
Towards Fusion of Feature Extraction and Acoustic Model Training: A Top
Down Process for Robust Speech Recognition

Yu-Hsiang Bosco Chiu, Bhiksha Raj and Richard M. Stern

Department of Electrical and Computer Engineering and Language Technologies Institute
Carnegie Mellon University, Pittsburgh PA 15213 USA

{ychiu,bhiksha,rms}@cs.cmu.edu

Abstract
This paper presents a strategy to learn physiologically-
motivated components in a feature computation module dis-
criminatively, directly from data, in a manner that is inspired
by the presence of efferent processes in the human auditory sys-
tem. In our model a set of logistic functions which represent the
rate-level nonlinearities found in most mammal hearing system
are put in as part of the feature extraction process. The param-
eters of these rate-level functions are estimated to maximize
the a posteriori probability of the correct class in the training
data. The estimated feature computation is observed to be ro-
bust against environmental noise. Experiments conducted with
the CMU Sphinx-III on the DARPA Resource Management task
show that the discriminatively estimated rate-nonlinearity re-
sults in better performance in the presence of background noise
than traditional procedures which separate the feature extrac-
tion and model training into two distinct parts without feed back
from the latter to the former.
Index Terms: automatic speech recognition, discriminative
training, auditory model, data analysis

1. Introduction
Automatic Speech Recognition (ASR) systems strive to achieve
high word recognition accuracy, while being robust to varia-
tions in the environmental or acoustic conditions that the speech
is recorded in. The first step in a speech recognition system is
to compute a set of feature vectors from the incoming speech.
Traditional features such as mel-frequency cepstral coefficients
(MFCC) [1] or perceptual linear prediction (PLP) [2] are known
to provide good speech recognition accuracy when the record-
ing conditions of the “test” data used to train the recognizer
and the speech being recognized are similar. However when the
training and test data are not matched in this manner, recogni-
tion accuracy degrades.

In contrast, humans are very good at recognizing speech
even under highly noisy conditions that they have not been ex-
posed to earlier. Some of this robustness to noise is attributable
to a top-down process that is part of human auditory perception.
Specifically, in the human auditory system, there are not only
nerve fibers which send information from the ear to the brain,
but also efferent fibers travel down the nerve and synapses in the
cochlea that control the motion of cochlear hair cells [3] so as
to refine the ”features” extracted from the basilar membrane.

Using a similar principle, several feature extraction strate-
gies have been proposed that integrate information from the
output of a recognizer to refine the feature generation process.
For example, Biem et al. proposed a discriminative feature ex-
traction procedure which refines the filter bank that is a major

component of most feature computation schemes, by using a
smoothed binary loss [4]. Kinnunen used the F-ratio to design
a filter bank for improving the speaker recognition performance
[5]. These methods have primarily addressed data-driven opti-
mization of the frequency analysis of the speech signal. Other
methods have employed the same principle to compute trans-
formations of features to optimize recognition, e.g. [6, 7].

In this paper, we investigate a technique for the design of
a physiologically-motivated processing stage in feature com-
putation, that is optimized for recognition accuracy. In previ-
ous work [8] we have determined that the rate-level nonlinear-
ity that models the non-linear relationship between input signal
level and the auditory neural spike rate is a major contributor to
robustness in speech recognition. In other physiological stud-
ies in cats it has been observed that the distribution of differ-
ent types of auditory neurons (neurons with high, medium or
low spontaneous rate of spike generation) that affect spike rate
depends on the noise in the environment that the animal was
raised in [9], indicating that the rate levels are at least partially a
function of the “training” data the animal was exposed to. Moti-
vated by both facts, we investigate a technique for automatically
learning the parameters of a non-linear compressive function
that mimics the rate-level nonlinearity to optimize recognition
performance in noise.

