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ABSTRACT
Two types of algorithms are introduced that recover missing
time-frequency regions of log-spectral representations of speech.
These compensation algorithms modify the incoming feature
vector without any changes to the speech recognition system, in
contrast to previously-described approaches. The first approach
clusters the log-spectral vectors representing clean speech. Miss-
ing data are recovered by estimating the spectral cluster in each
analysis frame on the basis of the feature values that are present.
The second approach uses MAP procedures to estimate the val-
ues of missing data elements based on their correlation with the
features that are present. Greatest recognition accuracy was
obtained using the correlation-based approach, presumably
because of its ability to exploit the temporal as well as spectral
structure of speech. The recognition accuracy provided by these
algorithms approaches but does not exceed that obtained by tra-
ditional marginalization. Nevertheless, it is believed that these
algorithms provide greater computational efficiency and enable
greater flexibility in recognition system structure. 

1. INTRODUCTION

Automatic speech recognition systems perform poorly when the
speech to be recognized is corrupted by noise (e.g. [1]), espe-
cially when the recognition system itself has been trained on
clean speech. Several methods have been proposed in the litera-
ture to reduce the damaging effects of noise on the performance
of recognition systems (e.g. [1,4]) However, almost all of them
make the assumption that the noise that is corrupting the speech
in stationary. This is not necessarily a realistic expectation.

In addition, at any given instant of time, the signal energy in dif-
ferent frequency bands of a speech signal is different, so the
degree of corruption, as measured by the signal-to-noise ratio
(SNR), is different in each frequency band. Thus, the corrupted
speech signal exhibits local regions (or “islands”) in the time-fre-
quency plane, of relatively high SNR, as well as other islands
with low SNR. Most standard methods of noise compensation do
not take explicit advantage of this fact.

An alternative approach would be to make explicit use of the
regions of high SNR in the corrupted speech to compensate for
the islands of low SNR. The most comprehensive work using this
approach has been reported by researchers at the University of
Sheffield (e.g. [2]) and has also been described in [3]. 

An important disadvantage of the methods described in [2,3] is
that they depend on the statistical representations of speech that

are used by the speech recognizers as the a priori distributions of
clean speech vectors. Mean-imputation based methods [2,3] 
MAP estimates of corrupted frequency bands, utilizing the sta
tics of clean speech. Marginalization-based methods [2,3], on
other hand, attempt to ignore the contribution of noise-corrup
bands completely. Both of these methods are dependent on 
lytic statistical characterizations of the effects of the degradat
on the internal statistical model used by the recognizer to rep
sent speech. 

The algorithms presented in this paper attempt to compensate
the effects of time-varying and transient noise by modification
the incoming features, rather than by modification of the spe
recognizer to re-estimate or selectively ignore missing log-sp
tral bands. This has the combined advantages of permitting 
ferent kinds of recognizers to be used, as well as permitting 
use of information or modeling structures that are not explici
handled by the recognizer. 

In this paper we present a series of methods that perform c
pensation by modifying a frame-based mel-frequency log-sp
tral representation of the incoming speech signal. In Section 2
describe a series of algorithms which cluster the spectral profi
of clean speech and then attempt to estimate the cluster to w
each frame of incoming noise-corrupted speech belongs, ba
on islands of reliability in the representation. In Section 3 w
describe a set of simpler algorithms which estimate miss
regions on the log-spectral representation based on observa
priori  covariances of features in the representation across 
quency and time. In Section 4 we present our major results 
observations, and we conclude the paper in Section 5 wit
series of suggestions of future work.

2. CLUSTER-BASED INFERENCE

In this section we discuss algorithms which cluster the log-sp
tral vectors of clean speech into a codebook using conventio
EM methods. To compensate noisy speech, the algorit
attempts to identify the cluster to which each log-spectral vec
of noise-corrupted speech belongs. The covariance and mea
the vectors belonging to that cluster are then used to obtain M
estimates of the corrupted portion of the vector, conditioned 
the uncorrupted portions. 

The frame-based log-spectral representation of noise-degra
speech can be thought of as a spectrogram-like representa
which some regions more corrupted than the others. In this w
we characterize the less noise-corrupted regions of the repre
tation as “present” and the more corrupted regions as eit
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“dropped” or “missing”. The fraction of elements of the
sequence of log-spectral vectors that are missing is inversely
related to the SNR. The goal of this work to reconstruct the miss-
ing regions of the featural display from the information that is
present, using whatever information is available.

