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Abstract
In this paper we present a novel algorithm called Suppression of
Slowly-varying components and the Falling edge of the power
envelope (SSF) to enhance spectral features for robust speech
recognition, especially in reverberant environments. This algo-
rithm is motivated by the precedence effect and by the modu-
lation frequency characteristics of the human auditory system.
We describe two slightly different types of processing that dif-
fer in whether or not the falling edges of power trajectories are
suppressed using a lowpassed power envelope signal. The SSF
algorithms can be implemented for online processing. Speech
recognition results show that this algorithm provides especially
good robustness in reverberant environments.1

Index Terms: Robust speech recognition, speech enhancement,
precedence effect, modulation frequency

1. Introduction
Despite continued efforts by a large number of researchers, en-
hancing the noise robustness of automatic speech recognition
systems still remains a very challenging problem. For stationary
noise such as white or pink noise, algorithms such as histogram
normalization (e.g. [1]) or vector Taylor series (VTS) [2] have
been shown to be effective. Nevertheless, similar improvement
has not been observed in more realistic environments such as
background music [3]. In these more difficult environments, it
has been frequently observed that algorithms motivated by hu-
man auditory processing (e.g. [4]) or missing feature algorithms
(e.g. [5]) are more promising.

It has long been believed that modulation frequency plays
an important role in human hearing. For example, it is observed
that the human auditory system is more sensitive to modulation
frequencies less than 20 Hz (e.g. [6, 7]). On the other hand, very
slowly changing components (e.g. less than 5 Hz) are usually
related to noise sources (e.g. [8, 9, 10]). Based on these obser-
vations, researchers have tried to utilize modulation frequency
information to enhance the speech recognition performance in
noisy environments. Typical approaches use highpass or band-
pass filtering in either the spectral, log-spectral, or cepstral do-
mains (e.g. [11]). Hirsch et al. [12] investigated the effects of
highpass filtering of spectral envelopes of each frequency sub-
band. Hirsch conducted highpass filtering in the log spectral
domain using the transfer function:

H(z) =
1 − z−1

1 − 0.7z−1
(1)

1This work was supported by the National Science Foundation
(Grant IIS-10916918).
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Figure 1: Block diagram of the SSF processing system.

For robust speech recognition, the other common difficulty
is reverberation. Many hearing scientists believe that human
speech perception in reverberation is enabled by the “prece-
dence effect”, which refers to an emphasis that appears to be
given to the first-arriving wave-front of a complex signal in
sound localization and possibly speech perception (e.g. [13]).
To detect the first wave-front, we can either measure the enve-
lope of the signal or the energy in the frame (e.g. [14, 15]).

In this paper we introduce an approach which we re-
fer to as SSF processing, representing Suppression of Slowly-
varying components and the Falling edge of the power enve-
lope. This processing mimics aspects of both the precedence
effect and modulation spectrum analysis. SSF processing op-
erates on frequency-weighted power coefficients as they evolve
over time, as described below. The DC-bias term is first re-
moved in each frequency band by subtracting an exponentially-
weighted moving average. When the instantaneous power in a
given frequency channel is smaller than this average, the power
is suppressed, either by scaling by a small constant, or by re-
placement by the scaled moving average. The first approach re-
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Figure 2: Power contour P [m, l], P1[m, l] (processed by SSF Type-I processing), and P2[m, l] (processed by SSF Type-II processing)
for the 10-th channel in clean environment (a) and in the reverberant environment (b).

sults in better sound quality for non-reverberated speech, but the
latter results in better speech recognition accuracy in reverber-
ant environments. SSF processing is normally applied to both
training and testing data in speech recognition applications.

In speech signal analysis, we typically use a window with
duration between 20 and 30 ms. With the SSF algorithm, we
observe that windows longer than this length are more appro-
priate for estimating or compensating for noise components,
which is consistent with our observations in previous work (e.g.
[16, 17, 8]). Nevertheless, even if we use a longer-duration win-
dow for noise estimation, we must use a short-duration win-
dow for speech feature extraction. After performing frequency-
domain processing we use an IFFT and the overlap-add method
(OLA) to re-synthesize speech, as in [9]. Feature extrac-
tion and subsequent speech recognition can be performed on
the re-synthesized speech. We call this general approach the
“medium-duration analysis and synthesis approach”.

