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ABSTRACT

In this paper, we present our efforts towards deriving vocal tract
shapes from ElectroMagnetic Articulograph data (EMA) via geo-
metric adaptation and matching. We describe a novel approach for
adapting Maeda’s geometric model of the vocal tract to one speaker
in the MOCHA database. We show how we can rely solely on the
EMA data for adaptation. We present our search technique for the
vocal tract shapes that best fit the given EMA data. We then describe
our approach of synthesizing speech from these shapes. Results on
Mel-cepstral distortion reflect improvement in synthesis over the ap-
proach we used before without adaptation.
Index Terms: MOCHA EMA data, Maeda Model, vocal tract adap-
tation, articulatory model fitting, articulatory synthesis

1. INTRODUCTION

ElectroMagnetic Articulography (EMA) has lately been gaining
popularity among researchers as a simple technique for measuring
the mechanism of speech production [1]. EMA, originally developed
in the University of Göttingen in 1982, comprises of a set of sensors
placed on the lips, incisors, tongue, and velum of the speaker. A
set of transmitters generates magnetic fields at multiple frequencies,
each of which induces a current in the sensors. By measuring the
levels of generated current, the (x, y) coordinates of each of the sen-
sors can then be determined. Each EMA measurement thus consists
of a set of such position coordinates, one from each sensor.

Figure 1.a illustrates the positions of the sensors and the typical
measurements obtained from the MOCHA database [1]. As the per-
son speaks, a sequence of EMA measurements is obtained from the
sensors. This sequence of measurements is assumed to provide at
least partial characterization of the speech production process.

But exactly how reliable are these measurements and how much
do they tell us about the vocal tract that produces the speech? The
EMA only measures the locations of a very small number of points
on the vocal tract, typically four in the location of the lips and in-
cisors, one on the velum, and merely three on the tongue. The vocal
tract, on the other hand, is a complex three dimensional object that
cannot be fully characterized by a small number of points. Further,
the precise location of the EMA sensors themselves is also highly
uncertain and impossible to calibrate with respect to the vocal tract.
Although the sensors on the tongue are placed at calibrated distances
from one another, the elasticity and complexity of tongue structure
ensures that their actual positions, both along the tongue surface and
relative to overall tongue structure cannot be precisely known.

Given these various factors, it is natural to question the useful-
ness of these measurements as a characterization of the speech gen-
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Fig. 1. (a) EMA measurements sampled from the MOCHA database. Nota-
tion of EMA data used in this paper is: upper lip (UL), lower lip (LL), upper
incisor (UI), lower incisor (LI), tongue tip (TT), tongue body (TB), tongue
dorsum (TD), and velum (VL). (b) Maeda model composed of grid lines in
red, vocal tract upper profile in blue, and vocal tract lower profile in green
corresponding to the steady state shape with p1 to p7 set to zero.

eration process. Clues may be found in work by researchers who
have previously shown that the EMA measurements are reliable cues
to the speech signal itself. Toda et al [2] have produced speech from
EMA measurements using learned statistical dependencies between
them and the corresponding speech signals, demonstrating that they
do indeed relate to the output of the speech generation process. Toth
and Black [3] experimented with using EMA for voice transforma-
tion. While these experiments do provide indirect evidence of the
relation of EMA measurements to the speech production mecha-
nism, it is still not clear that they provide direct information about
the shape of the speaker’s vocal tract itself.

In this paper we attempt to derive actual characterizations of vo-
cal tract shapes from EMA measurements. Since the EMA itself
only comprises a small set of sensor locations, we use a model-
based approach to estimate the complete vocal tract configuration
from them. Specifically, we use the model proposed by Maeda [4],
which represents a mid-sagittal profile of the vocal tract in terms of
seven parameters.

One simple approach to arriving at a vocal tract configuration in
this manner is to determine the specific set of values for the seven
Maeda parameters that best explains the measured EMA sensor po-
sitions [5]. This, however, is insufficient. Maeda’s vocal tract model
is not generic; it was originally developed using 1000 frames of cin-
eradiographic and labiofilm data from only two female speakers. It
must be adapted to the current speaker. The specific aspects of the



model that are adapted are the height of the palate, the tilt of the oral
cavity, and the length of the vocal tract. This is done by comparing
the geometry suggested by the ensemble of all EMA measurements
for the speaker to that defined by the model. The actual location of
individual sensors need not be known; hence the procedure is robust
to variations and inconsistencies in sensor placement.

Once the Maeda model is adapted to the speaker, the actual vocal
tract configuration corresponding to any set of EMA measurements
is obtained through a simple codebook search. We use a codebook
of Maeda-model parameters that describes a large sampling of pos-
sible vocal tract shapes. For each EMA measurement, we select the
vocal tract shape that is geometrically closest to the set of position
coordinates represented in it. In order to ensure that the estimate
of the vocal tract is based entirely on geometric principles, since the
EMA measurements are geometric in nature, we do not use the audio
recordings of the speech signal in the adaptation as has been used in
previous approaches [6, 7].

