-
ber of parameters needs to be estimated. In addition, cepstral-
based features are widely used by current speech recognition
systems. On the other hand, for some of the compensation pro-

cedures considered, the statistical models are more accurate or
more easily developed in the log-spectral domain.

2.2. Approaches to
Environmental Compensation

In this section we review several types of approaches to the
problem of joint compensation for the effects of noise and fil-
tering. We find it convenient to group these algorithms into
three classes: (1) empirical compensation by direct cepstral
comparison, (2) model-based compensation, and (3) compen-
sation via cepstral high-pass filtering. In the case of the first
two of these approaches there is also the second independent
choice of whether to use a compensation procedure that modi-
fies the feature vectors of the incoming speech or one that mod-
ifies the internal statistics of the recognition system itself.

Empirical compensation by direct cepstral comparison is
totally data driven, and requires a “stereo” database that con-
tains time-aligned samples of speech that had been simulta-
neously recorded in the training environment and in
representative testing environments. The success of empirical
compensation approaches depends on the extent to which the
putative testing environments used to develop the parameters
of the compensation algorithm are in fact representative of the
actual testing environment.

In contrast, model-based compensation assumes a structural
model of environmental degradation, such as the one depicted
in Fig. 1. Compensation is then provided by applying the
appropriate inverse operations. The success of model-based
approaches depends on the extent to which the model of degra-
dation used in the compensation process accurately describes
the true nature of the degradation to which the speech had been
subjected.

As the name implies, compensation by high-pass filtering
implies removal of the steady-state components of the cepstral
vector. The amount of compensation provided by high-pass fil-
tering is more limited than the compensation provided by the
two other types of approaches, but the procedures employed
are so simple and effective that they should be included in vir-
tually every current speech recognition system.

From a historical standpoint, research at CMU on algorithms to
provide joint compensation for the effects of noise and filtering
has proceeded in two phases. In the initial phase (which
spanned the period of approximately 1988-1994) we were pri-
marily concerned with understanding the basic properties of
the environment function and with the development of com-
pensation procedures that were relatively simple but that pro-
vided significant improvements in recognition accuracy
compared to the accuracy that could be obtained from indepen-
dent compensation for the effects of noise and filtering. During
the second phase of algorithm development (roughly since
1994) our efforts focussed on the development of algorithms
that could achieve greater recognition accuracy under the most
difficult conditions through the use of more accurate mathe-
matical characterizations of the effects of noise and filtering.
We describe in the following section many of the results



obtained during the initial phase of this investigation. In Sec. 4
we review and discuss the second series of algorithms which
provide greater recognition accuracy by virtue of more detailed
modeling of the statistics of degraded speech.

3. INITIAL APPROACHES TO
ENVIRONMENTAL COMPENSATION

3.1. Empirical Compensation:
SDCN, FCDCN, MFCDCN, and MPDCN

As noted above, empirical cepstral comparison procedures

ment. Compensation vectors corresponding to a given range of
SNRs are estimated by calculating the average difference
between cepstral vectors in the training and testing environ-
ments for all frames with that particular range of SNRs. The
ensemble of compensation vectors constitutes an empirical
characterization of the differences between the training and
testing environments. When a new test utterance is presented to
the classifier, the SNR is estimated for each frame of the input
speech, and the appropriate compensation vector is added to
the cepstral coefficients derived from the input speech for that
frame.

The Fixed Codeword-Dependent Cepstral Normalization

assume the existence of “stereo” databases containing speech (FCDCN) algorithm [1] produces greater recognition accuracy

that had been simultaneously recorded in the training environ-
ment and one or more prototype testing environments. Our ini-
tial work on empirical compensation made use of cepstral
features, and the effects of the environment function were
expressed through additive cepstral “compensation vectors”.
These compensation vectors were calculated by computing the
frame-by-frame differences between the cepstral vectors repre-
senting speech in the training and testing environments:

% =z+f(x,n,q) = X-2

(4)

where f (x,n,q) is a set of vectors that serve to estimate the

environment function. In general, these vectors can depend on
instantaneous SNR, the specific vector-quantized (VQ) cluster
location that is nearest to the incoming feature vector, the pre-
sumed phonemic identity, and the specific testing environment.

