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ABSTRACT

The accuracy of speech recognition systems degrades w
operated in adverse acoustical environments. This pa
reviews various methods by which more detailed mathemati
descriptions of the effects of environmental degradation c
improve speech recognition accuracy using both “data-drive
and “model-based” compensation strategies. Data-driven me
ods learn environmental characteristics through direct comp
sons of speech recorded in the noisy environment with 
same speech recorded under optimal conditions. Model-ba
methods use a mathematical model of the environment a
attempt to use samples of the degraded speech to estim
model parameters. These general approaches to environme
compensation are discussed in terms of recent research in e
ronmental robustness at CMU, and in terms of similar efforts
other sites. These compensation algorithms are evaluated 
series of experiments measuring recognition accuracy 
speech from the ARPA Wall Street Journal database that is 
rupted by artificially-added noise at various signal-to-noi
ratios (SNRs), and in more natural speech recognition tasks

1. INTRODUCTION

The development of robust speech recognition systems t
maintain a high level of recognition accuracy in difficult an
dynamically-varying acoustical environments is becomin
increasingly important as speech technology is becomin
more integral part of practical applications. Results of num
ous studies have demonstrated that even automatic speech
ognition systems that are designed to be speaker indepen
can perform very poorly when they are tested using a differ
type of microphone or acoustical environment from the o
with which they were trained (e.g. [2, 1, 11, 23]), even in a rel-
atively quiet office environment. Applications such as spee
recognition over telephones, in automobiles, on a factory flo
or outdoors demand an even greater degree of environme
robustness.

Over the years the Carnegie Mellon University (CMU) robu
speech group has worked to improve speech recognition ac
racy through the use of environmental compensation pro
dures that modify either the feature vectors of incoming spee
or the internal statistics with which speech recognition syste
are trained. We have also explored complementary approac
to robust recognition based on the use of arrays of multip
microphones and on the use of physiologically-motivate
e
l
-

-
t

l

approaches to initial signal processing. This paper will revie
the context that motivated some of our more recent approac
to environmental compensation, and will compare the perf
mance of these approaches with previous techniques develo
at CMU and elsewhere. 

2. BACKGROUND: EFFECTS OF 
UNKNOWN NOISE AND FILTERING

There are many sources of acoustical distortion that c
degrade the accuracy of speech recognition systems. For m
speech recognition applications the two most importa
sources of acoustical degradation are unknown additive noise
(from sources such as machinery, ambient air flow, and spe
babble from background talkers) and unknown linear filtering
(from sources such as reverberation from surface reflection
a room, and spectral shaping by microphones or by the vo
tracts of individual speakers). Other sources of degradation
recognition accuracy include transient interference to t
speech signal (such as the noises produced by doors slamm
or telephones ringing), nonlinear distortion (arising from
sources such as carbon-button microphones or the rand
phase jitter in telephone systems), and “co-channel” interf
ence by individual competing talkers. Most research in rob
recognition has been directed toward compensation for 
effects of additive noise and linear filtering. 

Research in robust speech recognition has been strongly in
enced by earlier work in speech enhancement. Two sem
speech enhancement algorithms have proved to be espec
important in the development of strategies to cope wi
unknown noise and filtering. The first technique, spectral sub-
traction, was introduced by Boll [6] to compensate for additiv
noise. In general, spectral subtraction algorithms attempt
estimate the power spectrum of additive noise in the absenc
speech, and then subtract that spectral estimate from the po
spectrum of the overall input (which normally includes the su
of speech plus noise). The algorithm was later extended
Berouti et al. [5] and many others, primarily with the goal o
avoiding “musical noise” by “over-subtraction” of the nois
spectrum. The second major technique is spectral normaliza-
tion, introduced by Stockham et al. [24] to compensate for the
effects of unknown linear filtering. In general, spectral norma
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ization algorithms first attempt to estimate the average power
spectra of speech in the training and testing domains, and then
apply the linear filter to the testing speech to “best” converts its
spectrum to that of the training speech. Improvements and
extensions of spectral subtraction and spectral normalization
algorithms continue to be introduced to this date.

