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Abstract
This paper presents a new feature extraction algorithm called
Power-Normalized Cepstral Coefficients (PNCC) that is based
on auditory processing. Major new features of PNCC process-
ing include the use of a power-law nonlinearity that replaces the
traditional log nonlinearity used for MFCC coefficients, and a
novel algorithm that suppresses background excitation by esti-
mating SNR based on the ratio of the arithmetic to geometric
mean power, and subtracts the inferred background power. Ex-
perimental results demonstrate that the PNCC processing pro-
vides substantial improvements in recognition accuracy com-
pared to MFCC and PLP processing for various types of addi-
tive noise. The computational cost of PNCC is only slightly
greater than that of conventional MFCC processing.
Index Terms: Robust speech recognition, physiological mod-
eling, rate-level curve, power function, ratio of arithmetic mean
to geometric mean, power distribution normalization

1. Introduction
Even though many speech recognition systems have obtained
satisfactory performance in clean environments, recognition ac-
curacy significantly degrades if the test environment is differ-
ent from the training environment. These environmental differ-
ences might be due to additive noise, channel distortion, acous-
tical differences between different speakers, and so on. Many
algorithms have been developed to enhance the environmental
robustness of speech recognition systems. Figure 1 compares
the structure of conventional MFCC processing, PLP process-
ing [1], and the new approach described in this paper, which
will be called Power-Normalized Cepstral Coefficients (PNCC).
As can be seen from Fig. 1, the major innovations in this al-
gorithm are the use of a well-motivated power function that
replaces the log function, and the use of a novel approach to
the blind removal of background excitation based on medium-
duration power estimation. This normalization makes use of
the ratio of the arithmetic mean to the geometric mean, which
has proved to be a useful measure in determining the extent
to which speech is corrupted by noise [2]. In addition, PNCC
uses frequency weighting based on the gammatone filter shape
[3] rather than the triangular frequency weighting or the trape-
zoidal frequency weighting associated with the MFCC and PLP
computation, respectively. A pre-emphasis filter of the form
H(z) = 1 − 0.97z−1 is applied first. The STFT analysis is
performed using Hamming windows of duration 25.6 ms, with
10 ms between frames for a sampling frequency of 16 kHz, 40
gammatone channels. After passing through the gammatone
channel, the power is normalized using peak power (i.e. the

Figure 1: Comparison of the PNCC feature extraction discussed
in this paper with MFCC and PLP feature extraction.

95th percentile of short-time power).

2. Derivation of the
power function nonlinearity

Currently the most widely used feature extraction algorithms
are Mel Frequency Cepstral Coefficients (MFCC) and Per-
ceptual Linear Prediction (PLP). Both the MFCC and PLP
procedures include intrinsic nonlinearities: PLP passes the
amplitude-normalized short-time power of critical-band filters
through a cube-root nonlinearity to approximate the power law
of hearing [1, 4] while the MFCC procedure passes its filter
outputs through a logarithmic function. Even though the im-
portance of auditory nonlinearity has been confirmed in several
studies (e.g. [5, 6]), there has been relatively little analysis con-
cerning the effects of peripheral nonlinearities. In sophisticated
auditory models such as [7], the curve relating input level in
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Figure 2: Upper panel: Observed frequency-averaged mean
rate of auditory-nerve firings versus intensity (dotted curve)
and its piece-wise linear approximation (solid curve). Lower
panel: Piece-wise linear rate-level curve with no saturation
(solid curve) and best-fit power function approximation (dotted
curve).

decibels to the auditory-nerve firing rate is usually S-shaped.
For example, the dotted line in the upper panel of Fig. 2 shows
the relation between the intensity of a tone in dB and the rate of
the auditory-nerve response, averaged across frequency, based
on predictions by the model of [7] with the spontaneous rate
of firing assumed to be 50 spikes/second. This curve is an
abstract of results from many studies that observe that the fir-
ing rate is almost constant if the input SPL is smaller than a
threshold intensity (-10 dB in this case), that the rate increases
approximately linearly between 0 and 20 dB, and that it satu-
rates at higher input levels. Because the logarithmic nonlinear-
ity used in MFCC features does not exhibit threshold behav-
ior, for speech segments of low power the output of the loga-
rithm nonlinearity can produce large output changes even if the
changes in input are small. This characteristic, which can de-
grade speech recognition accuracy, becomes very obvious as the
input approaches zero, since even small differences in additive
noise can produce large differences in the output of the nonlin-
earity. With a power-function nonlinearity, the output is close
to zero if the input is very small, which is what is observed in
human auditory processing.

