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ABSTRACT

In this paper we discuss a number of the ways in which the rec
nition accuracy of automatic speech recognition systems is affe
ed by ambient noise in the automobile, along with the extent
which various techniques for robust speech recognition can p
vide for more robust recognition. We consider separately the 
fects of engine noise, interference by turbulent air outside the 
interference by sounds from the car’s radio, and interference
the sounds of the car’s windshield wipers. Recognition accura
was compared using baseline processing, cepstral mean nor
ization (CMN), and codeword-dependent cepstral normalizati
(CDCN). The greatest degradation in recognition accuracy w
produced by interference from AM-radio talk shows. The use
CMN and especially CDCN was found to be significantly im
prove recognition accuracy, except for the effects of interferen
from radio talk shows at low car speeds. This type of interferen
is effectively suppressed through the use of adaptive noise can
lation techniques.

1. INTRODUCTION 

The need for robustness in speech recognition accuracy in rea
plications environments such as long-distance telephone lin
automobiles, aircraft cockpits, offices, and factory floors is b
coming increasingly important as speech recognition is becom
more successful. This paper concerns speech recognition acc
cy in the automobile, which is a critical factor in the developme
of hands-free cellular telephony. Major factors that impede rec
nition accuracy in the automobile include noise sources such
tire and wind noise while the vehicle is in motion, engine nois
and noise produced by the car radio, fan, windshield wipers, ho
turn signals, etc.

A number of researchers have considered the problem of rob
recognition in the automobile previously. Their approaches 
clude adaptive noise cancelling techniques (e.g. [1, 2]), spectral
transformation [3], the use of microphone arrays [e.g. 4], and
multi-dimensional HMMs [5]. For the most part these studi
dealt only with “running noise” sources such as tire, engine, a
wind noise, and they did not consider “functional noise” caus
by functional components such as the car radio, fan, and wi
* Currently at Mitsubishi Heavy Industries, Ltd. 
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shield wipers. In this paper we consider the effects of all of the
sources of degradation, and we compare the extent to which th
effects are ameliorated by the compensation techniques of ceps-
tral mean normalization (CMN) [6], and codeword-dependent
cepstral normalization (CDCN) [7]. 

2. DATABASES

The experimental results in this paper were obtained by train
the CMU SPHINX-I system [8] on the previously-described ce
sus database [7] and tested using a database of speech recor
automobiles recorded by and provided by the Motorola Corpo
tion. In this section we describe the Motorola automotive da
base which was used to evaluate effects of the noise in 
automobile on the SPHINX system. We also briefly review t
contents of the census database.

2.1. The Motorola Automotive Database

The Motorola automotive database consists of 12 speaker
males and 3 females in their 20s and 30s. Each speaker uttere
7-digit strings at three driving speeds: 0 (with engine idling), 3
and 55 m.p.h., and the following six conditions in the vehicle: (
baseline (windows up, fan, radio, and windshield wipers off), (
driver’s window down, (3) fan on, (4) FM radio playing music, (5
AM radio playing a talk show, (6) windshield wipers on (recorde
at 0 m.p.h. only). The digit strings were read from a script w
equal probabilities for all digits. The digit, ‘0’, had two pronunc
ations, “zero” and “oh”. 

Speech was recorded on a DAT recorder in various automob
using 2 microphones located on the driver’s visor. The mic
phone used for our data was a high-fidelity Sony ECM-959D
which uses an electret element and has a flat bandpass resp
over 50 - 18,000 Hz. The data were lowpass filtered to about 6,
Hz before sampling at 16 kHz using the line inputs of an Ar
Digital Microphone. 

Since the goal for collecting the database was to make it as r
istic as possible, the recording conditions were somewhat varia
and reflected what an untrained population of users might p
duce. Some of the files for various speakers were missing du
recording problems which were not noticed until the data were
viewed. 
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2.2. The Census Database

The census database was used to train the system because the Mo-
torola automotive database had too few speech samples for train-
ing. The training component of the census database is composed
of 74 speakers (53 males and 21 females), and the utterances con-
sist of strings of letters, numbers, and a few control words. The
training set consists of 1018 utterances, recorded using a Sen-
nheiser HMD224 close-talking microphone in an office environ-
ment. 

No attempt was made to optimize the SPHINX-I system for the
11-digit Motorola database. For example, the the census database
has a larger vocabulary size than the automotive database, and
performance could have been improved by recomputing the pho-
netic models for this far more constrained task.