2.1. A Model of the Environment

Figure 1 describes the implicit model for environmental degra-
dation used in many signal processing algorithms developed at
CMU and elsewhere. We assume that the “clean” speech signal

 is first passed through a linear filter  whose out-

put is then corrupted by uncorrelated additive noise  to

produce the degraded speech signal . We characterize the

power spectral densities (PSD) of the processes involved as

(1)

We can also represent the corresponding effects of noise and
filtering on the input speech in the log-spectral or cepstral
domains as

(2)

where x, n, q,   and z   are the logarithms and inverse trans-
forms of the logs of , , , and ,

respectively. This equation can be rewritten in the form of 

(3)

where  is referred to as the “environment function”. 

In the above equations, the vectors z that represent the
observed speech are considered to have been obtained by addi-
tive perturbations of the original speech features x. The envi-
ronment function  represents the effects of additive

noise and linear filtering on the feature vectors characterizing
the incoming speech. In general, our goal is to obtain an esti-
mate of x, the representation of  in the feature space,

from z, the corresponding representation of . 

Performing compensation in the cepstral domain (as opposed
to the spectral domain) has the advantage that a smaller num-
ber of parameters needs to be estimated. In addition, cepstral-
based features are widely used by current speech recognition
systems. On the other hand, for some of the compensation pro-

cedures considered, the statistical models are more accura
more easily developed in the log-spectral domain.

2.2. Approaches to 
Environmental Compensation

In this section we review several types of approaches to 
problem of joint compensation for the effects of noise and 
tering. We find it convenient to group these algorithms in
three classes: (1) empirical compensation by direct ceps
comparison, (2) model-based compensation, and (3) comp
sation via cepstral high-pass filtering. In the case of the fi
two of these approaches there is also the second indepen
choice of whether to use a compensation procedure that m
fies the feature vectors of the incoming speech or one that m
ifies the internal statistics of the recognition system itself. 

Empirical compensation by direct cepstral comparison
totally data driven, and requires a “stereo” database that c
tains time-aligned samples of speech that had been simu
neously recorded in the training environment and 
representative testing environments. The success of empir
compensation approaches depends on the extent to which
putative testing environments used to develop the parame
of the compensation algorithm are in fact representative of 
actual testing environment. 

In contrast, model-based compensation assumes a struc
model of environmental degradation, such as the one depic
in Fig. 1. Compensation is then provided by applying th
appropriate inverse operations. The success of model-ba
approaches depends on the extent to which the model of de
dation used in the compensation process accurately descr
the true nature of the degradation to which the speech had b
subjected.

As the name implies, compensation by high-pass filteri
implies removal of the steady-state components of the ceps
vector. The amount of compensation provided by high-pass
tering is more limited than the compensation provided by t
two other types of approaches, but the procedures emplo
are so simple and effective that they should be included in 
tually every current speech recognition system.

From a historical standpoint, research at CMU on algorithms
provide joint compensation for the effects of noise and filteri
has proceeded in two phases. In the initial phase (wh
spanned the period of approximately 1988-1994) we were p
marily concerned with understanding the basic properties
the environment function and with the development of com
pensation procedures that were relatively simple but that p
vided significant improvements in recognition accurac
compared to the accuracy that could be obtained from indep
dent compensation for the effects of noise and filtering. Duri
the second phase of algorithm development (roughly sin
1994) our efforts focussed on the development of algorith
that could achieve greater recognition accuracy under the m
difficult conditions through the use of more accurate math
matical characterizations of the effects of noise and filterin
We describe in the following section many of the resul

n[m]

z[m]h[m]x[m]

 "Clean"
speech

Degraded
speech Linear

Distortion

Additive
Noise

Figure 1.  A model of environmental distortion including the 
effects of additive noise and linear filtering.
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obtained during the initial phase of this investigation. In Sec. 4
we review and discuss the second series of algorithms which
provide greater recognition accuracy by virtue of more detailed
modeling of the statistics of degraded speech. 