Applying the compensation is equally simple, as the compen-
sation vector is just added to the incoming cepstral vector to
produce an estimate of the original cepstral vector.

The goal of compensation is normally to provide relief from
the effects of both additive noise and linear filtering, which
affect different speech frames differently. For example, at high
SNRs, the environment functiof(x,n,q)  primarily repre-

sents the effects of linear filtering, because under these circum-
stances the impact of additive noise is negligible. At the lowest
SNRs, the vectors primarily compensate for the effects of addi-
tive noise, because under these circumstances Eq. (3) is domi-
nated by the effects of the additive noise. At intermediate
SNRs, the compensation vectors perform a combination of
compensation for the effects of noise and filtering. Compensa-
tion using direct cepstral comparison is generally rather simple
to apply, although its utility is limited by the coverage of the
stereo training data.

The empirical approach to cepstral comparison can be most
easily understood by considering the simplest cepstral compar-
ison algorithm developed at CMI3NR-Dependent Cepstral
Normalization(SDCN) [1]. Compensation vectors for the
SDCN algorithm are developed using a “stereo” database con-
sisting of speech that has been simultaneously recorded in the
training and testing environments. Individual frames are parti-
tioned into subsets according to the SNR in each frame (as
inferred from the total frame energy) in the testing environ-

by developing a more fine-grained set of compensation vectors
for a particular testing environment. Compensation vectors for
FCDCN are obtained by first partitioning the frames of speech
from a stereo development corpus according to SNR, as with
SDCN. A second partitioning of the development corpus is
then obtained by vector quantizing (VQ) the cepstral coeffi-
cients at each SNR in the testing environment. Individual com-
pensation vectors are developed for each VQ cluster location at
each SNR.

ThePhone-Dependent Cepstral Normalizati®@DCN) algo-

rithm [13] is similar in philosophy, but it makes use of a differ-
ent type of partitioning of the input frames. Compensation
vectors are developed that depend on the presumed phoneme to
which a given frame belongs. Phoneme hypotheses are
obtained by running an initial pass of the HMM decoder with-
out compensation. The PDCN algorithm is somewhat similar
in concept to the method proposed by Beattie and Young [3].

Although all of the compensation algorithms described above
were designed to work in the specific testing environment used
to develop the compensation vectors, a degree of environmen-
tal independence can be obtained if several stereo training data-
bases are available using different testing environments.
Environment-independent compensation is performed by first
determining which of the environments used to develop com-
pensation vectors most closely resembles the actual testing
environment. The ensemble of compensation vectors that is
appropriate for that most likely environment is then applied to
the incoming data. If the incoming speech is not from one of
the environments used to develop compensation vectors, recog-
nition accuracy can be further improved by interpolating
among the several “closest” environments. Environmental clas-
sification need not be perfect for these algorithms to be effec-
tive. The “multiple-environment” versions of FCDCN and
PDCN are referred to as MFCDCN and MPDCN.

These approaches are also similar to complementary work per-
formed at other sites include piecewise-linear mapping and
noise-adaptive prototypes developgdBM [4, 18] and the
probabilistic optimal filtering (POF) algorithm developed at
SRI [19]. The POF algorithm, for example, is typically realized
with many more free environmental parameters than are com-
monly used in algorithms like MFCDCN or MPDCN to char-
acterize the environment function. POF also makes additional



use of temporal correlation across frames, which are not
exploited by MFCDCN or MPDCN.
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Figure 2. Power spectra of compensation vectors used by the
FCDCN algorithm. The compensation vectors are based on
three different SNRs and eight VQ codeword locations at each
SNR. The training environment is a close-talking Sennheiser
HMD-224 microphone, while the testing environment is a uni-
directional desktop PCC-160 microphone.