The solid curve in the upper panel of Fig. 2 is a piecewise-
linear approximation to the dotted curve in the same panel for
intensities below 0 dB. For greater input intensities this solid
curve is a linear approximation to the dynamic behavior of the
rate-intensity curve between 0 and 20 dB. Hence, this solid
curve exhibits threshold behavior but no saturation. We pre-
fer to model the higher intensities with a curve that continues
to increase linearly to avoid spectral distortion caused by the
saturation seen in the dotted curve in the upper panel of Fig. 2.

The solid curve of the lower panel of Fig. 2 reprises the
solid curve in the upper panel of the same figure, but trans-
lated downward so that for small intensities the output is zero
(rather than the physiologically-appropriate spontaneous rate of
50 spikes/s). The dotted power function in that panel is the
MMSE-based best-fit power function to the piecewise-linear

solid curve. The reason for choosing the power-law nonlin-
earity instead of the solid curve in Fig. 2 is that the dynamic
behavior of the output does not depend critically on the input
amplitude. This nonlinearity, which is what is used in PNCC
feature extraction, is described by the equation

y = xa0 (1)

with the best-fit value of the exponent observed to be a0 = 0.1.
We note that this exponent differs somewhat from the power-
law exponent of 0.33 used for PLP features, which is based on
Steven’s power law of hearing [4]. While our power-function
nonlinearity may appear to be only a crude approximation to
the physiological rate-intensity function, we will show in Sec.
4 that it provides substantial improvement in recognition accu-
racy compared to the traditional log nonlinearity used in MFCC
processing. An attractive feature of the power-law nonlinear-
ity is that the dynamic behavior of the output does not depend
critically on the input amplitude, as in the case of MFCC’s log
nonlinearity.

3. Medium-duration power bias removal
In this section, we discuss medium-duration power normaliza-
tion, which provides further decreases in WER. This operation
is motivated by the fact that perceptual systems focus on tar-
get signal changes and largely ignore constant background lev-
els. The algorithm presented in this section resembles conven-
tional spectral subtraction in some ways, but instead of estimat-
ing noise power from non-speech segments of an utterance, we
simply subtract a bias that is assumed to represent an unknown
level of background stimulation.

3.1. Medium-duration power bias removal based on
arithmetic-to-geometric mean ratios

Most speech recognition and speech coding systems use analy-
sis frames of duration between 20 ms and 30 ms. Nevertheless,
it is frequently observed that longer analysis windows provide
better performance for noise modeling and/or environmental
normalization, presumably because noise power changes more
slowly than speech power. In PNCC processing we estimate the
medium-duration power of speech signal Q(i, j) by computing
the running average of P (i, j) , the power observed in a single
analysis frame, according to the equation:

Q(i, j) =
1

2M + 1

j+MX
j′=j−M

P (i, j′) (2)

where i represents the channel index and j is the frame index.
As mentioned before, we use a 25.6-ms Hamming window, and
10 ms between successive frames.

We found that M = 3 is optimal for speech recognition
performance, which corresponds to seven consecutive windows
or 85.6 ms. We find it convenient to use the ratio of arithmetic
mean to geometric mean (the “AM-to-GM ratio”) to estimate
the degree of speech corruption. Because addition is easier to
handle than multiplication and exponentiation to the power of
1/J , we use the logarithm of the ratio of arithmetic and geo-
metric means in the i-th channel as the normalization statistic:

G(i) = log

"
J−1X
j=0

max(Q(i, j), ε)

#

− 1

J

J−1X
j=0

log [max (Q(i, j), ε)] (3)
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Figure 3: Comparison between G(i) coefficients for clean
speech and speech in 10-dB white noise, using M = 3 in (2).

The ε term in the above equation is imposed to avoid evalua-
tions of negative infinity. Fig. 3 illustrates typical values of the
statistic G(i) for clean speech and speech that is corrupted by
additive white noise at an SNR of 10 dB. As can be seen, val-
ues of G(i) tend to decrease with increased noise level. G(i)
was estimated from the 1,600 utterances of the DARPA resource
management training set, with M = 3 as in (2).

3.2. Removing the power bias

In this subsection, we explain how to estimate B(i) for each
channel of each test utterance using information from the clean
training database. Power bias removal consists of estimating
B(i), the unknown level of background excitation in each chan-
nel and then computing the system output that would be ob-
tained after it is removed.