3. INITIAL APPROACHES TO
ENVIRONMENTAL COMPENSATION 

3.1. Empirical Compensation: 
SDCN, FCDCN, MFCDCN, and MPDCN

As noted above, empirical cepstral comparison procedures
assume the existence of “stereo” databases containing speech
that had been simultaneously recorded in the training environ-
ment and one or more prototype testing environments. Our ini-
tial work on empirical compensation made use of cepstral
features, and the effects of the environment function were
expressed through additive cepstral “compensation vectors”.
These compensation vectors were calculated by computing the
frame-by-frame differences between the cepstral vectors repre-
senting speech in the training and testing environments:

(4)

where  is a set of vectors that serve to estimate the

environment function. In general, these vectors can depend on
instantaneous SNR, the specific vector-quantized (VQ) cluster
location that is nearest to the incoming feature vector, the pre-
sumed phonemic identity, and the specific testing environment. 

Applying the compensation is equally simple, as the compen-
sation vector is just added to the incoming cepstral vector to
produce an estimate of the original cepstral vector. 

The goal of compensation is normally to provide relief from
the effects of both additive noise and linear filtering, which
affect different speech frames differently. For example, at high
SNRs, the environment function  primarily repre-

sents the effects of linear filtering, because under these circum-
stances the impact of additive noise is negligible. At the lowest
SNRs, the vectors primarily compensate for the effects of addi-
tive noise, because under these circumstances   Eq. (3) is domi-
nated by the effects of the additive noise. At intermediate
SNRs, the compensation vectors perform a combination of
compensation for the effects of noise and filtering. Compensa-
tion using direct cepstral comparison is generally rather simple
to apply, although its utility is limited by the coverage of the
stereo training data.

The empirical approach to cepstral comparison can be most
easily understood by considering the simplest cepstral compar-
ison algorithm developed at CMU, SNR-Dependent Cepstral
Normalization (SDCN) [1]. Compensation vectors for the
SDCN algorithm are developed using a “stereo” database con-
sisting of speech that has been simultaneously recorded in the
training and testing environments. Individual frames are parti-
tioned into subsets according to the SNR in each frame (as
inferred from the total frame energy) in the testing environ-

ment. Compensation vectors corresponding to a given rang
SNRs are estimated by calculating the average differen
between cepstral vectors in the training and testing envir
ments for all frames with that particular range of SNRs. T
ensemble of compensation vectors constitutes an empir
characterization of the differences between the training a
testing environments. When a new test utterance is presente
the classifier, the SNR is estimated for each frame of the in
speech, and the appropriate compensation vector is adde
the cepstral coefficients derived from the input speech for t
frame.

The Fixed Codeword-Dependent Cepstral Normalizatio
(FCDCN) algorithm [1] produces greater recognition accura
by developing a more fine-grained set of compensation vec
for a particular testing environment. Compensation vectors 
FCDCN are obtained by first partitioning the frames of spee
from a stereo development corpus according to SNR, as w
SDCN. A second partitioning of the development corpus
then obtained by vector quantizing (VQ) the cepstral coe
cients at each SNR in the testing environment. Individual co
pensation vectors are developed for each VQ cluster locatio
each SNR. 

The Phone-Dependent Cepstral Normalization (PDCN) algo-
rithm [13] is similar in philosophy, but it makes use of a diffe
ent type of partitioning of the input frames. Compensatio
vectors are developed that depend on the presumed phonem
which a given frame belongs. Phoneme hypotheses 
obtained by running an initial pass of the HMM decoder wit
out compensation. The PDCN algorithm is somewhat simi
in concept to the method proposed by Beattie and Young [3]

Although all of the compensation algorithms described abo
were designed to work in the specific testing environment us
to develop the compensation vectors, a degree of environm
tal independence can be obtained if several stereo training d
bases are available using different testing environmen
Environment-independent compensation is performed by fi
determining which of the environments used to develop co
pensation vectors most closely resembles the actual tes
environment. The ensemble of compensation vectors tha
appropriate for that most likely environment is then applied
the incoming data. If the incoming speech is not from one
the environments used to develop compensation vectors, re
nition accuracy can be further improved by interpolatin
among the several “closest” environments. Environmental cl
sification need not be perfect for these algorithms to be eff
tive. The “multiple-environment” versions of FCDCN and
PDCN are referred to as MFCDCN and MPDCN.