Figure 2 illustrates some typical compensation vectors pro-
duced by the MFCDCN algorithm. A close-talking Sennheiser
HMD-224 microphone was used for the training data, and the
unidirectional desktop PCC-160 desktop microphone was used
in the testing environments. Fig. 2 depicts MFCDCN compen-
sation vectors, plotted at the extreme SNRs of 0 and 29 dB, as
well as at 5 dB. Spectral representation of compensation vec-
tors are plotted for 8 VQ cluster locations at each value of
SNR. The curves are obtained by calculating the cosine trans-

forms of the cepstral compensation vect&r@g, n,q) , which

provide an estimate of the effective spectral profile of the com-
pensation vectors. The horizontal frequency axis is warped

nonlinearly according to the mel scale [7]. The maximum fre-
guency corresponds to the Nyquist frequency, 8,000 Hz. We
note that the spectral profiles of the compensation vectors vary
with SNR. This confirms our assertion that the vectors needed
to compensate for the effects of linear filtering (which are dom-
inant at high SNRs) are different from the vectors needed to
compensate for the effects of additive noise (which dominate at
low SNRs). Furthermore, at intermediate SNRs (such as 5 dB),
additional improvement in recognition accuracy can be
obtained by developing separate compensation vectors for the
different VQ clusters within a given SNR. Compensation vec-
tors for speech frames with SNRs that are greater than 10 dB
are very similar in appearance to the compensation vectors
shown for 29 dB.

3.2. Model-Based Compensation: CDCN

The compensation algorithms described in the previous section
depend on frame-by-frame empirical comparisons of cepstral
coefficients in the training and testing domains. An alternate
approach to compensation is the use of a parametric model of
degradation, combined with optimal estimation of the parame-
ters of the model. For example, Ephraim [8] has presented a
unified view of statistical model-based speech enhancement
that can be applied to speech enhancement (for human listen-
ers), speech coding, and enhanced robustness for automatic
speech recognition systems. Varga and Moore [25] and Gales
and Young [9] have also developed algorithms that modify the
parameters of HMMs to characterize the effects of noise on
speech. Sankar and Lee [22] have used a linear transform to
reduce distortions between training and testing environments
of the incoming features or model parameters of the HMM.
Most of the above approaches have been developed primarily
to ameliorate the effects of pure additive noise on speech.
Acero'sCodeword-Dependent Cepstral Normalization
(CDCN) algorithm [2, 1] is similar in principle, except that it
was developed explicitly to provide for joint compensation for
the effects of additive noise combined with linear filtering.

The CDCN algorithm assumes the model of environmental
degradation shown in Fig. 1. The algorithm attempts to
reverse the effects of the linear filter with transfer function
H(w) and the additive noise with power spectréy(w) by

solving two independent problems. The first problem is that of
estimating the parametegs and , which define the environ-
ment function in Eq. (3). This is accomplished using ML
parameter estimation. The second problem is estimation of the
uncorrupted cepstral vectar for a particular input frame,
given the corrupted observation vector and the environment
parameterg| andn. MMSE parameter estimation is used for
this task. In effect, these two operations determine the values of
g andn that when applied in inverse fashion map the set of
input cepstra into a set of compensated cepstral coefficients
that are as “close” as possible to the VQ codeword locations
encountered in the training data. CDCN is typically imple-
mented on a sentence-by-sentence basis.



Although model-based compensation is somewhat more com-
putationally intensive than compensation based on empirical
comparisons, the bulk of the computational cost is incurred in
estimating the environment parametgrandn. Since distor-

tion due to noise and filtering changes relatively slowly, it is
generally not necessary to compute new values for these
parameters for every incoming speech frame. The compensa-
tion itself must be applied to each incoming frame, but this
does not entail great computational cost.

Model-based compensation can provide effective compensa-
tion if the assumptions built into the structural model are valid,
even if only a small amount of speech is available in the testing
environment. For example, in our implementations of CDCN,
we typically apply compensation on a sentence-by-sentence
basis.

3.3. Cepstral High-Pass Filtering:
RASTA and CMN

We comment in passing on the third major adaptation tech-
nique, cepstral high-pass filtering, which provides a remark-
able amount of robustness at almost zero computational cost.
The development of these algorithms was originally motivated
by a desire to emphasize the transient aspects of speech repre-
sentations.