The rest of this paper is organized as follows. In Section
2, we describe the feature computation scheme we employ. In
Section 3 we describe the learning algorithm that learns the rel-
evant parameters of the feature computation. In Section 4 we
summarize the learning procedure. In Section 5 we describe
experiments conducted on the DARPA Resource Management
database. Finally, Section 6 concludes the paper.

2. Feature Computation with
Equal-loudness and Rate-level Nonlinearity

We parameterize speech signals using a feature computation
scheme proposed by Chiu and Stern [8, 10]. The overall scheme
is shown in Fig.1. Each analysis frame of the incoming speech
signal is analyzed by a fast Fourier transform. The resulting
spectrum is integrated into a smaller number of Mel-spectral
values using a Mel-frequency filter bank. Each Mel-spectral
value is compressed using a logarithmic compression. The log-
compressed Mel-spectral values are passed through a sigmoidal
nonlinearity that represents the rate-level nonlinearity. The sig-
moidal nonlinearity is given by

xi[t] =
α[i]

1 + exp(w1[i]·yi[t] + w0[i])
(1)
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where yi[t] is the ith log Mel-spectral value and xi[t] is the cor-
responding sigmoid-compressed value of frame t. In [10] the
parameters of the non-linearity, α[i] = 0.05; w0[i] = 0.613;
w1[i] = −0.521 ∀i were obtained by fitting it to physiological
measurements followed by further hand refinement, in order to
mimic the effect of measured non-linear neural response. Note
that these values are the same for all Mel-frequency compo-
nents, i.e. they are frequency independent.

The compressed values are then projected down to a 13-
dimensional cepstrum by a Discrete Cosine Transform (DCT)
and used for further recognition.

An additional aspect of the feature computation that is not
illustrated in Figure 1 is an equal-loudness weighting that is ap-
plied to every spectral component prior to the logarithmic com-
pression. This is a frequency-dependent gain term, shown in
Figure 2, that is derived from the equal-loudness curve [11]
which characterizes loudness response of the auditory system.
In reality, loudness response is a function of both frequency
and the perceived loudness of the signal; however here we only
use the mean response and assume it is only dependent on fre-
quency.
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Figure 1: Feature computation scheme.
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Figure 2: Equal loudness weighting.

The sigmoidal non-linearity serves two purposes. The pri-
mary purpose is to mimic rate-level nonlinearity in human au-
ditory response. The secondary purpose relates to the equal-
loudness weighting. In the absence of the sigmoidal non-
linearity, equal loudness weighting emerges as an additive con-
stant after the logarithmic compression and would get elimi-
nated by the cepstral mean subtraction (CMS) that is routinely
used in speech recognition. The sigmoidal non-linearity serves
to combine the gain into the features in a non-linear manner
such that it cannot be eliminated by CMS.

3. Learning the Non-linearity
We would like to optimize the parameters of the non-linearity
to optimize recognition accuracy. However, the statistical mod-

els used for automatic speech recognition are highly complex,
including hidden Markov models for the various phonemes and
a language model, and it is difficult to obtain a simple update
mechanism that can relate recognition accuracy to the param-
eters of the sigmoidal non-linearity. Instead, we use a simple
Bayesian classifier for sound classes in the language as a sim-
ple substitute for the recognizer itself. Each sound class is mod-
eled by a Gaussian distribution, computed from the training data
for that sound class. We use a maximum-mutual information
(MMI) criterion to estimate the parameters of the nonlinearity
such that the posterior probabilities of the sound classes on the
training data are maximized. The actual optimization is per-
formed using a gradient descent algorithm. This is illustrated
by Figure 3.
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Figure 3: The integrated system to refine the features extracted.

The procedure for optimizing the non-linearity is as fol-
lows. Let µC be mean vector and σC be the covariance of
the feature vectors for any sound class C. The likelihood of any
vector s, as computed by the distribution for that sound class is
assumed to be given by a Gaussian density N(s|µC , σC).

