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ABSTRACT

This paper examines methods by which speech recognition systems
can be made more environmentally robust by analyzing the perfor-
mance of Seneff’s model of auditory periphery [7]. The purpose of
the paper is threefold. First, we document the extent to which the
Seneff model reduces the degradation in speech recognition accu-
racy caused by additive noise and/or linear filtering. Second, we
examine the extent to which individual components of the nonlinear
neural transduction (NT) stage of the Seneff model contribute to
recognition accuracy by evaluating the recognition accuracy with
individual components of the model removed from the processing.
Third, we determine the extent to which the robustness provided by
the Seneff model is complementary to and independent of the
improvement in recognition accuracy already provided by existing
successful acoustical pre-processing algorithms such as codeword-
dependent cepstral normalization (CDCN) [1]. Experimental tech-
niques are proposed in the course of investigating the above issues.
The results of speech recognition experiments using CMU’s
SPHINX [4] system under real and simulated degradation are
reported.

1.  INTRODUCTION

As speech recognition nears practical use in various application
areas, the acoustical robustness of the speech recognizer has
become an important issue to be addressed. In fact, it is well known
that a speech recognition system often fails to maintain reasonable
performance as the acoustical conditions of its operating environ-
ment depart from the ones that were used for the training. This phe-
nomenon is observed not only for applications in which the system
is used in very noisy environments, but also for those with more
subtle changes in the acoustical environment that cause no prob-
lems for human listeners. Signal processing algorithms must be
developed that can eliminate such effects in an effective and effi-
cient manner.

Three major types of signal processing technique have been used
to enable speech recognition systems to achieve environmental
robustness: acoustical pre-processing, such as codeword-dependent
cepstral normalization (CDCN) that compensates for the effects of
additive noise and linear filtering; physiologically-motivated pro-
cessing, such as the computational models of the auditory periphery
(e.g. [3,5,7]); and microphone-array processing, which includes
adaptive processing techniques and the recent correlation-based
algorithm [9].

In a previous study [8], we used Seneff’s auditory model as an
example of physiologically-motivated processing and evaluated the
baseline performance of its 40 channel mean-rate and synchrony
outputs for speech with or without degradations. We reported that
the Seneff model provides a substantial amount of environmental
robustness, while the most effective front-end processing technique
among those examined was provided by the cepstral front-end in
conjunction with CDCN. 

Although the effects of physiologically-based auditory modelling
and acoustical pre-processing have been analyzed in isolation, it is
not known whether a combination of the two types of procedure can
produce a greater degree of improvement in the recognition accu-
racy than can already by achieved by the use of either technique
alone.

In this paper, we further investigate the effectiveness of physio-
logically-motivated processing. First, we search for the feature
parameters of the Seneff model, which are more relevant to speech
recognition than its raw outputs. Next, we evaluate the significance
of the individual neural transduction (NT) components in terms of
the robustness achieved. Finally, we propose a few ways of combin-
ing the Seneff model with CDCN in an attempt to determine
whether the types of robustness provided by these two approaches
are complementary.

The remainder of the paper is organized as follows. In Section 2,
we describe the proposed experimental procedures, and in Section 3
report on the results of speech recognition experiments. In the last
section, we summarize our findings and offer some concluding
remarks.

2. EXPERIMENTAL METHODS

2.1. Software and Data Resources 

We used a modified version of CMU’s SPHINX-I speech recogni-
tion system. The LPC-based front end as described in [4] was
replaced by a candidate physiologically-motivated front-end, which
included several components to represent the BPF bank, non-linear
half-wave rectification, short-term adaptation and rapid AGC
stages, synchrony fall-off, and the generalized synchrony detector
(GSD), as described in Seneff [7]. 

We also used the census database, which contains 1018 multi-
speaker continuous alphanumeric utterances that are either random
sequences or spelled-out addresses [1]. Utterances were recorded



                    
simultaneously in stereo, using the close-talking Sennheiser HMD-
414 (CLSTK) microphone and the omnidirectional desktop Crown
PZM6FS (CRPZM) microphone. The close-talking microphone
speech was generally free from noise and is therefore regarded as
“clean.” In contrast, the PZM microphone speech was corrupted by
additive noise, and also exhibited a different spectral tilt from the
speech recorded by the close-talking microphone. This tilt is
assumed to be a consequence of the combined effects of the linear
filtering due to the microphone placement, room acoustics, and the
differences in the transfer function of the microphones.

In all experiments, the system was trained on the CLSTK micro-
phone speech and tested on both microphones. Testing data were
provided from a disjoint subset of the corpus. White noise was used
in experiment 2.3.