In the well-knownRelative Spectral Procesgjror RASTApro-
cessing [10], a high-pass (or band-pass) filter is applied to a
log-spectral representation or cepstral representation of speech.
Cepstral mean normalizatiofCMN) is an alternate way to
high-pass filter cepstral coefficients. High-pass filtering in
CMN is accomplished by subtracting the short-term average of
cepstral vectors from the incoming cepstral coefficients.

Algorithms like RASTA and CMN are effective in compensat-
ing for the effects of unknown linear filtering in the absence of
additive noise because under these circumstances the ideal cep-

stral compensation vect&r(x, n,q) is a constant that is inde-
pendent of SNR and VQ cluster identity. Such a compensation
vector is, in fact, equal to the long-term average difference
between all cepstra of speech in the training and testing envi-
ronments. The high-pass nature of both the RASTA and CMN
filters forces the average values of cepstral coefficients to be
zero in the training and testing environments individually,
which, of course, implies that the average cepstra in the two
environments are equal to each other.

Cepstral high-pass filtering can also be thought of as a degener-
ate case of compensation based on direct cepstral comparison.
Consider, for example, the compensation vectors with fre-
guency response depicted in Fig. 2. Cepstral high-pass filtering
produces the same effect that would have been achieved if all
of the compensation vectors for a particular testing environ-
ment are combined into single compensation vector,
weighted in proportion to the percentage of frames having the
set of physical parameters (or presumed phoneme identity) cor-
responding to each of the original compensation vectors. As
Fig. 2 indicates, actual cepstral compensation vectors depend

on the SNR, VQ codeword location, and/or phonemic identity
of the individual frames of the testing utterances. Hence neither
CMN nor RASTA can compensate directly for all of the com-
bined effects of additive noise and linear filtering.

In general, cepstral high-pass filtering is so inexpensive and
effective that it is currently embedded in some form in virtually
all systems that are required to perform robust speech recogni-
tion.

3.4. Performance of
Compensation Algorithms
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Figure 3. Comparison of the effects of CMN, the original
RASTA algorithm, CDCN, MFCDCN, and a combination of
MFCDCN and CMN on the recognition accuracy obtained for
the “secondary microphones” of the 1992 ARPA 5000-word
Wall Street Journal task. The system was trained using a
close-talking microphone.

The performance of the compensation algorithms described
above has been described and compared in several previous
papers including [23]. Figure 3 compares the recognition accu-
racy obtained using CMN, the original RASTA algorithm,
CDCN, MFCDCN, and a combination of MFCDCN and CMN
[12]. These comparisons were obtained using SPHINX-II and
data from the “secondary” microphones of Version 0 of the
5000-word 1992 Wall Street Journal evaluation set (WSJO).

We note that both the RASTA and CMN algorithms provided
substantially better recognition error rates than the rates
obtained using the then-current “baseline” processing using
LPC-derived cepstra. Use of the model-based CDCN algorithm
provided an additional 10 percent relative reduction in error
rate compared to CMN. A 24.3 percent reduction in relative
error rate was obtained by adding MFCDCN processing to
CMN, although MFCDCN requires the use of a stereo training
database. We believed that the CDCN and MFCDCN algo-
rithms provided greater recognition accuracy than cepstral
high-pass filtering because they provide for different types of
compensation under differing conditions, either through an
ensemble of empirically-derived functions or through a para-
metric model of the degradation process. This is equivalent to
recognizing that there are a number of different environment
functions represented by the curves of Fig. 2, rather than just a
single condition-independent function.



These simulations show the densities of normally-distributed
“clean” log spectrap(x) and the corresponding densities of

4. CURRENT COMPENSATION
APPROACHES

“noisy” log spectrap(z) after exposure to additive noise and lin-
Although the compensation algorithms described in Sec. 3 above g4, filtering. We note that as SNR decreases, the mea(zpf
provided substantial improvements in recognition accuracy in a
number of environments, they still exhibited many obvious short-
comings. The goals of our more recent work on environmental
compensation focused included greater recognition accuracy at
lower SNRs, better performance with small amounts of environ-
ment-specific adaptation data, and the elimination of the need for
“stereo” data.

