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ABSTRACT

HMM-based large vocabulary speech recognition systems usually
have a very large number of statistical parameters. For better
estimation, the number of parameters is reduced by sharing them
across models. The parameter sharing is decided by regression
trees which are built using phonetic classes designed either by a
human expert or by data-driven methods. In situations where
neither of these are reliable, it may be useful to have techniques
for non-decision-tree based state tying which perform comparably
to those based on traditional methods. In this paper we propose
two methods for non-decision tree based parameter learning in
HMM-based systems. In the first method (context-dependent state
tying), we restructure acoustic models to explicitly capture the
transitions between phones in continuous speech. In the second
method (transition-based subword units), we redefine the basic
sound units used to model speech to model transitions between
sounds explicitly. Experiments show that context-dependent state
tying is a viable option for large vocabulary systems. They also
show that using transition-based subword units can improve
performance on spontaneous speech.

1. INTRODUCTION

Large vocabulary continuous speech recognition systems
use Hidden Markov models (HMMs) to characterize sound
units or phones which are smaller than words. Phones
change dramatically depending on the context in which
they are found, and also depending on the speaking style
and situation. The triphone, which links together a phone
with its left and right contexts, is the generally accepted
way to model the effects of phonetic context. However, the
number of parameters in a complete triphone model is
huge, and complete coverage of the triphonetic space is
practically impossible, even with speech databases of 100
hours or more. Therefore, modern systems use
linguistically-defined decision trees [1] to cluster the
models so that the number of parameters is reduced to a
manageable level and unseen triphone units are modeled
effectively [2].

While decision trees provide an efficient way of
distributing the parameters, they are at the same time
dependent on the definition of phone classes which are
used as linguistic questions to partition the trees at every
stage. Regardless of whether these questions are manually
or automatically designed, the process of using decision
trees to tie parameters in these systems is quite time

consuming and cumbersome. In systems that need to be
rapidly deployed or trained, alternate effective and fast
methods of state tying need to be devised. We address this
problem in our paper and propose two methods of effective
non-decision tree state tying: redefinition of HMM
topologies to capture the effect of context on phones in
continuous speech more effectively, and redefinition of
subword units to explicitly focus on these contexts by
capturing phone transitions rather than steady-state regions
in speech.

Previously, other researchers have experimented with
different subword units and state-tying techniques to focus
acoustic modeling efforts on the speech signal as it
transitions from one phone to the next. Tying HMM states
based on context alone has been successful for speaker
dependent systems [3-4]. Alternate subword units that
explicitly model phone transitions, such as demiphones and
diphones, have been shown to produce acoustic models
that efficiently capture the coarticulation effects prevalent
in natural speech [5-7].

In this paper we are further interested in the use of phone
transition modeling for speaker independent recognition of
broadcast news and spontaneous speech. In the following
section we present our experimental framework in the
context of which, in later sections, we explain our
proposed methods of state tying.

2. EXPERIMENTAL FRAMEWORK

2.1 Databases
For the tests on large-vocabulary, speaker-independent
systems, we selected data used from the 1997 and 1998
DARPA HUB4 Broadcast News Evaluation corpora [ref].
We used approximately 90 hours of training data and 3
hours of testing data from all the focus conditions in the
broadcast news domain.

For the tests on spontaneous/conversational speech, we
used the Multiple Register Speech Corpus (MULT_REG)
which was collected at SRI and distributed by NIST.
MULT_REG is a parallel corpus for comparison of
spontaneous and read speech. Fifteen spontaneous
conversations on assigned topics were recorded and
carefully transcribed. The same speakers then returned to



re-read their conversations in dictation register. The
speakers also read 40 Wall Street Journal sentences.
Although the corpus was relatively small, we were able to
use approximately 2 hours of read speech to train various
acoustic models. These models were then tested on
separate test sets (0.5 hours of speech each); one set
contained read speech, and the other spontaneous speech.

2.2 Speech Recognizer and HMM Configuration
We used the CMU SPHINX-III speech recognizer for all
experiments. The standard HMM topology to model each
triphone unit was a 3-state left-to-right model with no state
skipping. SPHINX-III supports fully-continuous, semi-
continuous, and discrete HMMs. For the broadcast news
corpus, there were sufficient data to train fully-continuous
models. For the MULT_REG corpus, we used semi-
continuous models (codebook size 256) due to the limited
amount of data available.

3. USING GENERALIZED TRIPHONES WITH
CONTEXT-TIED STATES

The use of decision trees to tie states, while still the most
successful method for reducing the number of parameters
and modeling unseen triphone units, is constrained by
many factors. In most cases the questions used to segregate
the data must be designed by a linguistic expert with
extensive knowledge of the language to be modeled. The
questions are also designed based on linguistic theories of
phoneme “similarity”, which may or may not reflect the
behavior of real speech, especially when it is highly
spontaneous and variable. In a few cases where the
questions are automatically generated from the data, their
generality depends on the amount and type of data
available. In the following paragraphs we present an
alternate and simple rule-based method of state tying
which is based on phone-transitions.

