
 

ABSTRACT

 

The performance of speech recognition systems degrades
when the basic sound units used are poorly defined or incon-
sistently used. Several attempts have been made to improve
dictionaries automatically, either by redefining pronuncia-
tions of words in terms of existing sound units, or by redefin-
ing the sound units themselves completely. The problem with
these approaches is that, while the former is limited by the
sound units used, the latter discards all human information
that has been incorporated into an expert-designed recogni-
tion dictionary. In this paper we propose a new merging-and-
splitting algorithm that attempts to redefine the basic sound
units used in the dictionary, while maintaining the expert
knowledge built into a manually designed dictionary. Sound
units from an existing dictionary are merged based on their
inherent confusability, as measured by a Monte-Carlo based
metric, and subsequently split to maximize the likelihood of
the training data. Experiments with the Resource Manage-
ment database indicate that this approach results in an
improvement in recognition accuracy when context-indepen-
dent models are used for recognition. When context-depen-
dent models are used, the improvement observed is reduced.

 

1. INTRODUCTION

 

The performance of speech recognition systems is critically
dependent on the basic sound units used: ill-defined or
broadly-defined units have high inherent confusability and
result in poor recognition accuracies. Traditionally, the basic
sound units are phonetically motivated and are designed by
human experts to be minimally confusable on an average.
However, these phones may not be optimal for any specific
task. The optimal units for a given task would depend on sev-
eral factors such as the acoustic conditions of the task, the
relative frequencies of various phones, their importance in
distinguishing between words within the task, and the
amount of training data available to train these units.
Researchers have previously tried to optimize sound units
and dictionaries to specific tasks by either redefining the pro-
nunciations of words in terms of the existing sound units [1],
or by the automatic definition of the basic sound units them-
selves based on acoustic examples [2]. In the former case the
basic manually defined units themselves are not modified. In
the latter case they are completely discarded and replaced
with automatically-estimated ones, thereby ignoring all the
human knowledge that has been employed in designing them.
Both approaches have drawbacks. In the former approach the
performance of the system is limited by the definition of the
basic units themselves. For example, if the sounds CH  and
JH  have been mer ged into a single unit, no amount of pro-
nunciation modelling can improve the system s ability to dis-
tinguish between the words GIN  and CHIN . In the latter

method, the inference of pronunciations of words that are not
seen in the training data becomes extremely difficult. Further,
the modelling of multiple pronunciations for words becomes
extremely complicated.
In this paper, in contrast to previous work, we attempt to
automatically redefine the basic sound units using a maxi-
mum likelihood merging and splitting algorithm, without dis-
carding the expert knowledge that has been built into a
manually-designed dictionary. This is accomplished by merg-
ing the existing sound units into a smaller set of units and
then splitting the units in the smaller set to increase its size,
without modifying the basic structure of the dictionary.
Sounds units are merged based on their confusability as mea-
sured by a Monte-Carlo based symmetric cross entropy met-
ric. The sound units chosen for splitting are the units whose
split would result in the greatest increase in the likelihood of
the training data. The pronunciations of words that have not
been seen in the training data are easily obtained based on
their correlations to the pronunciations of other words in the
dictionary.
Experimental results show that the proposed merging and
splitting algorithm results in significant improvements in the
likelihood of the training data, and small but significant
improvements in recognition accuracy over the baseline for
the DARPA Resource Management task.
In Section 2 we describe the Monte-Carlo based distance
metric that can be used to compute confusability between
sound units as represented by their HMMs. In Section 3 we
describe the splitting algorithm used to split sound units. In
Section 4 we describe the overall merging and splitting algo-
rithm. In Section 5 we describe experimental results. Finally
in Section 6 we present our conclusions.

 

2. MONTE-CARLO BASED METRIC 
FOR COMPUTING DISTANCE 

BETWEEN PHONE HMMS

 

Consider two random variables  and , with  and

. We define the distance , between the two
random variables as:

 

(1)

 

where  refers to the expectation operator with respect to

the distribution of the random variable . Note that this met-
ric is similar to the Kullback-Leibler metric, but is different
from it in the sense that this is a true metric. This metric has
previously been used in other problems such as segmentation
of acoustic data [3] and is sometimes referred to as the KL2
metric.