shifts and its variance decreases. It can easily be seen that the
resulting density is no longer Gaussian, and similar shape distor-
tions are easily observed for the case of features that were origi-
nally characterized by Gaussian mixtures as well. Unfortunately,
there is no tractable analytical expression for the means and vari-
ances of the random vectnin Eq. (3) which characterizes the
degraded speech. Hence, the goal of compensation algorithms
As before, we developed algorithms based both on empirical com- developed by our group and other sites is always to obtain a rea-
parisons of speech in the training and testing environments, and onsonably accurate estimate p{z) or its moments by empirical

mathematical models of the effects of degradation. The major pnseryation, by parametric models, or by series approximation of
empirically-derived algorithms that emerged from these efforts ha environment function itself.

thus far have beeMultivariate Gaussian-Based Cepstral Normal-
ization (RATZ) andStatistical Re-estimation of HMMSTAR).

The most important model-based algorithms developed in recent
years are th&ector Taylor SerieéVTS) andVector Polynomial RATZ and STAR

ApproximationgVPS) algorithms. RATZ, STAR, and the initial |, this section we describe the RATZ and STAR algorithms in
development of VTS are all described in detail by Moreno in [16];  somewnhat greater detail. The RATZ algorithm modifies the ceps-
an additional discussion of VTS and VPS may be found elsewhere {4 vectors of incoming speech, while the STAR algorithm modi-

in these Proceedings [21]. fies the internal statistical models used by the recognition system.

4.1. Empirical Compensation:

SNR =10dB Nevertheless, RATZ and STAR have a very similar conceptual
0.081 Actual p@)  pgestfit framework, as is elaborated in [15]. While RATZ can be consid-
0.07 P P ered to be a generalization of algorithms like MFCDCN and STAR

ﬂaan p(z)

0.06( can be considered to be an extension of the codebook adaptation
0.05F algorithms described in [13], the mathematical framework for
0.04t them has been developed more carefully and accurately.
0.03" RATZ and STAR both assume that the probability density function
0.02 for clean speech can be characterized as a mixture density
pal 7 . p(x) = %ak(t)Nk(lex o) (5)
-10 000 10 20 30 40 50
SNR=0dB Log Power Spectra (dB) where the mixture coefficients, ~ are fixed for the case of RATZ,
0.201 and assumed to vary as a function of time to represent the Markov
Actual p(z) - transitional probabilities for the case of STAR.
0.16 Best-fit
Gaussian p(z) Environmental compensation is introduced by modifying the
012t means and variances of the probability density functions:
Ay = K+ and (6)
0.081
Zk = Zk+ Rk (7)

0.04f
wherer, andR, are the factors that compensate the means and

-10 000y 10 20 30 40 50 variances respectively.

Log Power Spectra (dB
J P (dB) As described in [14], direct solutions for the parametgrs  and

Figure 4. The effect of noise on the probability density func-

tions of the logs of power spectra. Ry can be obtained if “stereo” data are available. For example in

the case of RATZ, these vectors can be obtained from the equa-
Much of our recent work was motivated by straightforward obser- tions
vations of the effects of noise on the probability distributions of
features commonly used in speech recognition systems. For exam-
ple, Fig. 4 demonstrates how additive noise and linear filtering can
affect the probability densities of log spectral features of speech.
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the RATZ and FCDCN, the empirically-derived compensation
where the parameterefers to the analysis frame and evolves over  algorithm that previously had exhibited the best performance.
time. The system was evaluated on speech samples from the 1993
5000-word ARPA Wall Street Journal evaluation test set, after the

If “stereo” data qre noF available, the recursive EM technique must speech had been corrupted by linear filtering and additive noise.
be used to obtain estimates of the paramefgrs Rgnd using a Results are plotted as a function of SNR.

very similar equation. curves provide reasonable bounds on the degree of performance to
A further extension of RATZ described in [15] is referred to as P& €xpected from an environmental compensation algorithm such
SNR-RATZ. SNR-RATZ uses a more structured modelgiz) as the ones we describe. We note that the recognition accuracy

hereby th ber of G i d to define th istics f obtained using RATZ is greater than the recognition accuracy
whereby the number of Gaussians used to define the Statistics for,pqine using FCDCN, patrticularly at the lower SNRs, and that