3.1 HMM States that Model Transitions
For conceptual simplicity we present our method in the
context of HMMs with three states and no allowable skips
between the states. Two such models are depicted in Figure
1. In each model depicted,
1) The central state models the canonical or “steady-

state” form of the phone, which should not be highly
affected by the surrounding context.

2) The left state models part of the transition from the
previous phone into the current phone. This is highly
dependent on the left context.

3) The right state models part of the transition from the
current phone into the next phone. This is highly
dependent on the right context.

It is to be noted, however, that in the practical
implementation of an HMM-based system there is nothing
that explicitly forces the model to follow the simple

conceptual partitioning of states that we have enumerated
above.

X→ Y

HMM for X
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“X” “Y”

HMM for Y

Figure 1. Motivation for 3-state HMM framework. Core states of
phones model the canonical phone itself and are not highly
affected by context. Remaining states model the context-
dependent transition from phone to phone.

Thus, while it is reasonable to expect that the scheme
presented above is generally true, it is likely that the
representation of transitions and steady states is smeared
over all the states of the HMM.

One way to impose this structure is through context-
dependent state tying. For a given base phone, we tie
together all of the central states. We also tie together the
left states that have the same left context and the right
states that have the same right context. Unlike decision tree
approaches, this state tying does not rely on the data itself
or on expert-designed linguistic questions. There are no
inconsistencies in the resulting acoustic model structure. It
has been previously shown that reasonably good acoustic
models for speaker-dependent systems can be created
using this approach [3-4].

The following experiments were designed to investigate
the extension of this approach to speaker-independent
systems and spontaneous-speech systems.

3.2 Context-Tied States and Broadcast News
We generated the tied model definition for the broadcast
news corpus via the context-dependent state tying
described above. Similar to [6], a minimum threshold N
representing the number of observances was required to
model a given state. In the case of broadcast news, we
chose N=50. We used a decision tree built on context-
independent models with one Gaussian per state to merge
any transition states seen less than 50 times in the training
corpus. (Note that because of the amount of data in the
broadcast news corpus, only a few states that modeled rare
phone transitions were replaced by this method. Removing
the dependence on decision trees altogether by excluding
the triphones that contain “undertrained” states resulted in
only a slight degradation in performance.) Using this
method, the resulting number of tied states was 5048,
including the states used to model the CI phones. We built
and trained a fully continuous acoustic model on the
broadcast news training corpus.

For comparison, we also trained fully continuous models
using decision trees to merge states in the standard manner.



We pruned the trees to ensure that our baseline model
would have exactly the same number of tied states as the
context-tied model (5048).

We decoded the test set using 4, 8, and 16 Gaussian per
state models. The resulting word error rates (WER) are
shown in Table 1. The standard decision tree-tied models
slightly outperformed the context-tied models. However,
these results confirm that context-tied modeling is a viable
option for large-scale speaker independent systems.

4gau/st 8gau/st 16gau/st
Standard 26.1% 23.8% 22.4%
Context-tied 28.5% 25.5% 23.7%

Table 1. Comparison of WER of standard-tied models with
context-tied models on the Broadcast News corpus

3.3 Context-Tied States and MULT_REG
We generated the context-tied model definition for the read
portion of the MULT_REG corpus. Due to the limited
amount of training data, we merged all tied states seen less
than N=10 times using a decision tree built from semi-
continuous CI models. The resulting context-tied semi-
continuous HMMs trained on the read portion of the
MULT_REG corpus contained 2772 tied states. For
comparison, we trained baseline semi-continuous models
with states tied by decision trees. The baseline models
contained 2500 distinct tied states. We tested these models
on both the read and spontaneous test sets extracted from
the MULT_REG corpus. The WER results are shown in
Table 2. The resulting performance was consistent with the
broadcast news results. Again, the context-tied models
performed adequately and were slightly outperformed by
the standard models.

read test spontaneous test
Standard 14.0% 38.5%
Context-tied 14.8% 41.8%

Table 2. WER comparison of standard-tied models with context-
tied models on the MULT_REG corpus

Because the models were trained on read speech, the
spontaneous results suffered from a mismatch in training
and testing conditions. Standard models trained on the
spontaneous corpus yielded a WER of 34.5% when
evaluated on this particular spontaneous test set. In the next
section, we discuss possible ways of doing transitional
phone modeling to improve recognition when there is a
mismatch in the level of spontaneity between the training
and testing corpora.