2. Structure of the SSF algorithm
Figure 1 shows the structure of the SSF algorithm. The in-
put speech signal is pre-emphasized and then multiplied by a
medium-duration Hamming window as in [9]. This signal is
represented by xm[n] in Fig. 1 where m denotes the frame
index. We use a 50-ms window and 10 ms between frames.
After windowing, the FFT is computed and integrated over
frequency using gammatone weighting functions to obtain the
power P [m, l] in the mth frame and lth frequency band as
shown below:

P [m, l] =
N−1X

k=0

|X[m, ejωk )Hl(e
jωk )|2, 0 ≤ l ≤ L − 1 (2)

where k is a dummy variable representing the discrete fre-
quency index, and N is the FFT size. The discrete frequen-
cies are ωk = 2πk

N . Since we are using a 50-ms window, for
16-kHz audio samples N is 1024. Hl(e

jωk ) is the spectrum of
the gammatone filter bank for the lth channel evaluated at fre-
quency index k, and X[m, ejωk ) is the short-time spectrum of
the speech signal for the mth frame, where L = 40 is the total
number of gammatone channels. After the SSF processing de-
scribed below, we perform spectral reshaping and compute the
IFFT using OLA to obtain enhanced speech.

3. SSF Type-I and SSF Type-II Processing
In SSF processing we first obtain lowpassed power M [m, l]
from each channel:

M [m, l] = λM [m − 1, l] + (1 − λ)P [m, l] (3)

where λ is a forgetting factor that is adjusted for the bandwidth
of the lowpass filter. The processed power is obtained by the
following equation:

P1[m, l] = max (P [m, l] − M [m, l], c0P [m, l]) (4)

where c0 is a small fixed coefficient to prevent P [m, l] from be-
coming negative. In our experiments we find that c0 = 0.01
is appropriate for suppression purposes. As is obvious from
(4), P1[m, l] is essentially a highpass filter signal, since the
lowpassed power M [m, l] is subtracted from the original sig-
nal power P [m, l]. From (4), we observe that if power P [m, l]
is larger than M [m, l] + c0P1[m, l] then, P1[m, l] is the high-
pass filter output. However, if P [m, l] is smaller than the latter,
the power is suppressed. These operations have the effect of
suppressing the falling edge of the power contour. We call pro-
cessing using (4) SSF Type-I.

A similar approach uses the following equation instead of
(4):

P2[m, l] = max (P [m, l] − M [m, l], c0M [m, l]) (5)

We call this processing SSF Type-II.
The only difference between (4) and (5) is one term, but as

shown in Fig 3 and 4, this term has a major impact on recog-
nition accuracy in reverberant environments. We also note that
using SSF Type-I processing, if 0.2 ≤ λ ≤ 0.4, substantial
improvements are observed for clean speech compared to base-
line processing. In the power contour of Fig. 2, we observe
that if we use SSF Type-II, the falling edge is smoothed (since
M [m, l] is basically a lowpass signal), which significantly re-
duces spectral distortion between clean and reverberant envi-
ronments.

Fig. 3 shows the dependence of performance on the for-
getting factor λ and the window length. For additive noise,
a window length of 75 or 100 ms provided the best perfor-
mance. However, for reverberation, 50 ms provided the best
performance. Thus we use λ = 0.4 and a window length of 50
ms.
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Figure 3: The dependence of speech recognition accuracy on the forgetting factor λ and the window length. In (a), (b), and (c), we
used Eq. (4) for normalization. In (d), (e), and (f), we used Eq. (5) for normalization. The filled triangles along the vertical axis
represent the baseline MFCC performance in the same environment.

4. Spectral reshaping
After obtaining processed power P̃ [m, l] [which is either
P1[m, l] in (4) or P2[m, l] (5)], we obtain a processed spectrum
X̃[m, ejωk ). To achieve this goal, we use a similar spectral re-
shaping approach as in [9] and [17]. Assuming that the phases
of the original and the processed spectra are identical, we mod-
ify only the magnitude spectrum.