The “truthfulness” of the estimated vocal tract configurations
can now be evaluated by synthesizing speech from them using an
articulatory synthesis model and comparing synthesized speech to
the actual speech signal produced during the utterances. We specif-
ically use a modified version of the Sondhi and Schroeter model [8]
for this purpose. Experiments show that the synthesized speech is
quite similar to the actual speech, both perceptually and in terms of
the Mel-cepstral distortion (MCD) metric [2].

2. MAEDA GEOMETRIC MODEL

Maeda’s model is composed of a two-dimensional semi-polar grid
spanning the midsagittal plane of the vocal tract. The grid is com-
posed of the red lines in Figure 1.b. It is defined by a set of param-
eters: the origin, the width of the grid d, and the angle of the polar
region of the grid θ. The vocal tract itself is composed of an upper
profile and a lower one. The upper profile shown in blue consists of
the upper lip and incisor, upper palate, and pharynx and larynx outer
wall. The inner profile consists of the lower lip and incisor, tongue,
and pharynx and larynx inner wall and is shown in green.

Maeda uses seven parameters to generate the overall profile of
the vocal tract. The formulation in Equation 1 summarizes the pro-
cedure in pseudo MATLAB code. p1 is related to the jaw, p2, p3, and
p4 to the tongue, p5 and p6 to the lips, and p7 to the larynx. The bases
[Blarynx Buwall Btong Blips] and offsets [Olarynx Ouwall Olips]
are derived from the speaker-specific vocal tract profiles Maeda ex-
tracted from the 1000 images. These bases are multiplied by the pa-
rameters and then added to the offsets to generate different shapes.
A 29 dimensional vector is computed using the formulation in Equa-
tion 1 and projected onto the grid. The projected points fall on the
grid except for the lips and larynx. The vocal tract profiles are com-
posed of the lines joining these points.

Using the seven Maeda parameters with the current model will
create vocal tract shapes and generate sounds pertaining to the two
speakers from whom the bases and offsets are derived. In order to
make the model generate sounds pertaining to different speakers, it
has to be able to match their vocal tract shapes. Hence the need to
adapt Maeda’s model to the EMA data. Since the EMA data are
purely geometric, we need to ensure the Maeda’s model geometry is
accurate enough to be able to characterize the EMA measurements.

Note that the upper palate defined by UpperWall in Equation 1
and shown in blue in Figure 1.b is independent of the seven Maeda
parameters and is just a projection of the sum of Buwall basis and
the Ouwall offset into the geometric grid. Different parameters of the

grid lead to different projected shapes. Hence, we choose to adapt
the grid parameters and use the bases and offsets without adaptation.

Larynx = Blarynx ∗ [p1 p7]
′ + Olarynx

UpperWall = Proj(Buwall + Ouwall)

Tongue = Proj(Btong ∗ [p1 p2 p3 p4]
′ + Ouwall)

Lips = Blips ∗ [p1 p5 p6]
′ + Olips (1)

3. VOCAL TRACT MODEL ADAPTATION

3.1. Origin

We follow an approach similar to the one by McGowan [6] by su-
perimposing the EMA data into the Maeda semi-polar coordinate
space. We first need to match the coordinates of the two systems.
In MOCHA, the sensor placed on the upper incisor is used as the
origin [1]. In Maeda’s model, the upper incisor is at a fixed loca-
tion. Hence we translate Maeda’s model coordinates such that the
new origin coincides with the upper incisor.

3.2. Upper Wall

Adapting the upper palate ensures that the EMA measurements for
the tongue do not extend beyond it. First we estimate the upper wall
of the EMA data using the distributions of the sensors positions for
all the frames available for the speaker. We compute a smoothed
scatter plot of the positions of these sensors and label five discon-
nected regions: UL, LL, UI, LI, and mouth cavity. Refer to the cap-
tion in Figure 1.a for the notation used here. The biggest of these
regions is the mouth cavity composed of the region of the TT, TB,
and TD. We set the highest points in the mouth cavity as the EMA’s
estimated upper wall. We add to this estimated upper wall the mean
location of the velum sensor, VL.

The grid adaptation parameters are the width of the grid d
and the increment β to the angle between the polar grids θ. We
also estimate the inward/outward shift of the upper wall contour,
UPLTshift, referred to before as the palate height. This distance
is added to Ouwall in Equation 1. We choose a range over which we
vary each of the three parameters. For each combination we com-
pute the average geometric distance between all the points on the es-
timated EMA and the adapted Maeda upper walls. These distances
are shown in magenta in Figure 2. We choose the set of parameters
with the least average distance. Note that the value of d reflects vocal
tract stretching or compression with respect to the standard Maeda
model and the value of β reflects oral tract tilt.