4. PHONE TRANSITION SUBWORD UNITS
AND SPONTANEOUS SPEECH

4.1 Transitional Subword Units
In 1997, Mariño et al. introduced the demiphone as an
alternative subword unit for continuous speech recognition
[5]. The phone is divided into two parts, the left part to
handle the beginning of the phone and the left side
coarticulation, and the right part to handle the end of the
phone and the right side coarticulation. Using Mariño’s
labeling, the word “left” would be transcribed with
demiphones as: F-l l+eh l-eh eh+f eh-f f+t f-t t+F. The
symbol “F” is used to indicate a word boundary. The
phone labels concatenated with “-” are left side
demiphones, and those concatenated with “+” are right side
demiphones. In [6], Mariño reported an improvement of
recognition performance using demiphones as compared
with standard triphone modeling.

In 1999, Dobrišek et al. directly used diphone units for
recognition [7]. (The diphone unit is currently used in
many speech synthesis systems.) A diphone is a
representation which models the transitions that stretch
from the “center” of one phone to the “center” of the next.
Transcribed with diphones, the word “left” would be: l~eh
eh~f f~t.

Similar to the above, we define transition phone units that
explicitly model the transition from one phone to another.
We use separate units to model the transition from one
phone to the next, and we also use separate units to model
the core of each phone. Using our notation, the word “left”
is transcribed: <B>.l l l.eh eh eh.f f f.t t t.<E>. (<B> and
<E> are used to mark begin and end word boundaries,
respectively.) The phone pairs concatenated with “.”
represent the transition from one phone to the next. The
isolated phone labels represent the canonical “center” of
each phone. Having separate “steady” and transition states
gives us the desired flexibility of model configuration
required for our experimentation with spontaneous speech.

Table 3 summarizes the different proposed subword units
that model coarticulation effects between phones. Again,
the word “left” is transcribed using each representation.

demiphones: F-l l+eh l-eh eh+f eh-f f+t f-t t+F
diphones: l~eh eh~f f~t
transition phones: <B>.l l l.eh eh eh.f f f.t t t.<E>

Table 3. Transcription of the word “left” using various proposed
phone transition subword units.

4.2 Transition Phones and MULT_REG
For the experiments with transition phones, we expanded
our base phone set to contain all of the transition phone
units and trained context-independent semi-continuous
HMMs on the read training data from the MULT_REG
corpus. In this experiment, we used one state to model the



core of each phone and two states to model the transition
from phone to phone. This setup provides the transition
phone model equivalent to the standard 3-state triphone
models used as a baseline for comparison. Again, due to
limited training data size, we used decision trees built on
standard CI triphone models to provide a model for unseen
transition phone units. The results are shown in Table 4.
The transition phone units performed better than standard
CI models, but clearly they were unable to compete with
standard CD models in recognizing either the read or
spontaneous test sets.

# tied
states

read test Spon
test

Standard CI Triphones 165 23.3% 53.5%
Transition Phones (CI) 1357 17.8% 45.7%
Standard CD Triphones 2500 14.0% 38.5%

Table 4. WER results using phone transition units on
MULT_REG. Comparison with standard CI and CD models.
Number of tied states (proportional to the number of parameters)
in each model is also shown.

4.3 Transition Phones and Train/Test Mismatch
The flexibility of the transition phone framework allowed
us to experiment with the following hypothesis: Phones
have a canonical “steady-state” or “target” feature value.
When speech is carefully pronounced, the acoustic features
transition gracefully from one target value to the next and
almost always reach the steady state value. However, when
speaking spontaneously, the canonical feature values are
rarely attained. Often all that we see are transitions towards
targets that are never quite achieved.

We used the read MULT_REG speech to train transition
phone models with two states that model the “core” portion
of each phone and two states that model the transitions
from phone to phone. The core states are designed to
capture the canonical feature values described above.
When decoding, we used a modified decode dictionary that
contained only the transition phone units and not the core
units. For example, the decode dictionary transcription of
“left” would be reduced to <B>.l l.eh eh.f f.t t.<E>.
Dropping the core state from the decoding dictionary
enabled us to test our hypothesis.

We decoded the read and spontaneous test sets using the
transition phone models, both with and without the core
states. The results are shown in Table 5. Dropping the core
states from the model trained on read speech yielded a
significant performance increase when decoding
spontaneous speech, confirming our hypothesis. Also,
dropping the core states resulted in a performance
degradation on read speech, as expected.

Read
test

Spon
test

Core included 19.8% 52.5%
Core dropped 23.4% 50.7%

Table 5. WER results using phone transition units on
MULT_REG. Models were trained on read speech. Models were
tested both with and without the core states that model “target”
feature values observed in read speech.

5. DISCUSSION

We believe that the two methods described in Section 4 to
be adequate for speaker-independent systems. These
methods both simplify and speed up the state-tying process
during system training. Since these methods do not
explicitly require the knowledge of the sounds represented
by the subword units, they are potentially of great use in
rapid deployment of systems in foreign languages.

We also note that although standard triphone modeling
outperformed the transition phone units in our experiments,
there was an improvement in accuracy for spontaneous
speech when the states modeling the core of each phone
were not considered during decoding. This confirms the
hypothesis that spontaneous speech can be thought of as a
series of transitions towards canonical target values for
each phone that are never completely reached.
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