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Abstract
In this paper, we present a new two-microphone approach that
improves speech recognition accuracy when speech is masked
by other speech. The algorithm improves on previous systems
that have been successful in separating signals based on dif-
ferences in arrival time of signal components from two micro-
phones. The present algorithm differs from these efforts in that
the signal selection takes place in the frequency domain. We ob-
serve that additional smoothing of the phase estimates over time
and frequency is needed to support adequate speech recogni-
tion performance. We demonstrate that the algorithm described
in this paper provides better recognition accuracy than time-
domain-based signal separation algorithms, and at less than 10
percent of the computation cost.
Index Terms: Robust speech recognition, signal separation,
time delay analysis, phase difference analysis

1. Introduction
Speech recognition systems have significantly improved in the
past decades but noise robustness and computational complex-
ity remain critical issues. A number of algorithms have shown
improvements for stationary noise (e.g. [1, 2]). Nevertheless,
improvement in non-stationary noise remains a difficult issue
(e.g. [3]). In these environments, auditory processing [4] and
missing-feature-based approaches [5] are promising. An alter-
native approach is signal separation based on analysis of differ-
ences in arrival time (e.g. [6, 7, 8]). It is well documented that
the human binaural system bears remarkable ability in speech
separation (e.g. [8]). Many models have been developed that
describe various binaural phenomena (e.g. [9, 10]), typically
based on interaural time difference (ITD), interaural phase dif-
ference (IPD), interaural intensity difference (IID), or changes
of interaural correlation.

The Zero Crossing Amplitude Estimation (ZCAE) algo-
rithm was recently introduced by Park [7] which is similar in
some respects to work by Srinivasan et al. [6]. These algo-
rithms (and similar ones by other researchers) typically analyze
incoming speech in bandpass channels and attempt to identify
the subset of time-frequency components for which the ITD is
close to the nominal ITD of the desired sound source (which
is presumed to be known a priori). The signal to be recog-
nized is reconstructed from only the subset of “good” time-
frequency components. This selection of “good” components
is frequently treated in the computational auditory scene analy-
sis (CASA) literature as a multiplication of all components by a
binary mask that is nonzero for only the desired signal compo-
nents. Although ZCAE provides impressive performance even

at low SNRs, it is very computationally intensive, which makes
it unsuitable for hand-held devices.

The goals of this work are twofold. First, we would like
to obtain improvements in word error rate (WER) for speech
recognition systems that operate in real world environments that
include noise and reverberation. We also would like to develop
a computationally efficient algorithm than can run in real time
in embedded systems. In the present ZCAE algorithm much of
the computation is taken up in the bandpass filtering operations.
We found that computational cost could be significantly reduced
by estimating the ITD through examination of the phase differ-
ence between the two sensors in the frequency domain. We
describe in the sections below how the binary mask is obtained
using frequency information. We also discuss the duration and
shape of the analysis windows, which can contribute to further
improvements in WER.

The rest of the paper is organized as follows: Sec. 3 de-
scribes our algorithm at a general level. We propose our time-
frequency weighting scheme in Sec. 3. Experimental results are
discussed in Sec.4, and we summarize our work in Sec. 5.

2. Phase-difference-based binary
time-frequency mask estimation

Our work on signal separation is motivated by binaural speech
processing. Sound sources are localized and separated by the
human binaural system primarily through the use of ITD infor-
mation at low frequencies and IID information at higher fre-
quencies, with the crossover point between these two mecha-
nisms considered to be based on the physical distance between
the two ears and the need to avoid spatial aliasing (which would
occur when the ITD between two signals exceeds half a wave-
length). In our work we focus on the use of ITD cues and avoid
spatial aliasing by placing the two microphones closer together
than occurs anatomically. When multiple sound sources are pre-
sented, it is generally assumed that humans attend to the desired
signal by attending only to information at the ITD correspond-
ing to the desired sound source.

Our processing approach, which we refer to as Phase Dif-
ference Channel Weighting (PDCW), crudely emulates human
binaural processing, and is summarized in Fig. 1. Briefly, the
system first performs a short-time Fourier transform (STFT)
which decomposes the two input signals in time and in fre-
quency. ITD is estimated indirectly by comparing the phase
information from the two microphones at each frequency, and
the time-frequency mask identifying the subset of ITDs that
are “close” to the ITD of the target speaker is identified. A
set of channels is developed by weighting this subset of time-



Figure 1: The block diagram of the Phase Difference Channel Weighting (PDCW)) algorithm

frequency components using a series of Gammatone functions,
and the time domain signal is obtained by the overlap-add
method. As noted above, the principal novel feature in this pa-
per is the use of interaural phase information in the frequency
domain rather than ITD, IPD, or IID information in the time
domain to obtain the binary mask.

