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Abstract
In this paper we describe a system that separates signals by
comparing the interaural time delays (ITDs) of their time-
frequency components to a fixed threshold ITD. While in previ-
ous algorithms the fixed threshold ITD had been obtained em-
pirically from training data in a specific environment, in real
environments the characteristics that affect the optimal value
of this threshold are unknown and possibly time varying. If
these configurations are different from the environment under
which the ITD threshold had been pre-computed, the perfor-
mance of the source separation system is degraded. In this pa-
per, we present an algorithm which chooses a threshold ITD that
minimizes the cross-correlation of the target and interfering sig-
nals, after a compressive nonlinearity. We demonstrate that the
algorithm described in this paper provides speech recognition
accuracy that is much more robust to changes in environment
than would be obtained using a fixed threshold ITD.
Index Terms: Robust speech recognition, speech enhancement,
signal separation, time delay analysis, phase difference analy-
sis, cross correlation

1. Introduction
Following the introduction of statistical approaches such as
HMMs (hidden Markov models) and SLMs (statistical language
models) (e.g. [1] [2]), speech recognition accuracy has signif-
icantly improved. Nevertheless, maintaining good error rates
in noisy conditions remains a problem that must be effectively
resolved for speech recognition systems to be used in real con-
sumer products in difficult acoustical environments.

It is well known that the human binaural system is remark-
able in its ability to separate sound sources even in a very diffi-
cult environment (e.g. [3]). Motivated by these observations,
many models and algorithms have been developed using in-
teraural time differences (ITDs), interaural intensity difference
(IIDs), interaural phase differences (IPDs), and other cues (e.g.
[4, 5, 6, 7]). IPD and ITD have been extensively used in binau-
ral processing because this information can be easily obtained
by spectral analysis (e.g. [4] [8] [9]).

In many of the algorithms above either a binary or contin-
uous “mask” is developed that indicates which time-frequency
bins are believed to be dominated by the target source. Typically
this is done by sorting the time-frequency bins according to ITD
(either calculated directly or inferred from estimated IPD). In
both cases performance depends on how the ITD threshold is
selected, and the optimal threshold depends on the configura-
tion of the noise sources including their locations and strength.

If the optimal ITD from a particular environment is applied to a
somewhat different environment, the system performance will
be degraded. In addition, the characteristics of the environment
typically vary with time.

When target identification is obtained by a binary mask
based on an ITD threshold, the value of that threshold is typ-
ically estimated from development test data. As noted above,
the optimal ITD threshold itself will depend on the number of
noise sources and their locations, both of which may be time-
varying. If the azimuth of the noise source is very different from
that of the target, an ITD threshold that is relatively far from that
of the target may be helpful. On the other hand, if an interfering
noise source is very close to the target and we use a similar ITD
threshold, the system will also classify many components of the
interfering signal as part of the target signal. If there is more
than one noise source, or if the noise sources are moving, the
problem becomes even more complicated.

In our approach, which is summarized in Fig. 1, we con-
struct two complementary masks using a binary threshold. Us-
ing these two complementary masks, we obtain two different
spectra: one for the target and the other for everything ex-
cept for the target. From these spectra, we obtain the short-
time power for the target and the interference. These power
sequences are passed through a compressive nonlinearity. We
compute the cross-correlation coefficient for the two resulting
power sequences, and we obtain the ITD threshold by minimiz-
ing the correlation coefficient.

In Sec. 2 we review how to obtain the ITD from phase dif-
ference information. In Sec. 3, we explain how to construct
the complementary masks and how to obtain the ITD threshold
based on the minimum correlation criterion. We present exper-
imental results in Sec. 4.

2. Obtaining ITDs from interaural phase
differences

In this section we review the procedure for obtaining ITD from
phase information (e.g. [9]). Let xL[n] and xR[n] be the signals
from the left and right microphones, respectively. We assume
that we know where the target source is located and, without
loss of generality, we assume that it is placed at the perpendic-
ular bisector of the line between two microphones.

Suppose that the total number of interfering sources is S.
Each source s, 1 ≤ s ≤ S has an ITD of ds[m, k] where m is
the frame index and k is the frequency index. Note that both S
and ds[m, k] are unknown. We assume that x0[n] represents the
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Figure 1: Block diagram of the optimal ITD selection algorithm for sound source separation.

target signal and that the notation xs[n], 1 ≤ s ≤ S, represents
signals from each interfering source received from the “left” mi-
crophone. In the case of signals from the “right” microphone,
the target signal is still x0[n], but the interfering signals are de-
layed by ds[m, k]. These assumptions imply that for the target
signal x0[n], d0[m, k] = 0 for all m and k.