For our cluster-based schemes, the a priori information about the
speech signal is obtained by grouping all the log-spectral vectors
from an uncorrupted training database into a number of clusters
and finding the various statistical relations between the vectors
belonging to each cluster. Clustering is accomplished using con-
ventional EM, assuming that vectors in each of the clusters are
distributed according to a Gaussian distribution. The statistical
properties of each of the clusters are the mean, the covariance,
and the prior probability of the cluster.

In the following subsections we describe several methods of
finding the cluster membership of “damaged” feature vectors
with partially missing data.

2.1. Cluster Identification Based on 
Marginalization

We used marginalization methods to identify the cluster that is
most likely in the statistical sense to have generated the uncor-
rupted features of a damaged vector, while ignoring the contribu-
tion of the missing components. This method closely resembles
the marginalization procedure described by the Sheffield group
in [2], except that our work modifies only the incoming data
stream, without modifying the statistical representation of speech
in a recognition system. 

Cluster identification based on marginalization becomes increas-
ingly erroneous as the degree of damage increases (as measured
by the fraction of the components of the vector that are missing)
because the number of elements that are available to estimate the
cluster identity diminishes. In the extreme case where an entire
vector is damaged, there is no way of guessing its cluster identity
at all. In such cases we arbitrarily select for the totally-corrupted
frames the estimated cluster for the closest vector that is not fully
damaged.

2.2. Interpolation along the Frequency Axis

We can generally avoid the problem of having to ignore missing
elements in a vector entirely by finding the closest undamaged
elements on either side of missing elements in a vector and esti-
mating the missing elements by linear interpolation between the
undamaged neighbors that surround them. Since our vectors are
log-spectral vectors, we refer to this procedure as interpolation
along the frequency axis.

In practice we find that obtaining preliminary estimates for miss-
ing elements by interpolating along the frequency axis does not
increase the probability of in determining the correct cluster
identity. As in the case of marginalization-based cluster identifi-
cation, it is not possible to estimate the cluster identity if the
entire vector is damaged since there are no neighbors available
for interpolation.

2.3. Interpolation along the Time Axis

In a fashion similar to frequency interpolation, a preliminary esti-
mate for missing elements in a vector can be made by interpolat-
ing between the closest undamaged elements of the same
frequency from adjacent or nearby time frames, in both direc-

tions. We refer to this procedure as interpolation across the time
axis. This procedure has the advantage that an estimate for
elements of a vector is possible even when entire log-spec
vectors are damaged.

Recognition accuracy can be further improved by iterating t
process of estimating missing and/or damaged data via interp
tion. Specifically, the interpolation along the time axis, clust
identification, and MAP estimation of missing elements 
repeated twice. Since there are no more missing elements du
the second pass (because all elements that were origin
labelled are now missing), damaged components of the ve
are estimated by simply averaging the corresponding freque
components of the vectors immediately preceding and followi
the vector in question. Further iterations are possible as well. 

2.4. Experimental Results

We evaluated the methods described above and others using
DARPA Resource Management (RM1) database. The log-sp
tral representation was developed from the outputs of twe
standard mel-scaled filters. Clusters and their statistics w
obtained from the log-spectral representations of the training
of utterances. For purposes of evaluation we randomly drop
elements of the log-spectral vectors of the test set, leav
untouched the remaining elements. The fraction of eleme
dropped is referred to as the “drop rate”. In all experiments 
locations of dropped elements were known to the system.

The upper panel of Figure 1 shows the mean-square differe
(MSE) between the correct cluster location and the estima
cluster location according to the various methods described. 
note that the use of frequency interpolation does not decrease
MSE much beyond the MSE obtained with marginalizatio
Interpolating along time does reduce the MSE substantially, a
iterated interpolation along time provides the lowest MSE.

The lower panel of Figure 1 describes the results of speech 
ognition experiments using the same compensation techniq
The SPHINX-3 speech recognition system was used, with o
Gaussian per state HMMs trained using the 2880 utterances f

Figure 1.  Dependence of mean squared error in cluster identi
cation (upper panel) and recognition accuracy (lower panel) a
function of drop rate.