X Y PX X( )
PY Y( ) D X Y,( )

D X Y,( ) EX Px X
Y
---- 

 
 
 log EY PY Y

X
---- 

 
 
 log+=

Ex  [ ]
X

 

STRUCTURED REDEFINITION OF SOUND UNITS BY MERGING AND 
SPLITTING FOR IMPROVED SPEECH RECOGNITION

 

Rita Singh

 

1

 

, Bhiksha Raj

 

2

 

, and Richard M. Stern

 

1

 

1. Department of Electrical and Computer Engineering and School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213 USA
2. Compaq Computer Corporation

Cambridge, MA 02142 USA



 

This distance measure is easy to compute analytically when
 and  refer to random variables with simple exponential

distributions. However, when  and  have more compli-
cated distributions such as Gaussian mixtures, or refer to
samples of a non-stationary random process with compli-
cated distributions such as those described by an HMM, no
closed form expression exists for the KL2 metric. The most
commonly used approximation in the case of Gaussian mix-
ture distributions computes the distance between every Gaus-
sian in the distribution of  and every Gaussian in the
distribution of , and weights these terms by the product of
the 

 

a priori

 

 probabilities of the Gaussians. In the case of
HMMs this decomposes to finding the distance between the
state distribution of every state of the HMM representing 
and the state distribution of the corresponding state of the
HMM representing . However, this approximation is far
from satisfactory when finding the distance between HMMs
of sound units, since there is no definite correspondence
between the portions of two sounds represented by the corre-
sponding states of their HMMs. 
In this paper we solve this problem by replacing the expecta-
tion operator in Equation (1) by an averaging operation. In
order to compute the distance between any two sound units,
we first 

 

generate

 

 a large number of sequences from the
HMMs of each of the two units. Sequences are generated
from an HMM by exciting the initial state of the HMM and
letting it transition through subsequent states until it enters
the terminating state. Transitions from a state are decided
randomly based on the transition probabilities of the state. At
each state, an observation vector is generated from the state
distribution associated with it. The number of sequences gen-
erated is proportional to the expected relative frequency of
that sound unit in the test data. If this information is not avail-
able, we assume that all the sound units are equally likely and
generate the same number of sequences for all sound units.

Let  represent the 

 

i

 

th

 

 sequence generated from the HMM

of the sound 

 

X

 

. Similarly, let  represent the 

 

j

 

th

 

 sequence
generated from the HMM of the sound 

 

Y

 

. The distance
between the sound units 

 

X

 

 and 

 

Y

 

 is now defined as

 

(2)

 

where  is the log likelihood of the 

 

i

 

th

 

 sequence

of measured on the HMM representing 

 

.

 

We note that  also represents the confusability
between the sound units 

 

X

 

 and 

 

Y

 

. The larger  is, the
lower the likelihood of sequences belonging to 

 

X

 

 on the
HMM for 

 

Y

 

 (and vice-versa), and therefore the lower the
likelihood that instances of 

 

X

 

 will be classified as 

 

Y

 

.

 

3. HMM-BASED CLUSTERING
OF SEQUENCES

 

Several clustering mechanisms have been proposed in the lit-
erature to cluster vectors belonging to stationary and identical
independently-distributed processes. In this section we
describe a clustering algorithm that is applicable to non-sta-
tionary sequences, such as phonemes, that can be modelled

by an HMM. The objective of the clustering is to partition a
set of sequences into a number of clusters such that the likeli-
hood of the sequences on the HMMs representing them is
maximized.
In the clustering algorithm we first train a single HMM with
all the sequences being clustered. The mean of one of the
states of this HMM is then perturbed since this is the smallest
perturbation that can be given to the HMM. Two HMMs are
thus created by adding and subtracting a small fraction of the
standard deviation to the mean of this state. The likelihood of
each of the sequences on these HMMs is evaluated and the
sequence is said to belong the cluster whose HMM results in
the higher likelihood. Once these preliminary clusters are
formed, HMMs are retrained from each of the clusters and
the likelihoods of all sequences are re-evaluated on these
HMMs and cluster memberships are revised. This process is
iterated until the likelihoods converge. At this stage, the clus-
ter memberships of the sequences are assumed to be final. If
multiple clusters are required, the cluster with the largest
number of sequences is split again using the same procedure.
It is easy to see that the above sequence of steps is guaranteed
to increase the total log likelihood of the data at every step.
The clustering algorithm is a hill climbing algorithm, result-
ing in a locally optimal set of clusters.
As an alternative to this procedure, the expectation maximi-
zation (EM) algorithm [4] could be used to obtain better clus-
ters. However, an EM-based solution would be much more
computationally intensive, for relatively small gains in likeli-
hood.

 

4. THE MAXIMUM LIKELIHOOD 
PHONE MERGING AND SPLITTING 

ALGORITHM

 

In this section we describe the complete merging and split-
ting algorithm for redefinition of the sound units and the rec-
ognition dictionary. The algorithm consists of two distinct
steps. In the first step the closest and therefore most confus-
able sound units in the data are merged. In the second step the
merged sound units are split to maximize the likelihood of
the training data and the pronunciation dictionary is updated
to use these new sound units. The following subsections
describe these procedures in detail.