3.3. Lips Translation

The EMA lips sensors are placed outside the mouth on the tip of
the lips [1]. This means that even when the lips are closed there is
still a vertical gap between the two sensors. After adapting the upper
wall, we estimate the minimum lips separation, Lipsep, which is the
hypothesized gap between the sensors when the lips are closed.

In Maeda’s model, the outermost lower lip point has two degrees
of freedom proportional to protrusion and separation. We map the
four EMA measurements (UL, LL, UI, and LI) to a point LLM in
the vicinity of Maeda’s outermost lower lip point. The protrusion is
defined as the horizontal distance between the UI and the UL or the
LL, whichever is smaller. The separation is defined as the vertical
distance between UL and LL minus the estimated Lipsep. For a
demonstration of this translation, refer to Figure 3.
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Fig. 2. Vocal tract adaptation showing the smoothed scatter plot of distri-
bution of the EMA data (orange and brown) and the superimposed Maeda
model (red grid lines). The green contour is for the steady state Maeda inner
wall shape and the blue contour is the adapted Maeda upper wall.

4. VOCAL TRACT MODEL MATCHING

In [5], an approach for mapping EMA data to Maeda parameters
has been described for the purpose of speech recognition. It uses a
heuristic mapping from EMA directly to Maeda parameters without
actually using the model. For example, p5, is simply the normalized
distance between the UI and LI.

The work in this paper describes a more principled approach that
searches for the best fit of the EMA data to the adapted Maeda’s vo-
cal tract contours. We use a uniform codebook of Maeda parameters
that represents different vocal tract shapes. For each frame of EMA
data, we search for the best geometric fit. The best fit of the tongue
and lip contours found for each frame of EMA data is then used in
articulatory speech synthesis.

4.1. Codebook Design

We create a uniform codebook composed of 164K codewords, where
p1 to p6 take values of {-3, -2.25, -1.5, -0.75, 0, 0.75, 1.5, 2.25, 3}.
p7 is set to zero since we do not have EMA data to estimate the lar-
ynx position. Some of the shapes in this codebook have constriction
in the larynx region. We remove the shapes with an area less that
2cm2 in the larynx region and are left with 16,850 codes.

4.2. Searching Vocal Tract Shapes

For each codeword, we compute the vocal tract profile and project it
onto the adapted semi-polar coordinate space. For the EMA data, we
first translate the UL, LL, UI, and LI to the LLM point as described
in Subsection 3.3 and compute the distance from this point to the
outermost lower lip point in the lower contour provided by the given
codeword. Thus, we compute the first distance pertaining to the lips.
Then for the TT, TB, and TD EMA points, we first find the grid
section number in which each of these points falls. We then compute
the distance of the EMA point to the segment of the lower vocal
tract contour that falls within this grid section. Thus we find the
three other distances. The overall geometric distance between the
given frame of EMA data and the vocal tract contour of the given
codeword is the mean of the above four distances. We choose the
codeword that yields the least distance.

5. SYNTHESIS MODEL

Once we find the best matching vocal tract shape, we convert it to
areas and lengths of the tubes forming the sections of the vocal tract.
We follow Maeda’s approach in computing the effective length and
area of each tube bounded within the upper and lower contours and
the grid lines. We then feed these areas and lengths to an articulatory
speech synthesizer. We use the Sondhi and Schroeter [8] model1

which uses the chain matrices approach to derive the overall transfer
function of the vocal tract.

We replace the source modeling of Sondhi and Schroeter that
uses the two-mass model of vocal cords developed by Ishizaka and
Flanagan [10] with a modified version. The new approximation de-
couples the vocal tract from the glottis. For the transfer function,
it uses Sondhi and Schroeter entire vocal tract transfer function, in-
cluding the nasal tract. For generating the source signal, we use
Rosenberg glottal pulse model [11] for voiced frames and random
noise for unvoiced frames. We extract the energy and pitch from the
original speech signal and use them in generating the source signal.
This approach improves the synthesis quality and is faster than our
previous approach [5].

5.1. Velum Location and Nasal Tract Opening Area

The Sondhi and Schroeter model also allows for nasal tract coupling
to the vocal tract by adjusting the velum opening area. The location
of the velum VLloc is set after adaptation to the grid section number
that precedes (counting from the glottis to the lips) the one which
contains the mean of VL. This is because the velum sensor is placed
on the soft palate [1]. The velum opening area is estimated from the
ordinate of the velum sensor VLy . For each utterance, the nasal tract
is opened proportional to how much the value of VLy is below its
mean over the utterance.

