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ABSTRACT

Spontaneous speech is highly variable and rarely conforms to
conventional assumptions and linguistically defined pronunciation
rules. Specifically, there may be many different continuous speech
realizations for each expertly defined phonetic unit in the
dictionary. The phones may be realized in a clean and complete
fashion as in read speech, or they may be realized in a sloppy and
incomplete fashion as in highly spontaneous speech. For
spontaneous speech, therefore, it may be beneficial to model
incompletely realized variants of any phonetic unit as separate
units. In this paper we test this hypothesis by introducing two
possible modeling classes for the phones AA and IY in the
standard English CMU recognition dictionary. We propose three
different automatic methods of segregating the training data
properly in order to identify and label the appropriate variants.
Each of these methods results in improved recognition
performance over the baseline, leading to the conclusion that finer
modeling frameworks can be helpful to parameterize properly and
recognize spontaneous speech.

1. INTRODUCTION

Acoustic modeling for speech recognition is accomplished
by identifying a set of basic sound units and learning their
relevant statistical parameters. In most systems human
experts define a set of basic sound units that capture the
characteristics of the training data and that generalize well
to data outside the training corpus. Experts also design a
dictionary of words and pronunciations using these basic
units.

Spontaneous speech, however, is highly variable and rarely
conforms to expertly defined pronunciation rules. We
hypothesize that each phoneme has canonical or “target”
feature values. When speech is carefully read, features
transition from one target to the next and almost always
reach the targets. When speaking casually, however,
canonical feature values are not always attained.
Particularly, when speech is very rapid we may only see
transitions that head toward targets that are never reached.

Clearly, there are multiple possible continuous speech
realizations for each phoneme in the dictionary. Other
researchers have focused on learning alternate
pronunciations and their corresponding probabilities from
training data [1–3], and on adapting underlying HMM states
and topologies to effectively capture these variations [4–5].

In this paper we attempt to improve the recognition
performance for spontaneous speech by finer acoustic
modeling in which variations in pronunciation of a
particular phone are treated as separate phonetic units. For
simplicity we confine our experiments to include the
pronunciation variants of two common vowels AA and IY
in the English language. The sounds represented by these
phones are identical to those in the standard CMU
recognition dictionary [6]. For each of these phones, we
consider two possible phone realizations: a “pure” rendering
as in more careful speech, and a “casual” rendering as in
more spontaneous speech. The practical implementation of
this conjecture poses a further problem —  that of
automatically partitioning all instances of the phones AA
and IY in the training corpus into two separate acoustic
modeling classes. In this paper, we propose three methods to
accomplish this variant-based partitioning. Experimental
results show that the resulting context-independent (CI)
models consistently outperform standard models.

To simplify the description of the three partitioning
techniques mentioned above, we first present our
experimental framework in the following section. Sections
3, 4 and 5 then separately describe the partitioning
techniques and their individual performance, which are
collectively assessed in Section 6.

2. EXPERIMENTAL FRAMEWORK

2.1 The Multiple Register Speech Corpus
We used the NIST Multiple Register Speech Corpus
(MULT_REG), a parallel corpus for comparison of
spontaneous and read speech recorded at SRI. The database
contains fifteen spontaneous conversations on assigned
topics and re-read versions of the same conversations. For
our experiments, we selected data solely from the
spontaneous register. We used approximately 2 hours of
spontaneous speech to train our acoustic models, and 0.5
hours of spontaneous speech to test our models.

2.2 Speech Recognizer and HMM Configuration
The CMU SPHINX-III recognition system was used for all
experiments. The data were modeled using 3-state left-to-
right HMMs with no state skipping. Due to the limited
amount of data in our training set, we used semi-continuous



HMMs (codebook size 256). In order to focus on the effects
of multiple models for each phone, we trained and tested
context-independent (CI) models.

2.3 The Pronunciation Dictionary
We generated two different decoding dictionaries. The first
was an expansion of the CMU pronunciation dictionary to
include all possible pronunciations after the phone was
partitioned. A word with N instances of a split phone had 2N

alternate pronunciations in the expanded dictionary.
Alternatively, we trimmed this dictionary to contain only
words and pronunciation variants seen in the training data.
This enabled us to focus on the effects of phone splitting.

3. GAUSSIAN-BASED PHONE SPLITTING

In this technique we use a simple probabilistic model to
segregate the members of a phonetic class into two separate
classes. We assume that a single Gaussian distribution can
be used to model all the observed feature vectors
corresponding to the phone we want to split, and we
compute the overall mean and variance of these features to
specify the distribution. We then apply a small linear
perturbation to the mean vector computed by adding a small
value to its components. For each phone instance in the
training set, we then calculate the sum of the log-likelihood
of all the vectors in the segment with respect to each of the
two Gaussians resulting from the perturbation. Each phone
segment in the training set is then assigned to its new class
depending on which summed log-likelihood score is higher.
This process is illustrated in Figure 1.