To perform spectral analysis, we obtain the following short-
time signals by multiplication with a Hamming window w[n]:

xL[n; m] = xL[n−mLfp]w[n] (1a)
xR[n; m] = xR[n−mLfp]w[n] (1b)

for 0 ≤ n ≤ Lfl − 1
where m is the frame index, Lfp is the number of samples be-
tween frames, and Lfl is the frame length. The window w[n]
is a Hamming window with a length of Lfl. We use a 75-ms
window length based on previous results [9]. The short-time
Fourier transforms of (1) can be represented as

XL[m, ejωk ) =
SX

s=0

Xs[m, ejωk ) (2a)

XR[m, ejωk ) =
SX

s=0

e−jwkds[m,k]Xs[m, ejωk ) (2b)

where wk = 2πk/N and N is the FFT size. We represent the
strongest sound source for a specific time-frequency bin [m, k]
as s∗[m, k]. This leads to the following approximation:

XL[m, ejωk ) ≈ Xs∗[m,k][m, e−jwk ) (3a)

XR[m, ejωk ) ≈ e−jwkds∗[m,k][m,k]

×Xs∗[m,k][m, e−jwk ) (3b)
Note that s∗[m, k] may be either 0 (the target source) or 1 ≤
s ≤ S (any of the interfering sources). From (3), The ITD for a
particular time-frequency bin [m, k] is given by:

|ds∗[m,k][m, k]| ≈ 1
|wk|

min
r

˛̨
˛∠XR[m, e−jwk )

−∠XL[m, e−jwk )− 2πr
˛̨
˛ (4)

Thus, based on whether the obtained ITD from (4) is within
a certain range of the target ITD (which is zero), we can make a
simple binary decision concerning whether the time-frequency
bin [m, k] is likely to belong to the target speaker or not.

3. Optimal ITD threshold selection from
complementary masks

This algorithm is based on two complementary binary masks,
one that identifies time-frequency components that are believed

to belong to the target signal and the other that identifies the
components that are believed to belong to the interfering signals
(i.e. everything except the target signal). These masks are used
to construct two different spectra corresponding to the power se-
quences representing the target and the interfering sources. We
apply a compressive nonlinearity to these power sequences, and
define the optimal ITD threshold to be the threshold that mini-
mizes the cross-correlation between these two output sequences
(after the nonlinearity).

Computation is performed in discrete fashion, considering
a set T of a finite number of possible ITD candidates. We de-
termine which element of this set is the most appropriate ITD
threshold by performing an exhaustive search over the set T .
Let us consider one element of this set, τ0. We obtain the target
mask and the complementary mask for τ0 for 0 ≤ k ≤ N/2:

µT [m, k] =

(
1, if |d[m, k]| ≤ τ0

δ, otherwise
(5a)

µI [m, k] =

(
δ, if |d[m, k]| > τ0

1, otherwise
(5b)

For N/2 ≤ k ≤ N − 1, we use the following symmetry
condition:

µI [m, k] = µT [m, N − k], N/2 ≤ k ≤ N − 1(6a)
µI [m, k] = µI [m, N − k], N/2 ≤ k ≤ N − 1 (6b)

In other words, we assume that time-frequency bins for which
|d(m, k)| < τ0 are presumed to belong to the target speaker,
and that time-frequency bins for which |d[m, k]| > τ0 belong
to the noise source. We are presently using a value of 0.01
for the floor constant δ. The masks µT [m, k] and µI [m, k] in
(5) are applied to X̄[m, ejωk ), the averaged signal spectrogram
from the two microphones:

X̄[m, ejωk ) =
1
2
{XL[m, ejωk ) + XR[m, ejωk )} (7)

Using this procedure, we obtain the target spectra
XT [m, ejωk |τ0) and the interference spectra XI [m, ejωk |τ0)
as shown below:

XT [m, ejωk |τ0) = X̄[m, ejωk )µT [m, ejωk ) (8a)

XI [m, ejωk |τ0) = X̄[m, ejωk )µI [m, ejωk ) (8b)

In the above equation, we explicitly include τ0 to show that the
masked spectrum will depend on the ITD threshold. Using the
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spectra XT [m, ejωk ) and XI [m, ejωk ), we obtain the power:

PT [m|τ0) =
N−1X

k=0

˛̨
˛XT [m, ejωk )

˛̨
˛
2

(9a)

PI [m|τ0) =
N−1X

k=0

˛̨
˛XI [m, ejωk )

˛̨
˛
2

(9b)