These approaches are also similar to complementary work 
formed at other sites include piecewise-linear mapping a
noise-adaptive prototypes developed at IBM [4, 18] and the
probabilistic optimal filtering (POF) algorithm developed a
SRI [19]. The POF algorithm, for example, is typically realize
with many more free environmental parameters than are co
monly used in algorithms like MFCDCN or MPDCN to char
acterize the environment function. POF also makes additio

x̂ z f̂ x n q, ,( )+ x z–= =

f̂ x n q, ,( )

f x n q, ,( )



 

e-
We
ary
ed

m-
 to
 at
B),
e

 the
c-
 dB
ors

  

tion
tral
te
l of
e-
d a
ent
ten-
atic
les
he
on
 to

nts
M.
rily

ch.

 

n

 

t
r

tal
to
n
y

 of
on-
L
 the
e,

ent

    

r
s of

    

of

  

 

  

ns
-

use of temporal correlation across frames, which are not
exploited by MFCDCN or MPDCN. 

Figure 2 illustrates some typical compensation vectors pro-
duced by the MFCDCN algorithm. A close-talking Sennheiser
HMD-224 microphone was used for the training data, and the
unidirectional desktop PCC-160 desktop microphone was used
in the testing environments. Fig. 2 depicts MFCDCN compen-
sation vectors, plotted at the extreme SNRs of 0 and 29 dB, as
well as at 5 dB. Spectral representation of compensation vec-
tors are plotted for 8 VQ cluster locations at each value of
SNR. The curves are obtained by calculating the cosine trans-

forms of the cepstral compensation vectors, , which

provide an estimate of the effective spectral profile of the com-
pensation vectors. The horizontal frequency axis is warped

nonlinearly according to the mel scale [7]. The maximum fr
quency corresponds to the Nyquist frequency, 8,000 Hz. 
note that the spectral profiles of the compensation vectors v
with SNR. This confirms our assertion that the vectors need
to compensate for the effects of linear filtering (which are do
inant at high SNRs) are different from the vectors needed
compensate for the effects of additive noise (which dominate
low SNRs). Furthermore, at intermediate SNRs (such as 5 d
additional improvement in recognition accuracy can b
obtained by developing separate compensation vectors for
different VQ clusters within a given SNR. Compensation ve
tors for speech frames with SNRs that are greater than 10
are very similar in appearance to the compensation vect
shown for 29 dB.

3.2. Model-Based Compensation: CDCN

The compensation algorithms described in the previous sec
depend on frame-by-frame empirical comparisons of ceps
coefficients in the training and testing domains. An alterna
approach to compensation is the use of a parametric mode
degradation, combined with optimal estimation of the param
ters of the model. For example, Ephraim [8] has presente
unified view of statistical model-based speech enhancem
that can be applied to speech enhancement (for human lis
ers), speech coding, and enhanced robustness for autom
speech recognition systems. Varga and Moore [25] and Ga
and Young [9] have also developed algorithms that modify t
parameters of HMMs to characterize the effects of noise 
speech. Sankar and Lee [22] have used a linear transform
reduce distortions between training and testing environme
of the incoming features or model parameters of the HM
Most of the above approaches have been developed prima
to ameliorate the effects of pure additive noise on spee
Acero's Codeword-Dependent Cepstral Normalizatio
(CDCN) algorithm [2, 1] is similar in principle, except that i
was developed explicitly to provide for joint compensation fo
the effects of additive noise combined with linear filtering.

The CDCN algorithm assumes the model of environmen
degradation   shown in Fig. 1. The algorithm attempts 
reverse the effects of the linear filter with transfer functio

 and the additive noise with power spectrum  b

solving two independent problems. The first problem is that
estimating the parameters  and , which define the envir
ment function in Eq. (3). This is accomplished using M
parameter estimation. The second problem is estimation of
uncorrupted cepstral vector  for a particular input fram