0.2 0.4 0.6 0.8 1.0
M

ea
n

 s
q

u
ar

ed
 E

rr
o

r
20
40
60
80

100
120

0
0.0

Marginalization
Frequency Interpolation
Time Interpolation
Iterated Time Interpolation

Fraction Dropped

0.2 0.4 0.6 0.8 1.0

W
o

rd
 A

cc
u

ra
cy

20

40

60

80

0
0.0

Known Cluster Identity
Iterated Time Interpolation
Time Interpolation
Frequency Interpolation
Marginalization

Fraction Dropped



             

sts

rre-
ctor
the

di-

u-

s

tor
 we
ost
cy.

  

fer-
the
 For
 for
ola-
cal
the

    

g-
o-
n
n-

es
.

tion
pa-
on
han
ite
ar-

o-
the speaker-independent training set of RM1. The test set con-
sisted of the 1600 RM1 evaluation utterances. Word accuracies
obtained when no compensation was performed degraded very
quickly to 0 by the time only 10% of the elements were cor-
rupted, and are therefore not shown. As can be seen in the lower
panel of Figure 1, recognition accuracy obtained with cluster-
based inference follows the patterns of MSE describe above.
Specifically, frequency interpolation provides only slight
improvement beyond direct marginalization. Interpolation across
time provides substantially greater accuracy, and iterated tempo-
ral interpolation provides the best accuracy of all. One possible
reason for the limited success of frequency interpolation is that
this interpolation does not add much new information that is not
already represented by the shapes of the spectral clusters. Tempo-
ral interpolation, on the other hand, exploits temporal continuity
constraints, adding information that is complementary to the
spectral clusters. 

The upper dotted curve describes the recognition accuracy
obtained when the correct cluster identity is used by the system
for recognition; this curve represents the theoretical upper limit
of accuracy to be expected from cluster-based inference. Com-
parison of this curve with the results of iterated temporal interpo-
lation indicates that substantially better recognition accuracy
could be obtained at the highest drop rates if we were able to
improve the mechanism for identifying the cluster membership
of the damaged vectors.

The fact that interpolation along time as a preliminary step to
cluster identification results in an improvement in recognition
accuracy leads us to believe that temporal correlations between
vectors are a feature that can be exploited for reconstructing the
damaged portions of the vector. This possibility is explored by
the algorithm defined in the next section.

3. CORRELATION-BASED
INFERENCE

The algorithms presented in this section differ from those
described in Section 2 in that we form inferences on the basis of
a priori statistical correlations of the elements of the log-spectral
vectors, without regard to spectral clusters or other structural
attributes. In these algorithms we assume that the sequence of
feature vectors are samples of a stationary Gaussian random pro-
cess, characterized by their means and covariances. These statis-
tics can be used in conjunction with the elements that are present
in the sequence of log-spectral vectors to estimate the missing
elements in the sequence. We refer to this method as estimation
based on temporal correlation, since the method explicitly
makes use of temporal correlations of the elements in the vector
sequence, along with spectral correlations.

3.1. Estimation based on Temporal 
Correlation

In this method we estimate a particular data element on the basis
of a priori correlations between it and the most highly correlated
elements that remain present in a damaged speech vector
sequence. The a priori mean and the covariances from which the
correlations are derived from an uncorrupted training database.
To compensate corrupted speech, a vector  is formed that con-

sists of all the elements that are missing in any log-spectral vec-

tor . In addition, a second vector, , is formed that consi

of all the elements that are present that have a normalized co
lation of at least 0.5 with at least one of the elements of the ve

. We refer to the elements of  as elements that are in 

“neighborhood” of a given missing element.

The value of  is now obtained as an MAP estimate con

tioned on the vector , as follows:

(1)

where  is the estimate for ,  is the mean of the distrib

tion of ,  is the covariance of  and , and  i

the autocovariance matrix of the elements in the vector .