3. NOISE CHARACTERISTICS

As noted above, we distinguish between the “running noise”
caused by window, engine, and tire noise that primarily depends
on vehicle speed and “functional noise” which depends on oper-
ator- controlled functions such as the heater fan, radio, and wind-
shield wipers. Spectral analysis of the Motorola automotive
database reveals a peak at very low frequencies in the idling con-
dition. This peak becomes smaller and the spectrum of the noise
broadens as vehicle speed is increased. With the windows down,
wind noise becomes more intense and the distribution of the noise
power becomes broader, as shown in Figure 1.    

The car radio causes significant interference to speech recogni-
tion. It is not very clear how the spectral shape between music and
talk shows differs, but some transient patterns appear in the noise
region in both cases. The heater fan produces broadband noise in
the region of 2 – 7 kHz. This characteristic is similar to the wind
noise observed at high vehicle speeds. Windshield wipers are in-
termittent noise sources which generate transient patterns. Other
functional components of the vehicle such as the horn and turn
signals also produce transient noise.

4. EXPERIMENTAL RESULTS

We performed speech recognition experiments with the SPHIN
recognition system using the census database for training and
Motorola automotive database for testing. Speech was sample
16 kHz, and conventional Mel-frequency cepstral coefficien
(MFCC) were used as the baseline parametric representatio
speech frames [9]. We made use of previously-trained phon
models for SPHINX-I which consisted of 400 generalized trip
one models for a vocabulary size of 104. The language model 
pronunciation dictionary were restricted to the 11 words (“on
through “nine”, “oh” and “zero”) that are present in the 7-dig
strings in the Motorola automotive database.

We compared recognition accuracy obtained using three type
signal processing: the baseline MFCC representation, ceps
mean normalization (CMN) [e.g. 6], and codeword-dependen
cepstral normalization (CDCN) [7]. The simple CMN metho
compensates primarily for differences in the frequency respo
of each channel, while CDCN compensates simultaneously 
the effects of linear filtering and additive noise. The main sou
of variation in the car environment is additive noise. Howev
there are also differences in channel frequency response betw
the training and testing data, since different databases with dif
ent microphones were used for training and testing. It was a
hoped that CMN would eliminate some of the effects of spea
variability due to differences in vocal tract.

Figure 2 summarizes the digit error rates obtained at two differ
vehicle speeds, comparing the three types of signal processing
the six conditions of the Motorola database described in Sec. 
Results obtained at 30 m.p.h. almost always produced error r
that fell between the rates observed at 0 and 55 m.p.h. Record
with the windshield wipers on were not obtained at 30 or 55 m.p
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Figure 1. Typical noise spectra in the “windows down” condi-
tion at 0 and 55 m.p.h. The horizontal axis represents frequency 
after the nonlinear warping used by SPHINX.
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Figure 2. Digit error rates obtained using the Motorola automo
tive database for two car speeds: 0 m.p.h. (upper panel) and 
m.p.h. (lower panel). Three different compensation conditions
were used: MFCC (circles), CMN (triangles), and CDCN 
(squares). Error rates are plotted for each of six different func
tional configurations of the automobile (see text.) 
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The results of Fig. 2 indicate that with the vehicle stopped with
the engine idling, recognition accuracy is degraded primarily by
functional noise sources from the automobile such as the heating
fan, windshield wipers, and the car radio. Recognition accuracy is
especially poor with the radio playing talk shows because the
speech from radio produces many insertion errors. The intermit-
tent nature of the noise caused by the windshield wipers also con-
tributes to insertion errors. As the vehicle speed is increased from
0 to 55 m.p.h., recognition accuracy in all conditions worsens be-
cause of masking introduced by the running noise from turbulent
air, tires, and the engine. The talk-show signal from the radio does
not introduce as much degradation in recognition accuracy at
higher vehicle speeds as it had at lower speeds due to masking of
the radio signal by these running noise sources. The effect of the
fan is relatively small compared to the other conditions. 

It is also seen in Fig. 2 that both CMN and CDCN can substantial-
ly improve recognition accuracy. At 0 m.p.h. the recognition ac-
curacy obtained with both CMN and CDCN is similar, suggesting
that at this speed the algorithms are primarily compensating for
differences in spectral shape between the training and testing con-
ditions (despite the fact that the sources of degradation are addi-
tive in nature). It is clear that the presence of a talk radio signal
remains a serious problem at low speeds, even with CMN or CD-
CN. At 55 m.p.h. the effects of additive noise become far more
important, and the recognition accuracy obtained with CDCN is
clearly superior to results obtained using CMN. 