given the corrupted observation vector  and the environm

parameters q and . MMSE parameter estimation is used fo
this task. In effect, these two operations determine the value
q and n that when applied in inverse fashion map the set 
input cepstra z into a set of compensated cepstral coefficientsx
that are as “close” as possible to the VQ codeword locatio
encountered in the training data. CDCN is typically imple
mented on a sentence-by-sentence basis. 
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Figure 2.  Power spectra of compensation vectors used by the 
FCDCN algorithm. The compensation vectors are based on 
three different SNRs and eight VQ codeword locations at each 
SNR. The training environment is a close-talking Sennheiser 
HMD-224 microphone, while the testing environment is a uni-
directional desktop PCC-160 microphone.
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Although model-based compensation is somewhat more com-
putationally intensive than compensation based on empirical
comparisons, the bulk of the computational cost is incurred in
estimating the environment parameters q and n. Since distor-
tion due to noise and filtering changes relatively slowly, it is
generally not necessary to compute new values for these
parameters for every incoming speech frame. The compensa-
tion itself must be applied to each incoming frame, but this
does not entail great computational cost.

Model-based compensation can provide effective compensa-
tion if the assumptions built into the structural model are valid,
even if only a small amount of speech is available in the testing
environment. For example, in our implementations of CDCN,
we typically apply compensation on a sentence-by-sentence
basis.

3.3. Cepstral High-Pass Filtering: 
RASTA and CMN

We comment in passing on the third major adaptation tech-
nique, cepstral high-pass filtering, which provides a remark-
able amount of robustness at almost zero computational cost.
The development of these algorithms was originally motivated
by a desire to emphasize the transient aspects of speech repre-
sentations. 

In the well-known Relative Spectral Processing or RASTA pro-
cessing [10], a high-pass (or band-pass) filter is applied to a
log-spectral representation or cepstral representation of speech.
Cepstral mean normalization (CMN) is an alternate way to
high-pass filter cepstral coefficients. High-pass filtering in
CMN is accomplished by subtracting the short-term average of
cepstral vectors from the incoming cepstral coefficients.

Algorithms like RASTA and CMN are effective in compensat-
ing for the effects of unknown linear filtering in the absence of
additive noise because under these circumstances the ideal cep-

stral compensation vector  is a constant that is inde-

pendent of SNR and VQ cluster identity. Such a compensation
vector is, in fact, equal to the long-term average difference
between all cepstra of speech in the training and testing envi-
ronments. The high-pass nature of both the RASTA and CMN
filters forces the average values of cepstral coefficients to be
zero in the training and testing environments individually,
which, of course, implies that the average cepstra in the two
environments are equal to each other. 

Cepstral high-pass filtering can also be thought of as a degener-
ate case of compensation based on direct cepstral comparison.
Consider, for example, the compensation vectors with fre-
quency response depicted in Fig. 2. Cepstral high-pass filtering
produces the same effect that would have been achieved if all
of the compensation vectors for a particular testing environ-
ment are combined into a single compensation vector,
weighted in proportion to the percentage of frames having the
set of physical parameters (or presumed phoneme identity) cor-
responding to each of the original compensation vectors. As
Fig. 2 indicates, actual cepstral compensation vectors depend

on the SNR, VQ codeword location, and/or phonemic ident
of the individual frames of the testing utterances. Hence neit
CMN nor RASTA can compensate directly for all of the com
bined effects of additive noise and linear filtering. 

In general, cepstral high-pass filtering is so inexpensive a
effective that it is currently embedded in some form in virtual
all systems that are required to perform robust speech reco
tion. 

3.4. Performance of 
Compensation Algorithms 

The performance of the compensation algorithms describ
above has been described and compared in several prev
papers including [23]. Figure 3 compares the recognition ac
racy obtained using CMN, the original RASTA algorithm
CDCN, MFCDCN, and a combination of MFCDCN and CMN
[12]. These comparisons were obtained using SPHINX-II a
data from the “secondary” microphones of Version 0 of t
5000-word 1992 Wall Street Journal evaluation set (WSJ0). 