Xp can be different from the number used for the other cepstral ¢ recognition accuracy obtained using both procedures
components. The statistics of the remaining componentsare approaches best possible performance for SNRs down to about 15
tied to the individual Gaussians that comprise the compd@gent  to dB. We believe that better performance is obtained using RATZ

because it includes a more detailed model that characterizes the

which they belong, so they can exhibit different statistics for dif- . .
. L - effects of the environment on the variances of the speech features.
ferent SNRs. The means, variances arqgtiori probabilities of ) . . o
This allows the compensation procedure to reflect (in a limited

the individual Gaussians are learned by standard EM methods, as . .
individu usst y " ““way) the changes in variance of the features due to the effects of

before. .
the noise.
In the case of the STAR algorithm, the correction paramefers 1007
S
andR, are computed as in Egs. (8) and (9). It is assumed that the E:.‘ --------
801
a posteriorprobabilities in these equations do not change due to § »
the effects of noise or filtering and can be computed from the clean 3 6ot o—a Stereo RATZ
speech. The correction factors are then applied to the cepstra, % - o—o Blind RATZ
delta-cepstra, and double delta-cepstra produced by SPHINX-II, g 40
along with the cepstral componey , its difference, and its dou- =
ble difference. (In practice, we have observed that adapting the 2%
cepstral double-delta statistics does not affect the recognition per-

formance.) Once the correction terms are computed, the Gaussians : g
are adapted to the new environment as in Egs. (6) and (7). 0 5 10 15 ZgNR (dBfE
Figure 5 compares the recognition accuracy obtained using RATZ Figure 6. Comparison of recognition accuracy obtained using
and FCDCN. These and subsequent results were obtained by test- g Atz \ith compensation factors derived from “stereo” data and
data, after the data had been corrupted by additive noise and linear

filtering, with word recognition accuracy plotted as a function of - rigre 6 compares recognition accuracies obtained using the orig-
SNR. In addition to the results obtained using RATZ and FCDCN, 45| version of RATZ and using a “blind” implementation that

we alsq plot the recognition accuracy obtained using QMN alone, goes not make use of “stereo” data. Although it is not a surprise
and using a system that had been completely retrained on they,,; petter recognition accuracy is obtained using stereo data are
degraded speech for each separate condition of degraded speechysjjaple, the word accuracy obtained using Blind RATZ is quite a

These two curves provide a reasonable estimate of the best andj; petter than that obtained using CMN, and is in fact comparable
worst performance to be expected for any specific combination of {5 he word accuracy observed for FCDCN using stereo data, as
recognition system, recognition task, and feature set. Hence theseplotted in Fig. 5.




For example, the VTS algorithm approximates the environment

1001 . . ) .
s function f(x,n,q) using the first several terms of its Taylor
N—
S 80r series:
S d
3
§ 60[ . f(x,n,q) Of(Xg g o) + g F (Xo Mo dp){ X =X +
g 401 H Stereo STAR d f + d f +
S " o—o Blind STAR, SNR init an! o N do)n—ng +5.1(Xo Ng do){a—dgh +--
25 o———o Blind STAR zero | init ] ) )
AN CMN wheref (xq, N, gg) is the vector function evaluated at a particular
0 5 10 15 20 25 vector point. Similarly,ddxf(xo, Ng. dg) represents the matrix
SNR (dB)

derivative of the vector function at a particular vector point. The
higher order terms of the Taylor series involve higher order deriva-
tives resulting in tensors.

Figure 7. Comparison of recognition accuracy obtained using
RATZ with compensation factors derived from “stereo” data
and using a “blind” version of RATZ without access to stereo
data. The Taylor expansion is exact everywhere when the order of the
Taylor series is infinite. However, wharhas a Gaussian distribu-
Figure 6 compares recognition accuracy obtained using the STAR tion, the function can be expanded around the mearaofl the

algorithm as developed from “stereo” training data, along with two expansion needs to be valid only within a relatively narrow region

implementations of a “blind” STAR algorithm. The latter two
curves describe the effects of two different sets of initial values for
the correction factors: The curve with the circular symbols repre-

around the mean. We take advantage of this fact to truncate the
Taylor series after just a few terms.