Because the power signals in (9) have a very dynamic range,
it is not very helpful to obtain the cross-correlation directly from
them. A reasonable way of reducing dynamic range is by ap-
plying a compressive nonlinearity, which may be considered to
represent the perceived loudness of the sound. While many non-
linearities have been proposed to characterize the relationship
between signal intensity and perceived loudness we chose the
following power-law nonlinearity motivated by previous work
[10, 11]):

RT [m|τ0) = PT [m|τ0)
a0 (10a)

RI [m|τ0) = PI [m|τ0)
a0 (10b)

where a0 = 1/15 as in [11].
The cross-correlation coefficient of the signals in (10) is ob-

tained as follows:

ρT,I(τ0) =
1
N

PM
m=1 RT [m|τ0)RI [m|τ0)− µRT µRI

σRT σRI

(11)

where µR1 and µR2 and σRT and σRI are the means and stan-
dard deviations of RT [m|τ0) and RI [m|τ0), respectively.

The threshold τ0 is then selected to minimize the absolute
value of the cross-correlation

τ̂0 = arg min
τ0

|ρT,I(τ0)| (12)

4. Experimental results
In this section we present experimental results using the ITD
threshold selection algorithm described in this paper. We com-
pare an IPD-based signal separation system using binary masks,
and using the automatically-determined ITD threshold as de-
scribed above, to a similar system that uses a fixed ITD thresh-
old. In the experiments below we assume a room of dimen-
sions 5 x 4 x 3 m, with microphones that are located at the
center of the room. The target is 2 m away from the mi-
crophone along the perpendicular bisector of the line between
two microphones. The target and noise signals are digitally
added after simulating reverberation effects using the Room
Impulse Response (RIR) software [12]. The two mi-
crophones were placed 4 cm apart from one another. We used
sphinx fe included in Sphinxbase 0.4.1 for speech feature
extraction, SphinxTrain 1.0 for speech recognition train-
ing, and Sphinx3.8 for decoding, all of which are readily
available in Open Source form. We used subsets of 1600 ut-
terances and 600 utterances, respectively, from the DARPA Re-
source Management (RM1) database for training and testing.

For the fixed-ITD threshold system, we obtained the opti-
mal threshold by conducting an experiment in a specific envi-
ronment: we located the interfering speaker along a 45-degree
line to the side of the perpendicular bisector of the line be-
tween two microphones, and the interfering speaker generating
a speech noise at 0-dB signal-to-interference ratio (SIR). We
further assumed that there was no reverberation in this room.

We conducted two different sets of experiments. In the first
set of the experiments, we kept the geometrical configuration
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Figure 2: Comparison of recognition accuracy for the DARPA
RM database corrupted by an interference speaker located at
45 degrees at different reverberation times (a) 0 ms (b) 100 ms
(c) 200 ms (d) 300 ms.

the same as the above, changing only the SIR and reverberation
time. As shown in Fig. 2, in the absence of reverberation at 0-
dB SIR, both the fixed ITD system and the automatic-ITD sys-
tem show comparable performance. If reverberation is present,
however, the automatic-ITD system provides substantially bet-
ter performance than the fixed-ITD signal separation system.

In the second set of the experiments, we changed the lo-
cation of the interfering speaker while maintaining the SIR
at 0 dB. As shown in Fig. 3(a), even if the SIR is the
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Figure 3: Comparison of recognition accuracy for the DARPA
RM database corrupted by an interference speaker located at
different locations at different reverberation time (a) 0 ms (b)
100 ms (c) 200 ms (d) 300 ms.

same as in the calibration environment, the fixed-ITD thresh-
old system produces substantially degraded performance if the
actual interfering speaker location is different from the lo-
cation used in the calibration environment. The automatic-
ITD-threshold selection system provides recognition results
that are much more robust with respect to the locations of
the interfering sources. In this figure we observe that as
the interfering speaker moves toward the target, the fixed-
ITD threshold PD system shows increased word error rate.

We repeated the same experiment by changing the simu-
lated reverberation time. As shown in Figs. 3(b) to 3(d),
the automatic-threshold-selection algorithm provides consis-
tently better recognition accuracy than the fixed threshold
system, as expected. MATLAB code for this algorithm
may be found at http://www.cs.cmu.edu/˜robust/
archive/algorithms/AUTOITD_IS2010/.

5. Conclusions
In this paper we present a new algorithm which selects an ITD
threshold by minimizing the correlation of nonlinearity power
from the masked and non-masked spectral regions. Experimen-
tal results show while the conventional fixed ITD threshold sys-
tem shows degraded performance in unmatched conditions, this
automatic ITD threshold selection algorithm makes the binary
mask system much more reliable.
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