Figure 1. Illustration of Gaussian-based phone splitting. The
dotted ovals represent the original Gaussian distribution of the
features underlying the original phone class. The shaded areas
represent the finer distributions corresponding to the resulting
segregated classes.

Clearly the resulting distributions of the split phonetic
classes must be sharper and more defined than the original
distribution. Experiments performed to test the validity of
this technique are described below.

To establish a baseline, we decoded our test set using the
same CI models used to segregate the data. We tested using
both the complete CMU dictionary, and a trimmed version

of the CMU dictionary which contained only words present
in the training corpus.

Following this, we first used the Gaussian-based phone
splitting technique to separate only the phone AA into two
separate classes, AA0 and AA1. New CI models were then
trained for these phone classes, and were used to align the
training data to the expanded version of the CMU dictionary
that contained all possible pronunciations after the phone
split, using the Viterbi algorithm. We then retrained the CI
models for AA0 and AA1 using these aligned transcripts as a
guide, and decoded the test set to evaluate the resulting
models. Two different dictionaries were used for decoding;
the first contained all possible pronunciations, and the
second contained only words and pronunciation variants
seen in the training set. We then repeated the process for
only the phone IY. The models were trained, the data was
Viterbi-aligned, the models were retrained and then
evaluated as above.

Finally, we split AA and IY consecutively via the same
process. The resulting models contained separate phone
units AA0, AA1, IY0, and IY1. The WER results for all the
experiments are shown in Table 1.

Full dict Trimmed dict
Baseline 51.1% 63.8%
Split AA 49.6% 62.0%
Split IY 49.3% 62.2%
Split AA then IY 50.2% 62.7%

Table 1. WER after phones AA and IY are segregated by
Gaussian-based phone splitting. Full dict contains all possible
pronunciations for decoding. Trimmed dict contains only words
and pronunciations seen in the training set

Incorporating separate models for the phone classes derived
with the Gaussian-based phone splitting technique resulted
in a slight improvement over the standard CI baseline
models. For the dictionary with all possible pronunciations,
the best results occurred when IY was split and AA was left
as a single class. However, with the trimmed dictionary
which contained only words and pronunciations seen in the
training set, the best results occurred when AA was split and
IY was not. This could possibly be due to a large number of
out-of-vocabulary words involving the variants of IY. In
fact, we observe that the WERs in the case of the trimmed
dictionary are consistently higher than with the full
dictionary due to the absence of appropriate variant
pronunciations in the trimmed dictionary.

4. HMM LIKELIHOOD-BASED
PHONE SPLITTING

Although the simple Gaussian-based phone splitting results
in better recognition performance, the method makes some
general assumptions which are not quite valid. First, we



consider each speech feature vector independently of the
sequence in which it occurs. The phone class is essentially
modeled as a “bag of vectors” rather than a collection of
sequential segments of speech. Second, the phones are
segregated into separate classes without regard to the
underlying acoustic models that we seek to improve by this
technique. The splitting method that we propose in this
section attempts to counter these shortcomings by
appropriately use of the underlying phone HMMs and the
likelihood scores associated with them.

The HMM itself provides a mechanism that can be used to
segregate vector sequences into clusters. Each state of the
HMM has an output probability distribution representing the
vectors in the segments of speech it models. It is possible,
therefore, to perturb the parameters of these distributions in
such a way that the resulting likelihood scores can be used
to segregate the observed sequences into two classes. Our
second method of phone splitting adopts this procedure.

To test this procedure we trained fully-continuous CI
models with one Gaussian per state with the assumption, as
before, that the output distributions of these HMM states
were broad enough to capture all of the data in a given
phonetic class. We then perturbed the underlying mean
vectors corresponding to the phone we wanted to split. In
the case of the phone AA, we decided to perturb the mean
vectors so that one of the models had means that were
slightly closer to the means of the schwa (AX) model, while
the other had means that were slightly further away from the
means of the schwa model. The incorporation of this
specific direction allowed us to further test our hypothesis
and ensure that one resulting subclass was modeling more
spontaneous renderings of the phone while the other was
modeling more clean renderings of the phone.

We then Viterbi-aligned our training data using each of the
CI CHMM models with perturbed mean vectors. The
likelihood score corresponding to each phone segment was
recorded. We then used the likelihood scores of the
perturbed models to decide the new class membership of
each segment. This process is illustrated in Figure 2.

We only used the fully-continuous HMM models to
segregate phone instances into separate classes. Once the
segregation was complete, we trained semi-continuous
HMMs as before, Viterbi-aligning and retraining in each
case before we evaluated the resulting models. We repeated
the same experimental sequence as in the previous method,
first splitting AA alone, then splitting IY alone, and finally
splitting AA and IY. The WER results are shown in Table 1.