Because both CMN and CDCN can improve recognition perfor-
mance, we also measured recognition accuracy with the two
methods combined. Unfortunately, recognition performance ob-
tained using a combination of the two approaches was no better
than that obtained with CDCN alone.

5. ADAPTIVE NOISE CANCELLATION
OF SIGNALS FROM THE CAR RADIO 

As noted in the previous section, neither CMN nor CDCN can
compensate completely for the effects of interference by AM-ra-
dio talk shows. Fortunately, the radio signal to the loudspeakers is
electrical, and it can be monitored directly at the loudspeaker out-
put as a noise source, to be used as the reference channel for adap-
tive noise cancellation. We describe in this section the results of a
pilot study to confirm the utility of adaptive noise cancellation of
radio signals. 

Since the Motorola automotive database does not have a separate
channel with the interfering signal from the radio, we collected a
new database using two simultaneously-recorded signals. One
channel contains speech corrupted by the car radio recorded at
three running speeds (0 m.p.h. [idling], 30 m.p.h., and 55 m.p.h.).
The other channel contains the input to the loudspeaker for the car
radio. The speech contains 7-digit strings as did the Motorola au-
tomotive database. The radio was tuned to talk stations on the AM
band, which were recorded monophonically.

We applied the LMS (Least-Mean-Square) algorithm (e.g. [10])
to cancel the car radio signal. 150 taps were used for the FIR filter,
and based on informal listening the value of the step-size param-
eter was set to 0.05 times the theoretical upper bound for stability
which equals the product of the number of taps and the average
signal power.

We also found that stability of the cancelled signal would be i
proved by the addition of a gain-reduction factor to the weig
vector that reduces all components by a factor of 0.1, i.e.

 where W’ k+1 is the weight vector after

gain reduction. Figure 3 summarizes error rates observed at 3
hicle speeds, with and without CDCN. Adaptive noise cancel
tion clearly decreases the recognition error rate, especially at 
vehicle speeds. A detailed analysis of the results confirmed 
insertion errors are reduced dramatically by adaptive noise c
cellation.

The CDCN algorithm provides further reductions in recognitio
error at high vehicle speeds. The use of CDCN, which improv
recognition accuracy at high vehicle speeds (when interferenc
dominated by running noise), complements the use of adap
noise cancellation, which is most helpful at low vehicle spee
(when interference is dominated by the signal from the radio).

In our experiments, the LMS adaptation continued while spee
was input to the system. This produced transients in the we
vectors which, according to informal listening, introduced a nee
less source of distortion to the compensated signals. We bel
that recognition accuracy would be further improved if adaptati
were disabled during speech input, although this result has no
been verified. 
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Figure 3. Digit error rates obtained with and without adaptive 
noise cancellation of AM-radio talk show signals using the LM
algorithm. Data were recorded at CMU using recording condi
tions similar to those of the Motorola automotive database. 
Results are shown without CDCN (upper panel) and with CDCN
(lower panel).



          

d 
t 

    

, 

  

-

  

to 
d 

    

s 

  

 

    

-
-

      
6. CONCLUSIONS

We describe the effects of noise sources in the automobile on the
recognition accuracy of the SPHINX-I speech recognition sys-
tem. Significant degradations in recognition accuracy are ob-
served while the automobile is at high speeds caused by quasi-
stationary “running noise”. In addition, at low speeds recognition
accuracy is degraded by transient “functional noise” sources in-
cluding windshield wipers and the car radio, especially when talk
shows are broadcast. 

We also compared results obtained using two environmental com-
pensation algorithms, CMN and CDCN. CMN improves recogni-
tion accuracy for all conditions, even though it was only expected
to reduce channel effects. CDCN provides a further improvement
in recognition accuracy under high-noise conditions. The combi-
nation of CMN and CDCN did not provide further improvements
in recognition accuracy beyond what had been obtained with CD-
CN. 

We also considered the use of adaptive noise cancellation using
the extremely simple LMS algorithm to eliminate interference
from the radio. As expected, this approach provided significant
further reductions in errors caused by radio signals, especially at
low speeds. CDCN and adaptive noise cancellation provide com-
plementary benefits.
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