In principle, all the elements in the neighborhood of the vec
being considered could be used in the estimation. However,
observed in practice that the use of just the ten to twelve m
highly correlated elements was sufficient to obtain best accura

3.2. Experimental Results

The recognition accuracy obtained using correlation-based in
ence is plotted in Figure 2 as a function of drop rate, using 
same experimental setup as was described in Section 2.4.
comparison we also include in Figure 2 corresponding results
our best cluster-based compensation scheme, iterated interp
tion along the time axis, as well as results obtained using lo
implementations of two of the best methods described by 
Sheffield group, mean imputation, and marginalization. As noted
above, the two Sheffield algorithms modify the speech reco
nizer in addition to the incoming feature vector, while out alg
rithms modify the incoming features only. Specifically, mea
imputation uses the state distributions of the HMMs to reco
struct missing elements, while marginalization simply ignor
the contributions of missing regions to the recognition process

We note that our best cluster-based method, iterated interpola
along the time axis, provides recognition accuracy that is com
rable to Sheffield’s mean-imputation method. While estimati
based on temporal covariance works considerably better t
iterated interpolation along the time axis, it does not qu
achieve the recognition accuracy obtained using Sheffield’s m
ginalization algorithm. 
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Figure 2.  Comparison of recognition accuracy using correla-
tion-based inference with our best cluster-based inference alg
rithm, along with two algorithms from the University of 
Sheffield [2]. (See text.)
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3.3. Feature Selection and Computation 

While the data shown in Figure 2 show that traditional marginal-
ization produces the greatest recognition accuracy, the methods
introduced in Sections 2 and 3 can provide significant computa-
tional advantages. Most speech recognition systems use cepstral
rather than log-spectral features. For example, Figure 3 describes
the recognition accuracy obtained using a feature set consisting
of traditional cepstra, delta cepstra and double delta cepstra.
Compensation was performed in the log-spectral domain, with
our most successful cluster-based and correlation-based algo-
rithms, iterated temporal interpolation and temporal correlation.
We note that absolute recognition accuracy is substantially better
than was obtained using log-spectral features, and that the com-
pensation algorithms provide improvements in accuracy that are
comparable to the results described in Sections 2 and 3. 

Nevertheless, compensation for missing features is accomplished
in the log-spectral rather than the cepstral domain. If a recogni-
tion system uses a statistical representation of cepstral feature,
the parameters of the state distributions for the speech recogni-
tion system must be transformed back to the log-spectral domain
before either mean imputation or marginalization can be per-
formed. If we assume that differenced cepstra and double-differ-
enced cepstra are also included in the feature set, we estimate
that traditional marginalization would require in each analysis

frame an average of 10 inversions with about  multiplica-
tions to obtain these parameters, where N is the size of the log-
spectral vector. (This estimate also assumes no more than 10
states, each with a 1 Gaussian per state distribution are being
estimated at each instant.) Mean imputation would require an
additional matrix inversion for the MAP estimation, for each
Gaussian being considered.

The cluster-based methods (Section 2) require the inversion of
only one matrix of order no greater than x  need-

ing only  multiplications. The temporal-correlation
method (Section 3) requires the inversion of one matrix of order

no greater than x , or no more than  multiplica-
tions, assuming that 3 neighbors are used in the estimation per
missing element, on average.

Another advantage of the procedures described in this paper lies
in the actual estimation of the difference parameters. Difference
cepstra are a linearly transformed version of differenced log
spectra. Hence, the loss of either of the two log-spectral vectors
that underlie a particular differenced log spectral frame would

cause the corresponding differenced cepstral coefficient to
considered missing. As a result, the fraction of differenced l
cepstral elements that are missing can, in the worst case, be t
as high as the fraction of elements in the log spectra. By ext
sion, the fraction of missing elements for double differenced l
spectra can be four times as high as that for log spectra. Th
problems are not encountered using the methods described in
paper, since the log-spectral sequence is reconstructed prio
using it for differencing purposes.

4. SUMMARY AND CONCLUSIONS

In this paper we describe a series of new ways to recover mis
feature information from log-spectral representations of spee
These compensation algorithms modify the incoming featu
vector without any changes to the speech recognition system
contrast to previously-described approaches based on miss
feature reconstruction (e.g. [2, 3]) or multi-channel recognition
(e.g. [4, 5]). We describe two types of algorithms. The fir
approach, cluster-based inference, clusters the log-spectral 
tors representing clean speech, and recovers missing data by
mating the spectral cluster in each analysis frame on the bas
the features that are present. The second approach, correla
based inference, uses MAP procedures to estimate the value
missing data elements based on their correlation with the feat
that are present. Greatest recognition accuracy was obta
using the correlation-based inference approach, because,
believe, of its ability to exploit the temporal as well as spect
structure of speech. The recognition accuracy provided by 
algorithms approaches but does not exceed that obtained by
ditional mean imputation. Nevertheless, we believe that our al
rithms provide greater computational efficiency and enab
greater flexibility in recognition architecture. 
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