 

4.1. Merging phones

 

Context-independent models are first trained for all the
phones in the existing dictionary. The most confusable pairs
of phones are identified from this set based on the distance
metric described in Section 2. We use confusability, rather
than likelihood, as a criterion for the following reason: con-
sider two words LAD : L  AE D  and LED : L  EH D . If the
two phones AE and EH  were highly confusable, it would
be preferable to merge the two into a single phone AE/EH
and have identical pronunciations for both LAD and LED,
and let the 

 

a priori

 

 probabilities of the words, as defined by
the language model, determine the proper choice. It is impor-
tant to note that for this reason, the language model must
appropriately represent the given task. Once the closest
phone pairs are identified, all instances of either phone in any
given pair in the dictionary are replaced by a single symbol
that represents both phones. New HMMs are trained with the
modified dictionary using the reduced set of phones. If the
number of phones in the dictionary is greater than desired,
the confusability of phones in the dictionary is reevaluated
for further merging.
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4.2. Phone splitting

 

To split sound units, we first identify all segments of the
training data that correspond to each of the phones. The set of
segments representing each of the phones is divided into two
clusters using the procedure described in Section 3, and the
resulting increase in the likelihood of the data for that unit
due to separation into clusters is noted. The phone for which
the increase in likelihood is greatest is chosen for splitting. 
The segments corresponding to this phone are then grouped
into two clusters. Here we constrain the clustering such that if
the phone occurs only once in the pronunciation of any word,
then all instances of this unit occurring in instances of this
word are grouped together in the same cluster. The two clus-
ters represent two new sound units that have been generated
by splitting the original phone, and are represented by two
new symbols in the dictionary. The instances of the original
phone in words where it occurs only once are replaced by the
symbol representing the cluster into which all segments from
that word have been incorporated. For words where the
phone occurs more than once, the likelihood of all segments
of data representing that phone in all instances of the word is
measured on all pronunciation variants possible for the word
using the two new symbols (a word where the phone occurs

 

N

 

 times would have 2

 

N

 

 possible pronunciation using the new
symbols). The pronunciation for which the likelihood is
greatest is chosen as the pronunciation for that word. 
HMMs are trained for the updated dictionary and phone set.
Following this, the likelihood of all pronunciations that can
be generated by replacing the original phone in the original
dictionary by the two new symbols are generated, and the
most likely pronunciation chosen for each word based on the
newly trained HMMs. This step can be further iterated until
recognition accuracy on a heldout set of data converges. It
can be shown that this algorithm is guaranteed to increase the
likelihood of the training data at each step. 
If the desired number of sound units has not been achieved,
the phone whose likelihood increases most due to splitting
can be identified and the entire procedure repeated. It may
not be necessary to merge a single pair of phones at each
instance, and similarly to split a single pair of phones. This
can be done in bigger steps, merging several pairs of phones
simultaneously in the phone merging stage, and similarly
splitting several phones simultaneously in the phone splitting
stage.
The final set of sound units, and the corresponding dictionary
give us the lexicon for training and recognition. The pronun-
ciations for words that have not been seen in the training data
can be obtained on the basis of the statistical similarity of
their pronunciations in terms of the original phones to the
pronunciations of other similar sounding words that have
been seen in the training data.

 

5. EXPERIMENTAL RESULTS

 

The merging-and-splitting algorithm for sound unit redefini-
tion was evaluated on the Resource Management (RM) data-
base [5]. The CMU SPHINX-III speech recognition system
was used for acoustic modeling. All experiments were con-
ducted using continuous 5-state HMMs with one Gaussian
modeling the distribution of each state.
The training corpus consisted of 2880 utterances, comprising
2.74 hours of acoustic signals. The training set covered a
vocabulary of 987 words. The heldout set used to test the rec-
ognition performance at various stages consisted of 1600
utterances, comprising 1.58 hours of acoustic signals. The
vocabulary of the heldout set was 991 words, four of which

were not covered by the training set.
The baseline dictionary used was the CMUdict with 50
phones, which were then merged down to 44 in two steps of 3
phones each. The 44 phones were then split upwards back to
50 phones. 
Figure 1 shows the KL2 distance between a subset of the
phones in the CMU dictionary. The distance is color coded

for visual clarity - the darker the color, the greater the dis-
tance. We note that the phones AX  and IX  are very close.
The reason for this is apparent from an examination of the
CMUdict, in which AX and IX represent very similar sounds.
The phones AXR  and R  are also seen to be very close.
Once again, the reason is that these are very similar sounds as
they are used in the CMUdict, and the distinction between the
two is sometimes unclear. The confusion between the two is
also reflected in the fact that the distances between AX  and
AXR , and AX  and R  are very similar (in fact

 is 

 

less

 