First, for each time-frequency bin, we obtain the weighting
coefficient w[m, l] as a ratio of the processed power P̃ [m, l] to
P [m, l].

w[m, l] =
P̃ [m, l]
P [m, l]

, 0 ≤ l ≤ L − 1 (6)

Each of these channels is associated with Hl, the frequency re-
sponse of one of a set of gammatone filters with center frequen-
cies distributed according to the Equivalent Rectangular Band-
width (ERB) scale [18]. The final spectral weighting µ[m, k]is
obtained using the above weight w[m, l]

µ[m, k] =

PL−1
l=0 w[m, l]

˛̨
Hl

`
ejωk

´˛̨
PL−1

l=0 |Hl (ejωk )|
,

0 ≤ k ≤ N/2 − 1, 0 ≤ l ≤ L − 1 (7)

After obtaining µ[m, k] for the lower half frequency region 0 ≤
k ≤ N/2, we can obtain the upper half from the symmetric
characteristic:

µ[m, k] = µ[m, N − k], N/2 ≤ k ≤ N − 1 (8)

Using µ[m, k], the reconstructed spectrum is obtained by:

X̃[m, ejωk ) = µ[m, k]X[m, ejωk ), 0 ≤ k ≤ N − 1 (9)

The enhanced speech x̂[n]is re-synthesized using the IFFT and
the OLA method as described above.

5. Experimental results
In this section we describe experimental results obtained on
the DARPA Resource Management (RM) database using the
SSF algorithm. For quantitative evaluation of SSF we used
1,600 utterances from the DARPA Resource Management (RM)
database for training and 600 utterances for testing. We used
SphinxTrain 1.0 for training the acoustic models, and
Sphinx 3.8 for decoding. For feature extraction we used
sphinx fe which is included in sphinxbase 0.4.1.
Even though SSF was developed for reverberant environments,
we also conducted experiments in additive noise as well. In
Fig. 4(a), we used test utterances corrupted by additive white
Gaussian noise, and in Fig. 4(b), we used test utterances cor-
rupted by musical segments of the DARPA Hub 4 Broadcast
News database.

We prefer to characterize improvement as the amount by
which curves depicting WER as a function of SNR shift lat-
erally when processing is applied. We refer to this statistic
as the “threshold shift”. As shown in these figures, SSF pro-
vides 8-dB threshold shifts for white noise and 3.5-dB shifts
for background music. Obtaining improvements in the pres-
ence of background music is generally not easy. For compari-
son, we also obtained similar results using a modern noise com-
pensation algorithm, vector Taylor series (VTS) [2]. We also
conducted experiments using an open source implementation
of RASTA-PLP [19]. For white noise, VTS and SSF provide
almost the same performance, but for background music, SSF
provides a significantly lower word error rate (WER). In addi-
tive noise, both SSF Type-I and SSF Type-II provide almost the
same WER. For clean utterances, SSF Type-I performs slightly
better than SSF Type-II.

To simulate the effects of room reverberation, we used the
software package Room Impulse Response (RIR) [20]. We as-
sumed a room of dimensions of 5 x 4 x 3 m, a distance between
the microphone and the speaker of 2 m, with the microphones
located at the center of the room. In reverberant environments,
as shown in Fig. 4(c), SSF Type-II provides the lowest WER by
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Figure 4: Speech recognition accuracy using various algo-
rithms for speech in (a) white noise (b) musical noise, and (c)
under reverberant environments.

a very large margin. SSF Type-I provides the next best WER,
but the performance difference between SSF Type-I and SSF-
Type-II is large. On the contrary, VTS does not provide any
improvement in WER, and PLP-RASTA provides worse per-
formance than MFCC.

6. Conclusions
In this paper, we present a new algorithm that is especially ro-
bust with respect to reverberation. Motivated by modulation fre-
quency concepts and the precedence effect, we apply first-order
high-pass filtering to power coefficients, and the falling edges
of power contours are suppressed in two different ways. We ob-
serve that the use of a lowpassed signal for the falling edge is
especially helpful for reducing spectral distortion in reverberant
environments. Experimental results show that this approach is
much more effective than the other algorithms considered, and
especially in reverberant environments.

Open source MATLAB code for the SSF algorithm
may be found at http://www.cs.cmu.edu/˜robust/
archive/algorithms/SSF_IS2010/. This code was
used to obtain the results in Sec. 5.
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