The posterior probability of any sound class C, given a spe-
cific observation s is given by

P (C|s) =
P (s|C)P (C)

C′ P (s|C′)P (C′)
=

P (s|C)

C′ P (s|C′)

=
N(s|µC , σC)

C′ N(s|µC′ , σC′)
(2)

with the assumption that the prior probabilities of each class are
equal.

We assume that we have a collection of training data, and
that for each analysis frame of this data we know the identity
of the correct sound class. We initialize the parameters of the
feature computation with the values from [10]. Each recording
from the training data is parameterized using the initial values.
CMS is performed on every training recording, in order to stay
consistent with the processing that is performed in a complete
speech recognition system.

Let su,t be the feature vector obtained for the tth analysis
frame of the utterance u. Let Cu,t be the sound class that the
corresponding segment of speech belongs to.

The overall accumulated posterior probability of the entire
training data is given by

P =
u,t

N(su,t|µCu,t , σCu,t)

C N(su,t|µC , σC)
(3)
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The parameters of the distributions of each sound class, and
those of the sigmoidal non-linearity in the feature computation
are now iteratively optimized to maximize log(P ).

3.1. Estimating Sound Class Distribution Parameters

The model parameters µC and σC for each sound class is
obtained using the same objective criterion employed by the
speech recognizer. For maximum-likelihood training, this is
given by:

µC =
1

u t I(su,t ∈ C)
u t

I(su,t ∈ C)su,t,

σC =
1

u t I(su,t ∈ C)
u t

I(su,t ∈ C)

· (su,t − µC) (su,t − µC)T (4)

where I(s ∈ C) is an indicator function that takes a value of 1
if s belongs to sound class C and 0 otherwise.

4. Estimating Sigmoidal Parameters
The parameters for the logistic function F= {α, w0, w1} are
estimated to maximize log(P ) using a gradient descent ap-
proach. Taking the derivative of the objective function with re-
spect to F the nonlinear parameters are updated as (note that the
step sizes are adjusted s.t. the converge rate for each individual
set of parameters are roughly the same):

αnew = αold + 0.00005
∂logP
∂α

,

wnew
0 = wold

0 + 0.05
∂logP
∂w0

,

wnew
1 = wold

1 + 0.01
∂logP
∂w1

(5)

After each step of gradient descent as in previous equations on
the noisy training set, the model parameters are updated by us-
ing Eq.(4) on the clean training set only. Finally, after training
is done (the objective function has converged), only the non-
linear parameters F={α, w0, w1} are retained for the feature
extraction process and the model parameters are retrained using
the whole speech recognition system on the clean training set.

The entire learning algorithm can be shown as in algorithm
1. Here yu,t represents the log Mel-spectral vector correspond-
ing to the tth analysis window of the uth utterance, su,t the
feature vector computed from it, and Cu,t the corresponding
sound class.

Input: F,{(yu,t, Cu,t), u = 1..U, t = 1..TU}
Output: F
while not converged do

Compute feature vector {s1,1, ..., sU,TU } using1
Eq.(1) and DCT with CMS
Estimate {µC , σC} ∀C using Eq.(4) on clean2
training set
Compute log(P ) using Eq.(3) on both clean and3
noisy training set
Fnew ← Fold + ∂logP

∂F using Eq.(5) on both clean4
and noisy training set

end
Algorithm 1: Algorithm for learning the parameters of the
sigmoidal nonlinearity.

Note that the learned parameters F are different for each
Mel-spectral channel.

5. Experimental Results

Experiments were run on the DARPA Resource Management
database to evaluate the proposed method. The Sphinx-III
continuous-density HMM-based system was used in all experi-
ments. HMMs with 1000 tied states, each modeled by a mixture
of 8 Gaussians were trained for recognition experiments. The
feature extraction employed a 40-filter Mel filter bank covering
the frequency range 130Hz - 6800Hz.