We note that both the RASTA and CMN algorithms provide
substantially better recognition error rates than the ra
obtained using the then-current “baseline” processing us
LPC-derived cepstra. Use of the model-based CDCN algorit
provided an additional 10 percent relative reduction in err
rate compared to CMN. A 24.3 percent reduction in relati
error rate was obtained by adding MFCDCN processing
CMN, although MFCDCN requires the use of a stereo traini
database. We believed that the CDCN and MFCDCN alg
rithms   provided greater recognition accuracy than ceps
high-pass filtering because they provide for different types
compensation under differing conditions, either through 
ensemble of empirically-derived functions or through a par
metric model of the degradation process.   This is equivalen
recognizing that there are a number of different environme
functions represented by the curves of Fig. 2, rather than ju
single condition-independent function. 
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Figure 3.   Comparison of the effects of CMN, the original 
RASTA algorithm, CDCN, MFCDCN, and a combination of 
MFCDCN and CMN on the recognition accuracy obtained fo
the “secondary microphones” of the 1992 ARPA 5000-word
Wall Street Journal task. The system was trained using a 
close-talking microphone. 
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4. CURRENT COMPENSATION 
APPROACHES

Although the compensation algorithms described in Sec. 3 above
provided substantial improvements in recognition accuracy in a
number of environments, they still exhibited many obvious short-
comings. The goals of our more recent work on environmental
compensation focused included greater recognition accuracy at
lower SNRs, better performance with small amounts of environ-
ment-specific adaptation data, and the elimination of the need for
“stereo” data. 

As before, we developed algorithms based both on empirical com-
parisons of speech in the training and testing environments, and on
mathematical models of the effects of degradation. The major
empirically-derived algorithms that emerged from these efforts
thus far have been Multivariate Gaussian-Based Cepstral Normal-
ization (RATZ) and Statistical Re-estimation of HMMs (STAR).
The most important model-based algorithms developed in recent
years are the Vector Taylor Series (VTS) and Vector Polynomial
Approximations (VPS) algorithms. RATZ, STAR, and the initial
development of VTS are all described in detail by Moreno in [16];
an additional discussion of VTS and VPS may be found elsewhere
in these Proceedings [21]. 

Much of our recent work was motivated by straightforward obser-
vations of the effects of noise on the probability distributions of
features commonly used in speech recognition systems. For exam-
ple, Fig. 4 demonstrates how additive noise and linear filtering can
affect the probability densities of log spectral features of speech.

These simulations show the densities of normally-distribut
“clean” log spectra  and the corresponding densities

“noisy” log spectra  after exposure to additive noise and l

ear filtering. We note that as SNR decreases, the mean of 

shifts and its variance decreases. It can easily be seen tha
resulting density is no longer Gaussian, and similar shape dis
tions are easily observed for the case of features that were o
nally characterized by Gaussian mixtures as well. Unfortunate
there is no tractable analytical expression for the means and v
ances of the random vector z in Eq. (3) which characterizes the
degraded speech. Hence, the goal of compensation algorit
developed by our group and other sites is always to obtain a 
sonably accurate estimate of  or its moments by empiri

observation, by parametric models, or by series approximation
the environment function itself.

4.1. Empirical Compensation: 
RATZ and STAR

In this section we describe the RATZ and STAR algorithms 
somewhat greater detail. The RATZ algorithm modifies the ce
tral vectors of incoming speech, while the STAR algorithm mod
fies the internal statistical models used by the recognition syst
Nevertheless, RATZ and STAR have a very similar concept
framework, as is elaborated in [15]. While RATZ can be cons
ered to be a generalization of algorithms like MFCDCN and STA
can be considered to be an extension of the codebook adapta
algorithms described in [13], the mathematical framework f
them has been developed more carefully and accurately. 

RATZ and STAR both assume that the probability density functi
for clean speech can be characterized as a mixture density

 (5)

where the mixture coefficients  are fixed for the case of RAT

and assumed to vary as a function of time to represent the Mar
transitional probabilities for the case of STAR. 

Environmental compensation is introduced by modifying th
means and variances of the probability density functions:

 and (6)

(7)

where  and  are the factors that compensate the means

variances respectively. 

As described in [14], direct solutions for the parameters  a

 can be obtained if “stereo” data are available. For example

the case of RATZ, these vectors can be obtained from the eq
tions 
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Figure 4.  The effect of noise on the probability density func-
tions of the logs of power spectra. 
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(8)

and

(9)

where the parameter i refers to the analysis frame and evolves over
time. 

If “stereo” data are not available, the recursive EM technique must
be used to obtain estimates of the parameters  and  using a

very similar equation. 