Again we see that the models with the split phonetic units
perform better than baseline when evaluated on the
spontaneous test set. We also observe that it is slightly
better to split IY by itself than to split AA and IY together
when using the large decoding dictionary.

(a)

(b)

(c)

Figure 2. Illustration of HMM likelihood-based phone splitting.
The means of the output densities of the CHMMs are perturbed to
create two separate HMM models for the original phone class. (a)
represents the original HMM. (b) represents the HMM with the
means perturbed one direction. (c) represents the HMM with the
means perturbed the other direction. Segregation depends on which
underlying model, (b) or (c), yields the higher score.

Full dict Trimmed dict
Baseline 51.1% 63.8%
Split AA 50.1% 62.5%
Split IY 49.6% 61.9%
Split AA then IY 50.2% 62.7%

Table 2. WER after phones AA and IY are segregated based on
the likelihood scores of 1Gau/state CHMMs with perturbed output
density means. Full dict contains all possible pronunciations for
decoding. Trimmed dict contains only words and pronunciations
seen in the training set

In this case, however, it is also best to split IY alone when
using the trimmed decoding dictionary.This contrasts with
the observation in the previous section that splitting the
phone AA results in better performance. This contrast may
be attributable to the fact that Gaussians are more suited to
modeling stationary sounds, whereas HMMs are more
suited to modeling time-varying sounds. The phone AA is
relatively more stationary than the phone IY, whose
realization is different at the beginning and at the end of the
phone. For example, the word INDIA consists of the phones
IX N D IY AA. The phone IY here obviously captures the
transition from the sound IY to the sound AA. Hence
HMM-based splitting may be expected to give better results
with the phone IY while simple Gaussian-based splitting
gives better results with the phone AA.

In a follow-up experiment, we split all the vowels in the
phone set via the HMM-based technique and achieved a
WER of 50.4% using the full dictionary. This result is better
than baseline, but we believe that the merits of the phone
splitting technique cannot be seen due to the large number
of alternate pronunciations in the dictionary.



5. DURATION-BASED PHONE SPLITTING

The final method that we propose in this paper for phone
splitting is the simplest of the three methods. We studied the
training set and found that the average duration of the schwa
(AX) phone was 10 frames (where 1 frame = 10ms). We
used this duration as a threshold and separated the phone
into two classes based purely on the duration of the phone
renderings. Each instance was assigned to one class if its
duration was less than or equal to the duration of the
average schwa and to the other class if its duration was
greater than that of the average schwa. This method also
attempted to segregate the phone into one class for more
spontaneous renderings and another for more clean
renderings. This was based on the assumption that the
longer the duration of the vowel, the more likely it was to be
a clean rendering of the phone. Duration-based phone
splitting is illustrated in Figure 3.

t
B AA PB AAP<sil>

10 frames 10 frames

Figure 3. Illustration of duration-based phone splitting. Any
instance of the phone with duration greater than 10 frames is
placed in one class, and any instance with duration less than or
equal to 10 frames is placed in the other class. 10 frames is the
average duration of a schwa in the training set.

Again, the same sequence of experiments was performed as
before, using semi-continuous CI models trained on phones
segregated using the duration-based approach. The resulting
models were evaluated. The results are reported in Table 3.

Full dict Trimmed dict
Baseline 51.1% 63.8%
Split AA 49.8% 62.1%
Split IY 49.6% 63.0%
Split AA then IY 49.9% 62.5%

Table 3. WER after phones AA and IY are segregated based on
duration. Full dict contains all possible pronunciations for
decoding. Trimmed dict contains only words and pronunciations
seen in the training set.

The results again show an increase in performance over the
baseline in each case. The best results with the full
dictionary occurred when IY was split, and the best results
with the trimmed dictionary occurred when AA was split.

6. DISCUSSION

All proposed methods yielded an improvement when the
phone is divided into two classes, confirming our hypothesis
that improved modeling of particularly different phone
renderings should result in improved performance for
spontaneous speech. However, no one method for phone

splitting proved to be clearly superior to the other methods.
Rather, we note that the splitting of AA and IY together
using any given method did not outperform the splitting of
AA alone or IY alone in most cases. Together with the
observation that a given method of splitting worked better
with one phone than the other, this suggests that phones
must first be separated into “stationary” and “non-
stationary” classes, and separate splitting methods must be
applied to the phones in each of these classes.

An additional problem in increasing the number of
pronunciation variants in the dictionary is that they increase
the likelihood of confusing these pronunciation variants
with the pronunciations of other words. Ideally, only the
most frequently occurring pronunciation variants should be
included in the dictionary. However, identification of these
frequent variants would require large amounts of training
data. Had more training data been available from the
MULT_REG corpus, we would have attempted to do this.
Alternatively, correlation between the pronunciations of
various words could be applied to constrain the list of
pronunciation variants. Words with similar pronunciations
may be expected to have similar pronunciation variants for
spontaneous speech.
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