6. EXPERIMENTS

MOCHA contains EMA measurements and the corresponding
acoustic speech signal for 10 speakers reading 460 TIMIT sentences.
In this paper, we use the EMA data from speaker “msak0”. We use
all the EMA data available from this speaker to geometrically adapt
Maeda’s model. We use EMA data of 102 utterances to perform the
synthesis and compare to the corresponding real speech. For each
frame in the utterance we synthesize speech following the approach
described in Sections 4 and 5. Then we extract Mel-cepstra coeffi-
cients (MFCC) from the synthesized and the real speech respectively
and compute the MCD between them for each frame as in [5]. When
computing the average MCD, we include the MCD of the frames at
the onset, middle, and offset of phones. Phonetic segmentation has
been automatically extracted beforehand.

6.1. Adaptation Results

As described in Subsection 3.2, we vary d, β, and UPLTshift un-
til the projected Maeda upper wall best matches the estimated EMA
upper wall. Before adaptation the average distance between the two
contours is 0.65cm and the values of d, β, and UPLTshift are
{0.5cm, 0rad, 0cm}. This distance is the average of the distances
from each point on the EMA upper wall (red) to the Maeda wall
(blue). These distances are shown in Figure 2 in magenta. The aver-
age distance between the two contours after adaptation it is 0.23cm

1We modify the implementation of Maeda’s model and the Sondhi and Schroeter
model provided with the articulatory synthesis package developed by Riegelsberger[9].
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Fig. 3. Search results for two EMA frames for ’II‘ in “Seesaw = /S-II-S-
OO/” and ’@@‘ in “Thirty = /TH-@@-T-II/”. The EMA points used are
LLM , TT, TB, and TD shown in magenta. The resulting inner and upper
walls of the matched shapes are in green and blue respectively.

and the values of d, β, and UPLTshift are {0.55cm, -0.0033rad,
0.4cm}. This means that the length of the vocal tract is extended
by 10% and that the upper wall is shifted inwards by 0.4cm. These
numbers make sense since the Maeda model is based on images from
two female speakers and the MOCHA speaker “msak0” is a male
speaker. In addition a close match is attained between the two upper
wall contours. Note also that the mean of the velum sensor locations,
VL, almost falls on the adapted Maeda upper wall.

6.2. Search Results

Notice in Figure 2 that the minimum separation between the lips,
Lipsep, is estimated to be 2cm. This measure is used to first translate
the lips to the LLM point. Figure 3 shows results of the search for
the vocal tract shapes of the EMA data belonging to two frames in
the middle of phones {‘II’, ‘@@’} in the words “Seesaw = /S-II-
S-OO/” and “Thirty = /TH-@@-T-II/”. It is clear that the resulting
vocal tract shapes fit well the projected EMA data and reflect the
articulatory characteristics of the two phones. Phone ‘II’ is a high
front vowel and phone ‘@@’ is mid vowel.

6.3. Synthesis Results

We estimate the nasal tract opening area from the EMA measure-
ments of the velum sensor VL. As shown in Figure 2, VL falls in grid
section 16. We set VLloc to 15 and estimate the opening area as de-
scribed in Subsection 5.1. We compute the average MCD for frames
from vowels, fricatives, nasals, and all the phones together. The
baseline is the synthesis technique based on the EMA to Maeda pa-
rameters mapping described in [5] without adapting Maeda’s model.

For the adapted vocal tract experiment, we achieve 9.77%
relative reduction over baseline in MCD for vowels, 1.67% for
fricatives, 5.84% for nasals, and 5.19% for all the phones to-
gether. Table 1 presents the results. Figure 4 shows the spec-
trogram of the original speech and the speech synthesized from
the EMA measurements for an utterance in MOCHA using the
adapted model. The corresponding audio example is available at
http://www.cs.cmu.edu/%7Eziada/papers/interspeech09.

7. CONCLUSION AND FUTURE WORK

We presented a principled approach for mapping EMA data to vocal
tract shapes for the task of speech synthesis by a physical model of
the vocal tract. We relied solely on the EMA data to adapt Maeda’s
vocal tract model to a new speaker in the MOCHA database. We pre-
sented a way for searching for the best fitting vocal tract contours.

Table 1. MCD results: the absolute and relative differences are between the
baseline experiment without adaptation and the adapted vocal tract approach
developed in this paper.

MCD Results Vowels Fricatives Nasals Total Frames
Frame Count 3012 1296 846 8634

No Adaptation 8.40 7.85 8.75 8.52
Adapted Vocal Tract 7.58 7.72 8.24 8.08
Absolute Difference 0.82 0.13 0.51 0.44

Relative Difference (%) 9.77 1.67 5.84 5.19
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Fig. 4. Spectrogram of the original and synthesized speech for the utterance:
“Those thieves stole thirty jewels”.
Experiments showed improvement in synthesis over the baseline ap-
proach we adopted. In the future, we would like to use the Elec-
troPalatoGraph (EPG) data provided in MOCHA to improve model-
ing of fricatives and the constriction location.
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