If we could assume a value for B(i), the normalized power
Q̃(i, j|B(i)) is given by following equation:

Q̃(i, j|B(i)) = max(Q(i, j)−B(i), d0Q(i, j)) (4)

In the above equation d0 is a small constant (currently 10−3

that prevents Q̃(i, j) from becoming negative. Using this nor-
malized power Q̃(i, j|B(i)) , we can define the parameter
G̃(i|B(i)) from (3) and (4):

G̃(i|B(i)) = log

"
J−1X
j=0

max
“
Q̃(i, j|B(i)), cf (i)

”#

− 1

J

J−1X
j=0

log
h
max

“
Q̃(i, j|B(i)), cf (i)

”i
(5)

The floor coefficient cf (i) is defined by:

cf (i) = d1

0@ 1

J

J−1X
j′=0

Q(i, j′)

1A (6)

In our system, we use d1 of 10−3, causing d1 to represent −30
dB of the channel average power. In our experiments, we ob-
served that cf (i) plays a significant role in making the power
bias estimate reliable, so its use is highly recommended. We
noted previously that the G(i) statistic is smaller for corrupt
speech than it is for clean speech. From this observation, we
can define the estimated power biasB∗(i) as the smallest power
which makes the AM-to-GM ratio the same as that of clean
speech. This can be represented by the equation

B∗(i) = min

(
B(i)

˛̨̨̨
˛G̃(i|B(i)) ≥ Gcl(i)

)
(7)
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Figure 4: Speech recognition accuracy obtained in different
environments: (a) additive white gaussian noise, (b) noise
recorded on an urban street, and (c) background music from
the DARPA HUB4 database.

where Gcl(i) is the value of G(i) observed for clean speech,
as shown in Fig. 3 Hence we obtain B∗(i) by increasing B(i)
in steps from −50 dB relative to the average power in Chan-
nel i until G̃(i|B(i)) becomes greater than Gcl(i) as in Eq.
(7). Using this procedure for each channel, we can obtain
Q̃(i, j|B∗(i)). Thus, for each time-frequency bin represented
by (i, j), the power normalization gain is given by:

w(i, j) =
Q̃(i, j|B∗(i))

Q(i, j)
(8)

For smoothing purposes, we average across channels from the
i−N th channel up to the i+N th channel. Thus, the final power
P̃ (i, j) is given by the following equation,

P̃ (i, j) =

0@ 1

2N + 1

min(i+N,C)X
i′=max(i−N,1)

w(i′, j)

1AP (i, j) (9)

where C is total number of channels. In our algorithm, we use
N = 5 and a total number of 40 gammatone channels. This
normalized power P̃ (i, j) is applied to the power function non-
linearity as shown in the block diagram of Fig. 1.
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Figure 5: Speech recognition accuracy obtained in different en-
vironments: (a) additive white gaussian noise, (b) background
music, (c) silence prepended and appended to the boundaries of
clean speech, and (d) 10-dB of white Gaussian noise added to
the data used in panel (c).

4. Experimental results and conclusions
The PNCC system described in Secs. 2 and 3 was evaluated by
comparing the recognition accuracy obtained using the CMU
Sphinx 3.8 system with Sphinxbase 0.4.1 using PNCC with that
of conventional MFCC processing, and with PLP processing
as included in HTK 3.4. For training and testing, we used sub-
sets of 1600 utterances and 600 utterances respectively from the
DARPA Resource Management (RM1) database and trained us-
ing SphinxTrain 1.0. To evaluate the robustness of the feature
extraction approaches we digitally added three different types
of noise: white noise, street noise, and background music. The
background music was obtained from a musical segment of the
DARPA Hub 4 Broadcast News database, while the street noise
was recorded by us on a busy street. We prefer to characterize

improvement in recognition accuracy by the amount of lateral
threshold shift provided by the processing. For white noise,
PNCC provides an improvement of about 12 dB to 13 dB com-
pared to MFCC, as shown in Fig. 4. For the street noise and
the music noise, PNCC provides 8 dB and 3.5 dB shifts, re-
spectively. These improvements are greater than improvements
obtained with other current state of-the-art algorithms such as
Vector Taylor Series (VTS) [8], as shown in Fig. 5 We observe
that if silence is added to the beginning and ends of the utter-
ances, performance using some algorithms like mean-variance
normalization (MVN) suffers if a good voice activity detector
(VAD) is not included, as shown in Fig. 5. PNCC, on the
other hand, degrades only slightly under the same conditions
and without VADs.

Fig. 4 also demonstrates the amount of improvement pro-
vided by (1) the switch from the triangular MFCC filters to
Gammatone filters, (2) the switch from the logarithmic nonlin-
earity to the power law nonlinearity, and (3) the use of medium-
duration power bias removal. PNCC requires only slightly more
computation than MFCC and much less computation than VTS.
We also note that the use of the power nonlinearity and gam-
matone weighting with the DCT (dels in Fig. 4) still performs
significantly better than PLP.

Open Source MATLAB code for PNCC can be found at
http://www.cs.cmu.edu/˜robust/archive/algorithms/PNCC IS2009.

The code in this directory was used for obtaining the results
in this paper.
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