2.2. Feature extraction of the mean-rate and 
synchrony parameters

We performed principal component analysis [2] on the 40-channel
mean-rate and synchrony outputs. The basis function of the Kar-
huenen-Loève transform, which diagonalized the corresponding
covariance matrix of the CLSTK training data, was used to trans-
form both CLSTK and CRPZM testing data so as to reduce correla-
tion among channel outputs. 

For the principal components of the mean-rate and synchrony
outputs, we tried a number of different dimensions, from the origi-
nal 40 down to 2, and searched for the minimum feature vector size
necessary for successful classification performance by using a com-
posite report of all the NIST benchmark tests for statistical signifi-
cance.

2.3. Evaluation of the significance of individual 
NT components

The general procedure for this evaluation is to remove an individual
component of the NT model from the sequence of front-end pro-
cessing steps, and then to train and test the SPHINX system to
observe the impact of eliminating that component. Short-term adap-
tation, automatic gain control (AGC), and low-pass filtering (LPF)
for the effect of synchrony fall-off were the candidates for elimina-
tion.

2.4. Techniques for combining acoustical pre-
processing and auditory modeling

We employed two approaches to combine acoustical pre-processing
algorithms and Seneff’s model: a waveform-domain approach and a
parameter-domain approach [6].

Waveform-domain approach. Figure 1 shows a block diagram of
the processing. The acoustical pre-processing methods proposed by
Acero all operate in the cepstral domain. In the waveform-domain
approach, speech is resynthesized from the sequences of cepstral
coefficients normalized by pre-processing techniques such as
CDCN. The synthesis filter is excited by the residual error signal
saved in the LPC analysis procedure. The resynthesized speech
waveform is then processed by the Seneff auditory model in the
usual fashion.

To handle occasional problems involving instability of the resyn-
thesis filter, we reflected poles outside the unit circle into the inside,
in order to regain stability with no audible degradation while pre-
serving the spectral envelope.

Parameter-domain approach. An alternative to the waveform-
domain approach is to combine auditory modelling and acoustical
pre-processing in the parameter domain. In this case, speech is first
processed by the auditory model. The output features from the audi-
tory processor (AP) are first converted to a form that is more like a
cepstral representation of the incoming speech. At this point, ceps-
tral normalization algorithms such as CDCN can be applied to the
derived cepstra of the auditory model outputs. In Figure 2, cepstral
parameters are derived by all-pole fitting of the Seneff model audi-
tory spectra. Another way to derive cepstral parameters is to apply
the IDCT directly to the Seneff model outputs. The resulting feature
vectors resemble Bark auditory cepstral coefficients (BACC). 

3. RESULTS

Feature Extraction. Figure 3 shows the results of feature extrac-
tion of the mean-rate, in which the recognition accuracy gradually
dropped as the number of principal components was reduced. When
the CLSTK microphone was used for both training and testing with
the mean-rate principal component system, we found no statisti-
cally significant difference in the recognition performance for any
number of principal components from the full set of 40 down to 4.
There was also a small fluctuation among the best performing sys-
tems. For instance, the 6-component system was reported to be bet-
ter than the 4-, 5-, 40-component systems in a matched-pairs test. 

In the CRPZM microphone testing, performance degradation
started when the 4-component system was used, and systems with
fewer components than four were clearly inferior to the system with
five or more principal components. We also found that the mean-
rate principal components had an advantage over their raw-feature
counterparts in that they improved the cross-microphone perfor-
mance from 32.3% to 52.2%, while there was no performance deg-
radation in the same microphone testing.

Owing to the limited space, we omit the plot for the GSD, which
shows a very similar trend to the mean-rate case. We observed that

Figure 1: Waveform-domain integration of acoustical pre-processing
and physiologically-motivated signal processing. 
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the dimension was successfully reduced from 40 to 4 with no per-
formance degradation in the CLSTK testing. In the CRPZM testing,
however, the 10-component system was the most compact. The best
performance of GSD principal components in the cross-microphone
testing was 63.5%, using the 12-component system, as compared
with the GSD baseline performance of 48.7%. 

Evaluation of NT Components. The four panels of Figure 4 show
the results obtained by disengaging the short-term adaptation.
When the mean-rate parameters were used, we observed a signifi-
cant drop in the recognition performance when the adaptation stage
was eliminated, except for testing in the two least noisy conditions
with the CLSTK microphone. We recognized two characteristic
trends in the performance regardless of whether the mean-rate or
the GSD outputs are used.