 than ). The distance between
AX and D or G is greater than the distance between AX and
AXR or R, as expected. The phones D and G are observed to
be very close. While this may appear anomalous, this is prob-
ably due to the effect of a lack of training data for the sound
G, resulting in poorly trained models. Based on the observa-
tions in Figure 1, it is clear that AX  and IX  are good can-
didates for merging, as are AXR  and R , and D  and
G . Using similar criteria, a total of six phone pairs were
merged to reduce the size of the phone set to 44 phones.
We note here that some apparently dissimilar phones were
also observed to be very close. For example, the KL2 dis-
tance between the phones AX  and DX  was relatively
small. Further analysis showed that the phone AX occurred
immediately after DX in 44% of all dictionary entries involv-
ing DX. Due to this correlation, the models for DX were cor-
rupted by data from AX. We hypothesize that in such cases it
may be advantageous to join all instances of DX AX  into a
single compound phone.
Figure 2 shows the relative increase in likelihood expected
from the splitting of several phones from the reduced phone
set. Sound units that have been formed by merging phones
are represented by concatenating the symbols of the original
phones with an underscore (

 

e.g.

 

 AX_IX has been formed by
merging AX and IX). Clearly, the splitting of some phones
results in much greater increase in likelihoods than the split-
ting of others. Six phones were chosen, based on this metric,
for splitting. The reconstituted dictionary, after splitting, had

Fig. 1 Distance between sound units. The darker the color, the 
more distant the units
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exactly as many entries as the original CMUdict.
Table 1 shows the recognition accuracies obtained with the
original set of 50 phones from the CMUdict, the 44 phones
that resulted after merging of phones, and the 50 phones that
resulted from the splitting. The per-frame likelihoods
obtained with these phone sets is also shown. All likelihoods
and recognition accuracies shown were obtained with con-
text-independent models. We note that the language weight
used in these experiments was relatively small, in order to
reduce any effects of the language model on the experiment.

 

Table 1:  

 

Word error rates and per-frame likelihoods on the RM 
task, obtained with CI models for different sets of sound units

 

We observe that the likelihood obtained with the 50 reesti-
mated phones is significantly higher than that obtained with
the original set of phones in the CMUdict. The recognition
accuracy obtained is also higher than that obtained with the
phones in the CMUdict.
We trained context-dependent models with 2000 tied states
and 1 Gaussian per state for both the CMUdict phones and
the re-estimated sound units. Automatically generated lin-
guistic questions [6] were used for building decision trees for
state tying in both cases.

 

Table 2:  

 

Word error rates obtained with CD models for the RM 
task with different sets of sound units

 

Table 2 shows the recognition accuracy obtained with con-
text-dependent models for both the CMUdict phones and the
reconstituted sound units. In the case of context-dependent
models, it is observed that the difference between the CMU
units and the reconstituted units is smaller than for the case of
context-independent models. While this result is surprising, it
can be explained. We hypothesize that the context informa-
tion modeled by the context-dependent models reduces the

inherent confusability between phones greatly. As a result,
the improvement obtained due to the more sharply defined
reconstituted sound units is not observed with context-depen-
dent units. 

 

6. SUMMARY AND CONCLUSIONS

 

In this paper we have described a new merging and splitting
technique for redefining acoustic units in LVCSR systems in
a structured manner. This method attempts to harness both
the best features of sound-unit redefinition methods and the
human knowledge built into standard lexica built by experts.
The algorithm works by redefining the basic human-defined
phone set in recognition systems by merging the closest units
into a single unit, followed by splitting sound units to
increase the size of the set of units. This method is seen to
increase recognition accuracy when context-independent
units are used for recognition. The improvements are greatly
reduced, however, when context-dependent units are used for
recognition. 
The results obtained with the context-independent models, as
well as the distance matrix represented in Figure 1 indicate
that several phones in the CMUdict are indistinctly defined
for the RM task, and rely greatly on contextual and linguistic
information to improve the recognition. While the results
with context-dependent models indicate that context informa-
tion does indeed reduce the confusability between sound
units, we expect that reducing the size of the phone set fur-
ther, prior to expanding it would result in greater improve-
ments in recognition accuracy.
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No. of units 50 (manual) 44 (merged) 50 (Split)

WER (%) 15.4 17.6 13.8

Likelihood -0.84 -0.92 -0.77

No. of units 50 (manual) 50 (Split)

WER(%) 9.2 9.0

A
E

_E
H

A
H

A
O

A
W

A
X

_I
X

_I
H

A
X

R
_R A
Y B

B
D

C
H D

D
D

_T
D

D
H

D
X

E
R

E
Y F G

G
D

H
H IY JH K

K
D L

M
_N N
G

O
W O
Y P

P
D S

S
H T

T
H

T
S

U
H

U
W V W Y Z

Z
H

0.00

0.02

0.04

0.06

0.08

0.10

0.12
Li

ke
lih

oo
d 

in
ce

ra
se

/s
pl

it

Fig. 2 Expected increase in likelihood due the splitting of several 
sound units