The series expansion of the environment function is particularly

sents truly “blind” performance in that the re-estimation process
used to obtain the correction factors was initialized using clean
speech. The intermediate curve with the diamond symbols repre-
sents results obtained by initializing on speech that has been cor-
rupted by noise at a comparable SNR to the test data.

convenient because the means and variances of the series approxi-
mations are quite easily obtained. The EM algorithm is then used
to find the values of andq that maximize the likelihood of the
observations, and the statistics of the incoming cepstral vectors are
re-estimated using MMSE techniques.

Although the performance obtained using the “blind” implementa-
tion is somewhat dependent on the initial conditions, it is clear that
the STAR algorithm trained with “stereo” data provides much bet-
ter recognition accuracy than RATZ. STAR, in fact, provides
approximately the best possible recognition accuracy for SNRs
down to about 7 dB.

The VPS algorithm is described in detail elsewhere in these Pro-
ceedings [21]. Briefly, the VPS approach replaces the Taylor series
expansion used in VTS with a more general approach to approxi-
mating the environment function. VPS is shown to provide a more
accurate approximation to the environment function than VTS. In
pilot evaluations described in [21], VPS provided somewhat better
We believe that STAR is superior, especially at low SNRs, because recognition accuracy compared to VTS, and at a reduced computa-
signal processing algorithms such as RATZ that attempt to correct tional cost. The original versions of the VTS and VPS algorithms
for the effects of noise do not account completely for the changes were implemented only to modify the incoming speech feature
of ideal classification boundaries that occur due to the effects of vectors. It is expected that the difference in error rates between
noise on the variances of the distributions. Furthermore, additional VPS and VTS will increase when implementations of these algo-
approximation errors are introduced in the MMSE process used to rithms that modify the internal statistical models are completed.
actually perform the compensation (once the parameters are esti-
mated), leaving a residual mismatch between the estimates of ; . .
“ 4 - = vector setz can be approximated quite well by the Taylor series
clean” speech and the original HMMs. In contrast, classifier ) g

adaptation algorithms such as STAR modify the variances as well xPansion. It can be seen that the_‘?emt_nderVTS expansion pro-

as the means in the internal representation of the incoming fea- Vides a reasonably good approximation to the mean it at
tures. This is a better approximation to the ideal condition where '0Wer SNRs the second-order expansion provides an even better

training and testing are performed in the same environment. approximation. Similarly, the first-order approximation is closer to
the real variance than the zeroth-order approximation.

Figure 8 shows how the resulting means and variances of the noisy

4.2. Model-Based Compensation:
VTS and VPS

The Vector Taylor Series (VTS) [16, 17] and Vector Polynomial
Expansion (VTS) [20, 21] procedures are model-based algorithms
that develop series approximations to the nonlinear environment
function f(x,n,q) defined in Eq. (3)

Figure 9 compares the recognition accuracies obtained using three
model-based compensation procedures: thé"zerder and first-
order approximations of VTS and CDCN. It can be seen that at all
SNRs the first-order VTS algorithm outperforms the zeroth-order
VTS algorithm, which in turn outperforms CDCN. In fact, the
zerdM-order VTS algorithm also outperforms RATZ, which is an
algorithm that assumes the availability of “stereo” data.

z= x+qg+log(l+e’ 7Y = x+f(x,n,q)
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We also note the following specific comments:

» Relative improvements in recognition accuracy provided by the
newer and more mathematically-detailed algorithms are greater
at the lower SNRs.

» Algorithms (such as STAR) that modify the statistical models
used by classifiers provides greater recognition accuracy than
algorithms (such as RATZ) that modify the incoming feature
vectors.

« If “stereo” data are not available, model-based algorithms (such
as VTS) provide greater recognition accuracy than empirical
approaches (such as RATZ), at the expense of somewhat greater
computational complexity.
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Varianc
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Figure 8. Simulated effects of noise on the means and variances
of incoming features, as well as their VTS approximates of
selected orders.
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5. SUMMARY
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effect of degradation. We believe that the newer algorithms exhibit
improved performance in part because they model more accurately

environmental effects on feature variance, and in part because theyg_

compensation algorithms are now more tightly linked to the math-
ematical representation used by the HMMs.
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