A further extension of RATZ described in [15] is referred to as
SNR-RATZ. SNR-RATZ uses a more structured model for 

whereby the number of Gaussians used to define the statistics for
 can be different from the number used for the other cepstral

components. The statistics of the remaining components of x, are
tied to the individual Gaussians that comprise the component  to

which they belong, so they can exhibit different statistics for dif-
ferent SNRs. The means, variances and a priori probabilities of
the individual Gaussians are learned by standard EM methods, as
before. 

In the case of the STAR algorithm, the correction parameters 

and  are computed as in Eqs. (8) and (9). It is assumed that the

a posterior probabilities in these equations do not change due to
the effects of noise or filtering and can be computed from the clean
speech. The correction factors are then applied to the cepstra,
delta-cepstra, and double delta-cepstra produced by SPHINX-II,
along with the cepstral component , its difference, and its dou-

ble difference. (In practice, we have observed that adapting the
cepstral double-delta statistics does not affect the recognition per-
formance.) Once the correction terms are computed, the Gaussians
are adapted to the new environment as in Eqs. (6) and (7).

Figure 5 compares the recognition accuracy obtained using RATZ
and FCDCN. These and subsequent results were obtained by test-
ing on the ARPA 5000-word Wall Street Journal evaluation test
data, after the data had been corrupted by additive noise and linear
filtering, with word recognition accuracy plotted as a function of
SNR. In addition to the results obtained using RATZ and FCDCN,
we also plot the recognition accuracy obtained using CMN alone,
and using a system that had been completely retrained on the
degraded speech for each separate condition of degraded speech.
These two curves provide a reasonable estimate of the best and
worst performance to be expected for any specific combination of
recognition system, recognition task, and feature set. Hence these

curves provide reasonable bounds on the degree of performan
be expected from an environmental compensation algorithm s
as the ones we describe. We note that the recognition accu
obtained using RATZ is greater than the recognition accura
obtained using FCDCN, particularly at the lower SNRs, and th
the recognition accuracy obtained using both procedu
approaches best possible performance for SNRs down to abou
dB. We believe that better performance is obtained using RA
because it includes a more detailed model that characterizes
effects of the environment on the variances of the speech featu
This allows the compensation procedure to reflect (in a limit
way) the changes in variance of the features due to the effect
the noise.

Figure 6 compares recognition accuracies obtained using the o
inal version of RATZ and using a “blind” implementation tha
does not make use of “stereo” data. Although it is not a surpr
that better recognition accuracy is obtained using stereo data
available, the word accuracy obtained using Blind RATZ is quite
bit better than that obtained using CMN, and is in fact compara
to the word accuracy observed for FCDCN using stereo data
plotted in Fig. 5. 
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Figure 5.  Comparison of recognition accuracy obtained using 
the RATZ and FCDCN, the empirically-derived compensation 
algorithm that previously had exhibited the best performance. 
The system was evaluated on speech samples from the 1993 
5000-word ARPA Wall Street Journal evaluation test set, after t
speech had been corrupted by linear filtering and additive nois
Results are plotted as a function of SNR. 
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Figure 6 compares recognition accuracy obtained using the STAR
algorithm as developed from “stereo” training data, along with two
implementations of a “blind” STAR algorithm. The latter two
curves describe the effects of two different sets of initial values for
the correction factors: The curve with the circular symbols repre-
sents truly “blind” performance in that the re-estimation process
used to obtain the correction factors was initialized using clean
speech. The intermediate curve with the diamond symbols repre-
sents results obtained by initializing on speech that has been cor-
rupted by noise at a comparable SNR to the test data. 

Although the performance obtained using the “blind” implementa-
tion is somewhat dependent on the initial conditions, it is clear that
the STAR algorithm trained with “stereo” data provides much bet-
ter recognition accuracy than RATZ. STAR, in fact, provides
approximately the best possible recognition accuracy for SNRs
down to about 7 dB. 