Consider the two signals that are input to the system which
we refer to as xL[n] and xR[n]. We assume that the location of
the desired target signal is known a priori and without loss of
generality we assume its ITD to be equal to zero. For mathemat-
ical convenience, we refer to the number of interfering sources
as L, with δ(l) being their respective ITDs. Note that both L
and δ(l) are unknown. With the above formulations, the signals
are the microphones are

xL[n] =
LX
l=0

xl[n] , xR[n] =

LX
l=0

xl[n− δ(l)] (1)

with x0[n] representing the target signal, xl(l 6= 0) representing
interfering signals, xL and xR, respectively, representing the
signals at the left and right microphones. The corresponding
short-time Fourier transforms can be represented as

X(k,m) =

∞X
n=−∞

x[n]w[m− n]e−j2πkn/N (2)

XL(k,m) =

LX
i=0

Xi(k,m) (3)

XR(k,m) =

LX
i=0

e−jwkdi(k,m)Xi(k,m) (4)

where w[n] is a finite-duration Hamming window, k indicates
one of N frequency bins, with positive frequency samples cor-
responding to wk = 2πk/N for 0 ≤ wk ≤ N/2 − 1. In our
work N equals 512 for 26.5-ms windows and 2048 for 75-ms
windows. Note that even though (1) indicates that signals at the
microphones are identical except for a time delay, it is more ap-
propriate that we consider the time delays associated with each
frequency component of the signal. Correspondingly, we re-
place the frequency-independent ITD parameter δ in (1) by the
frequency-dependent ITD parameter d(k,m) in (4). Next, we
assume that a specific time-frequency bin (k0,m0), is domi-
nated by a single sound source l. This leads to

XL(k0;m0) ≈ Xl∗(k0,m0) (5)

XR(k0;m0) ≈ e−jwk0d(k0,m0)Xl∗(k0,m0) (6)

where the source l∗ dominates the time-frequency bin (k0,m0).
This leads to a simple binary decision concerning whether the
time-frequency bin (k0,m0) belongs to the target speaker or
not. The frequency-dependent ITD d(k,m) for a particular
time-frequency bin (k0,m0) is

|d(k0,m0)| ≈ (7)

1

|wk0 |
min
r
|∠XR(k0,m0)− ∠XL(k0,m0)− 2πr|

for positive values of wn of positive value, as discussed above,
from which we derive the binary masking criterion

µ(k0,m0) =

(
1, if |d(k0,m0)| ≤ τ
η, otherwise

(8)

In other words, only time-frequency bins for which
|d(k0,m0)| < τ are presumed to belong to the target
speaker. We are presently using a value of 0.01 for the floor
constant η. The mask µ(k,m) in (8) is applied to X̄(k,m),
the averaged signal spectrogram from the two channels, and
speech is reconstructed from the X̃(k,m) where

X̄(k,m) =
1

2
{XL(k,m) +XR(k,m)} (9)

X̃(k,m) = µ(k,m) X̄(k,m) (10)

In Figure 2 we plot typical example of spectra from a sig-
nal that is corrupted by an interfering speaker with a signal-to-
interference ratio (SIR) of 5 dB. We discuss two extensions to
the basic PDCW algorithm in the next section.

3. Smoothed phase-difference-based
binary mask estimation

While the basic procedure described in Sec. 2 provides signals
that are audibly separated, the phase estimates are generally too
noisy to provide useful speech recognition accuracy. In this sec-
tion we discuss the implementation of two methods that smooth
the estimates over frequency and time.

3.1. Gammatone channel weighting

As noted above, the estimates produced by Eq. (8) are gener-
ally noisy and must be smoothed. To achieve smoothing along
frequency, we use a gammatone weighting that functions in a
similar fashion to that of the familiar triangular weighting in
MFCC features. Specifically, we obtain the gammatone chan-
nel weighting coefficients w(i,m) according to the equation

w(i,m) =

PN
2 −1

k=0 µ(k,m)
˛̨
X̄ (k;m)Hi (k)

˛̨
PN

2 −1

k=0

˛̨
X̄ (k;m)Hi (k)

˛̨ (11)

where µ(k,m) is the original binary mask that is obtained us-
ing (8). With this weghting we effectively map the ITD for each
of the 256 original frequencies to an ITD for what we refer to
as one of I = 40 channels. Each of these channels is associ-
ated with Hi, the frequency response of one of a set of gamma-
tone filters with center frequencies distributed according to the
Equivalent Rectangular Bandwidth (ERB) scale [11]. The final
spectrum weighting is obtained using the gammatone mask µg

µg(k,m) =

PI−1
i=0 w(i,m) |Hi (k)|PI−1

i=0 |Hi (k)|
(12)
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Figure 2: Sample spectrograms illustrating the effects of PDCW
processing. (a) original clean speech, (b) noise-corrupted
speech, (c) reconstructed (enhanced) speech (d) the time-
frequency mask obtained with (8) (e) gammatone channel
weighting obtained from the time-frequency mask in (11) (e)
final frequency weighting shown in (12) (f) enhanced speech
spectrogram using the entire PDCW algorithm

Examples of w(i,m) and µg(k,m) are shown shown for a typ-
ical spectrum in Fig. 2(e) and Fig. 2(f), respectively, with an
SIR of 5 dB as before. The reconstructed spectrum is given by:

X̃ (k,m) = max (µg(k,m), η) X̄ (k;m) (13)

where again we use η = 0.01 as in (8).