First, for SNRs of +20 dB or greater, the omission of short-term
adaptation does not cause significant degradation in recognition
performance when the CLSTK microphone is used for training and
testing. Second, eliminating the adaptation stage results in an unac-
ceptable performance degradation for all SNRs when the CRPZM
microphone is used for testing. In summary, short-term adaptation
is an important element in noisy conditions, but its value is not
obvious for clean speech.     

In Figure 5, it can be seen that removing the AGC did not
adversely affect recognition accuracy for the most part when the
mean-rate outputs were used, and that the trend was similarly true
for the GSD outputs, except for the testing with the lowest SNR.
The results suggest that the AGC could be omitted from the current
implementation if only the mean-rate parameters are required.

The four panels of Figure 6 show the results from two sets of
experiments involving the LPF. We noticed that eliminating the LPF
produces no degradation in the recognition accuracy when the
CLSTK microphone is used for testing, for either the mean-rate or
the GSD outputs. On the other hand, when the CRPZM microphone
is used for testing, there is a 2% drop in recognition accuracy when
the mean-rate outputs are used, and a greater difference when the
GSD outputs are used.We found that better results were often
obtained by not using the AGC, although the performance gain may
be marginal. The modified mean-rate front end without the use of
the LPF performed just as well as the original full NT version did.
On the other hand, the lack of short-term adaptation had a severe
negative impact. In order to determine the extent to which short-

term adaptation component is the single dominant component of the
NT model after the rectifier, we disabled both the AGC and LPF,
leaving in place only the rectifier and the short-term adaptation. As
with some of the previous results, there was no significant degrada-
tion in performance when the CLSTK microphone was used for
testing. However, eliminating both the AGC and LPF produced a
significant degradation in the recognition accuracy both when the
CRPZM was used for testing and when the CLSTK microphone
was used for testing with noise added at an SNR of +20 dB or
below. 

For these reasons it was concluded that short-term adaptation by
itself is not sufficient to provide good recognition accuracy in
adverse conditions. 

Figure 3: Dependence of the recognition accuracy on the number of
principal components derived from the mean-rate outputs of the Seneff
model. The upper curves were obtained by testing with the CLSTK
microphone (boxes), and the lower curves were obtained by testing with
the CRPZM microphone (triangles). Also plotted are the baseline recog-
nition rates using the raw features of mean-rate outputs (a bullet and a
star).
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Figure 4: Evaluation of the NT components using the mean-rate and
GSD outputs of the Seneff model, training with the CLSTK microphone
and testing with the CLSTK and CRPZM microphones. Full NT denotes
the original Seneff model, in which all the NT functions are enabled,
while -Adapt denotes that the short-term adaptation NT component is
disengaged.
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Combination of the Seneff model with CDCN. Figure 7 summa-
rizes the results of a series of experiments using the waveform-
domain and parameter-domain approaches. We observed that both
approaches produced better results than those based on the mean-
rate principal components, and that the results were comparable
with those based on the synchrony principal components. Neverthe-
less, we found that the best-performing front-end is still the conven-
tional cepstral parameters with CDCN processing. 

Specifically, in the waveform-domain approach, the recognition
accuracy based on the mean-rate parameters for the resynthesized
CLSTK microphone data was 76.2%, while the accuracy for the
resynthesized CRPZM was 59.5%. In the parameter-domain
approach, the derived cepstral parameters of the mean-rate output
were normalized by applying CDCN and marked 80.1% for the
CLSTK microphone testing and 61.7% for the CRPZM testing. 

4. SUMMARY 

We found that both the mean-rate and synchrony outputs of the Sen-
eff model provide better recognition accuracy than conventional
signal processing using the LPC cepstral coefficients, when speech
is subjected to additive noise and linear filtering. Although there are
40 frequency-specific outputs in the Seneff model, we found that no
loss in recognition accuracy is incurred if classification decisions
are made on the basis of five principal components of the mean-rate
outputs and 10 principal components of the synchrony outputs.

We found that short-term adaptation was the most important
component of the neural transduction stage of the Seneff model.

We developed several ways of combining auditory processing
with environmental normalization techniques such as CDCN in
both waveform and cepstral domains. We showed that the recogni-
tion accuracy provided by physiologically-motivated signal pro-
cessing can be further improved by combining this with
environmentally normalized cepstral processing. Both approaches
improved the recognition accuracy based on the mean-rate parame-
ters up to about 60% in the CRPZM testing, but neither outper-
formed the application of CDCN to conventional cepstral
processing.
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