We believe that STAR is superior, especially at low SNRs, because
signal processing algorithms such as RATZ that attempt to correct
for the effects of noise do not account completely for the changes
of ideal classification boundaries that occur due to the effects of
noise on the variances of the distributions. Furthermore, additional
approximation errors are introduced in the MMSE process used to
actually perform the compensation (once the parameters are esti-
mated), leaving a residual mismatch between the estimates of
“clean” speech and the original HMMs. In contrast, classifier
adaptation algorithms such as STAR modify the variances as well
as the means in the internal representation of the incoming fea-
tures. This is a better approximation to the ideal condition where
training and testing are performed in the same environment.

4.2. Model-Based Compensation: 
VTS and VPS

The Vector Taylor Series (VTS) [16, 17] and Vector Polynomial
Expansion (VTS) [20, 21] procedures are model-based algorithms
that develop series approximations to the nonlinear environment
function  defined in Eq. (3) 

For example, the VTS algorithm approximates the environme
function  using the first several terms of its Taylo

series:

where  is the vector function evaluated at a particu

vector point. Similarly,  represents the matri

derivative of the vector function at a particular vector point. T
higher order terms of the Taylor series involve higher order deri
tives resulting in tensors.

The Taylor expansion is exact everywhere when the order of 
Taylor series is infinite. However, when x has a Gaussian distribu-
tion, the function can be expanded around the mean of x and the
expansion needs to be valid only within a relatively narrow regi
around the mean. We take advantage of this fact to truncate
Taylor series after just a few terms. 

The series expansion of the environment function is particula
convenient because the means and variances of the series app
mations are quite easily obtained. The EM algorithm is then u
to find the values of n and q that maximize the likelihood of the
observations, and the statistics of the incoming cepstral vectors
re-estimated using MMSE techniques.

The VPS algorithm is described in detail elsewhere in these P
ceedings [21]. Briefly, the VPS approach replaces the Taylor se
expansion used in VTS with a more general approach to appr
mating the environment function. VPS is shown to provide a mo
accurate approximation to the environment function than VTS.
pilot evaluations described in [21], VPS provided somewhat be
recognition accuracy compared to VTS, and at a reduced comp
tional cost. The original versions of the VTS and VPS algorithm
were implemented only to modify the incoming speech featu
vectors. It is expected that the difference in error rates betw
VPS and VTS will increase when implementations of these alg
rithms that modify the internal statistical models are completed

Figure 8 shows how the resulting means and variances of the n
vector set z can be approximated quite well by the Taylor seri

expansion. It can be seen that the zeroth-order VTS expansion pro-
vides a reasonably good approximation to the mean of z, but at
lower SNRs the second-order expansion provides an even be
approximation. Similarly, the first-order approximation is closer 
the real variance than the zeroth-order approximation. 

Figure 9 compares the recognition accuracies obtained using t

model-based compensation procedures: the zeroth-order and first-
order approximations of VTS and CDCN. It can be seen that at
SNRs the first-order VTS algorithm outperforms the zeroth-ord
VTS algorithm, which in turn outperforms CDCN. In fact, th

zeroth-order VTS algorithm also outperforms RATZ, which is a
algorithm that assumes the availability of “stereo” data. 
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5. SUMMARY 

In the sections above, we have reviewed many of the major
approaches taken by the CMU speech group for robust speech rec-
ognition over the past 10 years. The current ensemble of compen-
sation algorithms, including RATZ, STAR, and VTS, has
demonstrated significant improvements in recognition accuracy
compared to what had been obtained previously using algorithms
such as CDCN, FCDCN, and MFCDCN. In general these
improvements were obtained using a general approach that was
similar to past work, but using more elaborated models of the
effect of degradation. We believe that the newer algorithms exhibit
improved performance in part because they model more accurately
environmental effects on feature variance, and in part because they
compensation algorithms are now more tightly linked to the math-
ematical representation used by the HMMs. 

We also note the following specific comments:

• Relative improvements in recognition accuracy provided by t
newer and more mathematically-detailed algorithms are grea
at the lower SNRs.

• Algorithms (such as STAR) that modify the statistical mode
used by classifiers provides greater recognition accuracy t
algorithms (such as RATZ) that modify the incoming featu
vectors.

• If “stereo” data are not available, model-based algorithms (su
as VTS) provide greater recognition accuracy than empiri
approaches (such as RATZ), at the expense of somewhat gre
computational complexity.
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