3.2. The effect of the window length

In conventional speech coding and speech recognition systems,
we generally use a length of approximately 20 to 30 ms for the
Hamming window w[n] in order to capture effectively the tem-
poral fluctuations of speech signals. Nevertheless, longer obser-
vation durations are usually better for estimating environmental
parameters. Using the procedures described below in Sec. 4,
we considered the effect of window length on recognition accu-
racy. These results obtained with PDCW described Subsection
3 and 3.1 are summarized in Fig. 3, which indicate that best
performance is achieved with window length of about 75 ms.
In the experiments described below we Hamming windows of
duration 75 ms with 37.5 ms between successive frames.

4. Experimental Results
In this section, we present experimental results for two different
environmental conditions. In the first condition, we simulate
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Figure 3: The dependence of word recognition accuracy
(100% − WER) on the window length, using an SIR of 10
dB and various reverberation times. The filled symbols at 0 ms
represent baseline results obtained with a single microphone.

different reverberant environments, where the target is masked
by an interfering speaker. We used the Room Impulse Response
(RIR) software [12] for simulating the effects of room reverber-
ation. We assumed a room of dimensions 5×4×3 m, a distance
between the microphone and the speaker of 2 m, with the mi-
crophone located at the center of the room. We assumed that
the target source is located along the perpendicular bisector of
the line between two microphones, and that the masker is 45
degrees to one side. The target and noise signals are digitally
added after simulating the reverberation effects. The two mi-
crophones are placed 4 cm apart from one another. We used
sphinx fe included in Sphinxbase 0.4.1 for speech
feature extraction, SphinxTrain 1.0 for speech recogni-
tion training, and Sphinx3.8 for decoding, all of which are
readily available in Open Source form. We used subsets of 1600
utterances and 600 utterances, respectively, from the DARPA
Resource Management (RM1) database for training and testing.

Fig. 4 compares word recognition accuracy for several of
the algorithms discussed in the paper. ZCAE refers to the time-
domain algorithm described in [7] with binary masking, as the
better-performing continuous-masking does not work in envi-
ronments with reverberation or more than one masking source.
PD refers to the algorithm described in Secs. 2 and 3 of this
paper with the 75-ms analysis window but without the gamma-
tone frequency weighting, and PDCW refers to the complete
algorithm including the gammatone channel weighting (CW)
described in Sec. 3.1 with the 75-ms analysis window. To see
the effects of the window length, we also present the PD results
with the conventional 25-ms analysis window as well. As can
be seen, the PDCW (and to a lesser extent the PD) algorithm
provides lower WER than ZCAE, and the superiority of PDCW
over ZCAE increases as the amount of reverberation increases.

In our second set of experiments, we still assume that
the distance between the two microphones is the same, but
we added noise recorded in real environments with real two-
microphone hardware in locations such as a public market, a
food court, a city street and a bus stop with background speech.
Fig. 4(d) illustrates these experimental results. Again we ob-
serve that PDCW (and to a lesser extent PD) provides much
better performance than ZCAE for all conditions.

We also profiled the run times of implementations in C
of the PDCW and ZCAE algorithms on two machines. The
PDCW algorithms ran in only 9.03% of the time required to
run the ZCAE algorithm on an 8-CPU Xeon E5450 3-GHz
system, and in only 9.68% of the time to run the ZCAE
algorithm on an embedded system with an ARM11 667-Mhz
processor using a vector floating point unit. The major reason
for the speedup is that in ZCAE the signal must be passed
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Figure 4: Speech recognition accuracy using different algo-
rithms (a) in the presence of an interfering speech source as
a function of SNR in the absence of reverberation, (b,c) in the
presence of reverberation and speech interference, as indicated,
and (d) in the presence of natural real-world noise.

through a bank of 40 filters while PDCW requires only
two FFTs and one IFFT for each feature frame. A MAT-
LAB version of PDCW with sample audio files is available at
http://www.cs.cmu.edu/˜robust/archive/algorithms/PDCW IS2009.
The code in this directory was used to obtain the results de-
scribed in this paper.

5. Conclusions
In this work, we present a speech separation algorithm, PDCW,
based on ITD that is inferred from phase information. The algo-
rithm uses gammatone weighting and longer analysis windows.
This algorithm is quite computationally efficient and shows sig-
nificant improvement in recognition accuracy under practical
environmental conditions of noise and reverberation.
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