In order to train the rate-level nonlinearity, the pink noise
from NOISEX-92 was artificially added in to the original clean
training set at 10dB SNR to create the noisy training set.
The class labels were the 1000 tied states generated by force
aligning the clean training set using previously trained models.
The noisy testing sets were created by artificially adding bab-
ble noise from NOISEX92 and market, theater and restaurant
noises from real environment recordings according to the cor-
responding SNR to the original clean testing set. The training
terminates when the improvement of the current log posterior
probability of the entire training set not exceeds 0.0001 of log
posterior probability in previous iteration.

Figure 4 shows the rate-level nonlinearities learned. Fig.
4(a) is a 3-D plot showing the non-linearities for all 40 Mel-
frequency channels. Figures 4(b) shows a few slides of this plot.
Figures 4(c)-(e) show the individual parameters of the rate-level
nonlinearities as a function of frequency. We note that the esti-
mated optimal rate-level functions vary greatly across frequen-
cies in all aspects, including gain, slope and attack. While we
have not compared these to physiological measurements, we do
note that these responses can be roughly clustered into low, mid
and high-frequency responses.

Once the parameters of the feature computation module
were learned, the feature computation module was employed
to derive features from a clean version of the RM training set,
from which HMM model parameters were retrained.

Recognition experiments were run on speech corrupted to
various SNR levels by a variety of noises. The performance
metric shown is recognition accuracy, which is computed as
100% minus the word error rate, where the latter includes inser-
tion deletion and substitution errors. Figure 5 shows the recog-
nition results obtained. Note that none of the noises used in
these experiments were used to train the rate-level non-linearity.
The plots of Figure 5 show three sets of recognition results. As
a baseline, the recognition performance obtained using conven-
tional Mel-frequency cepstral coefficients is shown. As a sec-
ond comparator, the performance obtained with the implemen-
tation of [10], which also employed equal-loudness weighting
and a rate-level nonlinearity is also shown. Here, however, both
the equal-loudness weighting was set to be the approximated
loudness weighting curve [11], while the rate-level nonlinearity
was also set to model physiological data most closely. Finally
the results obtained using the learned values for the rate-level
nonlinearity are shown.

We note that even the equal-loudness weighting and rate-
level non-linearity obtained from fit to physiological measure-
ments greatly improve noise robustness. The automatically
learned parameters, however, result in the best performance.

3



0
2000

4000
6000

−50

0

50
0

0.02

0.04

0.06

frequency(Hz)

(a)

input level(dB)

re
sp

on
se

−50 0 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
(b)

input level(dB)

re
sp

on
se

CF=509Hz
CF=2004Hz
CF=6408Hz

0 1000 2000 3000 4000 5000 6000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

frequency(Hz)

(c)
learned w0

0 1000 2000 3000 4000 5000 6000
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

frequency(Hz)

(d)
learned slope (w1)

0 1000 2000 3000 4000 5000 6000
0.03

0.04

0.05

0.06

0.07

0.08

frequency(Hz)

(e)
learned response (α)

Figure 4: (a)The trained RL nonlinear over channels. (b)Examples of trained RL nonlinear at low, mid and high frequency region: CF
= 509Hz, CF = 2004Hz, CF = 6408Hz. (c)The trained w0’s over frequency channels. (d)The trained w1’s over frequency channels.
(e)The trained α’s over frequency channels.
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Figure 5: Comparison of recognition accuracy for the same sys-
tems as in Fig.1 in the presence of four types of background
noise using the RM corpus. WER under clean: MFCC: 9.45%,
RL nonlinear: 11.88%, RL nonlinear from learning: 10.88%

6. Conclusions

We have presented an algorithm for learning physiologically-
motivated components of feature extraction for optimal speech
recognition. The results obtained show that the learned feature
extraction results in consistently improved speech recognition
over conventional feature computation.

The current experiments are only to be considered a teaser,
however. It remains unclear how the results will change with
increase in data or learning model complexity. On the other
hand, it also opens up the possibility that other aspects of human
audition might be discovered similarly in a data-driven manner.
These are topics of further investigation.
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